blob: 73586d07fdcf4da5f5b8bd8ded87cf665cfef392 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.camera.settings;
import android.content.Context;
import android.util.DisplayMetrics;
import android.view.WindowManager;
import com.android.camera.exif.Rational;
import com.android.camera.util.AndroidServices;
import com.android.camera.util.ApiHelper;
import com.android.camera.util.Size;
import com.google.common.collect.Lists;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import javax.annotation.Nonnull;
import javax.annotation.ParametersAreNonnullByDefault;
/**
* This class is used to help manage the many different resolutions available on
* the device. <br/>
* It allows you to specify which aspect ratios to offer the user, and then
* chooses which resolutions are the most pertinent to avoid overloading the
* user with so many options.
*/
public class ResolutionUtil {
/**
* Different aspect ratio constants.
*/
public static final Rational ASPECT_RATIO_16x9 = new Rational(16, 9);
public static final Rational ASPECT_RATIO_4x3 = new Rational(4, 3);
private static final double ASPECT_RATIO_TOLERANCE = 0.05;
public static final String NEXUS_5_LARGE_16_BY_9 = "1836x3264";
public static final float NEXUS_5_LARGE_16_BY_9_ASPECT_RATIO = 16f / 9f;
public static Size NEXUS_5_LARGE_16_BY_9_SIZE = new Size(3264, 1836);
/**
* These are the preferred aspect ratios for the settings. We will take HAL
* supported aspect ratios that are within ASPECT_RATIO_TOLERANCE of these values.
* We will also take the maximum supported resolution for full sensor image.
*/
private static Float[] sDesiredAspectRatios = {
16.0f / 9.0f, 4.0f / 3.0f
};
private static Size[] sDesiredAspectRatioSizes = {
new Size(16, 9), new Size(4, 3)
};
/**
* A resolution bucket holds a list of sizes that are of a given aspect
* ratio.
*/
private static class ResolutionBucket {
public Float aspectRatio;
/**
* This is a sorted list of sizes, going from largest to smallest.
*/
public List<Size> sizes = new LinkedList<Size>();
/**
* This is the head of the sizes array.
*/
public Size largest;
/**
* This is the area of the largest size, used for sorting
* ResolutionBuckets.
*/
public Integer maxPixels = 0;
/**
* Use this to add a new resolution to this bucket. It will insert it
* into the sizes array and update appropriate members.
*
* @param size the new size to be added
*/
public void add(Size size) {
sizes.add(size);
Collections.sort(sizes, new Comparator<Size>() {
@Override
public int compare(Size size, Size size2) {
// sort area greatest to least
return Integer.compare(size2.width() * size2.height(),
size.width() * size.height());
}
});
maxPixels = sizes.get(0).width() * sizes.get(0).height();
}
}
/**
* Given a list of camera sizes, this uses some heuristics to decide which
* options to present to a user. It currently returns up to 3 sizes for each
* aspect ratio. The aspect ratios returned include the ones in
* sDesiredAspectRatios, and the largest full sensor ratio. T his guarantees
* that users can use a full-sensor size, as well as any of the preferred
* aspect ratios from above;
*
* @param sizes A super set of all sizes to be displayed
* @param isBackCamera true if these are sizes for the back camera
* @return The list of sizes to display grouped first by aspect ratio
* (sorted by maximum area), and sorted within aspect ratio by area)
*/
public static List<Size> getDisplayableSizesFromSupported(List<Size> sizes, boolean isBackCamera) {
List<ResolutionBucket> buckets = parseAvailableSizes(sizes, isBackCamera);
List<Float> sortedDesiredAspectRatios = new ArrayList<Float>();
// We want to make sure we support the maximum pixel aspect ratio, even
// if it doesn't match a desired aspect ratio
sortedDesiredAspectRatios.add(buckets.get(0).aspectRatio.floatValue());
// Now go through the buckets from largest mp to smallest, adding
// desired ratios
for (ResolutionBucket bucket : buckets) {
Float aspectRatio = bucket.aspectRatio;
if (Arrays.asList(sDesiredAspectRatios).contains(aspectRatio)
&& !sortedDesiredAspectRatios.contains(aspectRatio)) {
sortedDesiredAspectRatios.add(aspectRatio);
}
}
List<Size> result = new ArrayList<Size>(sizes.size());
for (Float targetRatio : sortedDesiredAspectRatios) {
for (ResolutionBucket bucket : buckets) {
Number aspectRatio = bucket.aspectRatio;
if (Math.abs(aspectRatio.floatValue() - targetRatio) <= ASPECT_RATIO_TOLERANCE) {
result.addAll(pickUpToThree(bucket.sizes));
}
}
}
return result;
}
/**
* Get the area in pixels of a size.
*
* @param size the size to measure
* @return the area.
*/
private static int area(Size size) {
if (size == null) {
return 0;
}
return size.width() * size.height();
}
/**
* Given a list of sizes of a similar aspect ratio, it tries to pick evenly
* spaced out options. It starts with the largest, then tries to find one at
* 50% of the last chosen size for the subsequent size.
*
* @param sizes A list of Sizes that are all of a similar aspect ratio
* @return A list of at least one, and no more than three representative
* sizes from the list.
*/
private static List<Size> pickUpToThree(List<Size> sizes) {
List<Size> result = new ArrayList<Size>();
Size largest = sizes.get(0);
result.add(largest);
Size lastSize = largest;
for (Size size : sizes) {
double targetArea = Math.pow(.5, result.size()) * area(largest);
if (area(size) < targetArea) {
// This candidate is smaller than half the mega pixels of the
// last one. Let's see whether the previous size, or this size
// is closer to the desired target.
if (!result.contains(lastSize)
&& (targetArea - area(lastSize) < area(size) - targetArea)) {
result.add(lastSize);
} else {
result.add(size);
}
}
lastSize = size;
if (result.size() == 3) {
break;
}
}
// If we have less than three, we can add the smallest size.
if (result.size() < 3 && !result.contains(lastSize)) {
result.add(lastSize);
}
return result;
}
/**
* Take an aspect ratio and squish it into a nearby desired aspect ratio, if
* possible.
*
* @param aspectRatio the aspect ratio to fuzz
* @return the closest desiredAspectRatio within ASPECT_RATIO_TOLERANCE, or the
* original ratio
*/
private static float fuzzAspectRatio(float aspectRatio) {
for (float desiredAspectRatio : sDesiredAspectRatios) {
if ((Math.abs(aspectRatio - desiredAspectRatio)) < ASPECT_RATIO_TOLERANCE) {
return desiredAspectRatio;
}
}
return aspectRatio;
}
/**
* This takes a bunch of supported sizes and buckets them by aspect ratio.
* The result is a list of buckets sorted by each bucket's largest area.
* They are sorted from largest to smallest. This will bucket aspect ratios
* that are close to the sDesiredAspectRatios in to the same bucket.
*
* @param sizes all supported sizes for a camera
* @param isBackCamera true if these are sizes for the back camera
* @return all of the sizes grouped by their closest aspect ratio
*/
private static List<ResolutionBucket> parseAvailableSizes(List<Size> sizes, boolean isBackCamera) {
HashMap<Float, ResolutionBucket> aspectRatioToBuckets = new HashMap<Float, ResolutionBucket>();
for (Size size : sizes) {
Float aspectRatio = (float) size.getWidth() / (float) size.getHeight();
// If this aspect ratio is close to a desired Aspect Ratio,
// fuzz it so that they are bucketed together
aspectRatio = fuzzAspectRatio(aspectRatio);
ResolutionBucket bucket = aspectRatioToBuckets.get(aspectRatio);
if (bucket == null) {
bucket = new ResolutionBucket();
bucket.aspectRatio = aspectRatio;
aspectRatioToBuckets.put(aspectRatio, bucket);
}
bucket.add(size);
}
if (ApiHelper.IS_NEXUS_5 && isBackCamera) {
aspectRatioToBuckets.get(16 / 9.0f).add(NEXUS_5_LARGE_16_BY_9_SIZE);
}
List<ResolutionBucket> sortedBuckets = new ArrayList<ResolutionBucket>(
aspectRatioToBuckets.values());
Collections.sort(sortedBuckets, new Comparator<ResolutionBucket>() {
@Override
public int compare(ResolutionBucket resolutionBucket, ResolutionBucket resolutionBucket2) {
return Integer.compare(resolutionBucket2.maxPixels, resolutionBucket.maxPixels);
}
});
return sortedBuckets;
}
/**
* Given a size, return a string describing the aspect ratio by reducing the
*
* @param size the size to describe
* @return a string description of the aspect ratio
*/
public static String aspectRatioDescription(Size size) {
Size aspectRatio = reduce(size);
return aspectRatio.width() + "x" + aspectRatio.height();
}
/**
* Reduce an aspect ratio to its lowest common denominator. The ratio of the
* input and output sizes is guaranteed to be the same.
*
* @param aspectRatio the aspect ratio to reduce
* @return The reduced aspect ratio which may equal the original.
*/
public static Size reduce(Size aspectRatio) {
BigInteger width = BigInteger.valueOf(aspectRatio.width());
BigInteger height = BigInteger.valueOf(aspectRatio.height());
BigInteger gcd = width.gcd(height);
int numerator = Math.max(width.intValue(), height.intValue()) / gcd.intValue();
int denominator = Math.min(width.intValue(), height.intValue()) / gcd.intValue();
return new Size(numerator, denominator);
}
/**
* Given a size return the numerator of its aspect ratio
*
* @param size the size to measure
* @return the numerator
*/
public static int aspectRatioNumerator(Size size) {
Size aspectRatio = reduce(size);
return aspectRatio.width();
}
/**
* Given a size, return the closest aspect ratio that falls close to the
* given size.
*
* @param size the size to approximate
* @return the closest desired aspect ratio, or the original aspect ratio if
* none were close enough
*/
public static Size getApproximateSize(Size size) {
Size aspectRatio = reduce(size);
float fuzzy = fuzzAspectRatio(size.width() / (float) size.height());
int index = Arrays.asList(sDesiredAspectRatios).indexOf(fuzzy);
if (index != -1) {
aspectRatio = sDesiredAspectRatioSizes[index];
}
return aspectRatio;
}
/**
* Given a size return the numerator of its aspect ratio
*
* @param size
* @return the denominator
*/
public static int aspectRatioDenominator(Size size) {
BigInteger width = BigInteger.valueOf(size.width());
BigInteger height = BigInteger.valueOf(size.height());
BigInteger gcd = width.gcd(height);
int denominator = Math.min(width.intValue(), height.intValue()) / gcd.intValue();
return denominator;
}
/**
* Returns the aspect ratio for the given size.
*
* @param size The given size.
* @return A {@link Rational} which represents the aspect ratio.
*/
public static Rational getAspectRatio(Size size) {
int width = size.getWidth();
int height = size.getHeight();
int numerator = width;
int denominator = height;
if (height > width) {
numerator = height;
denominator = width;
}
return new Rational(numerator, denominator);
}
public static boolean hasSameAspectRatio(Rational ar1, Rational ar2) {
return Math.abs(ar1.toDouble() - ar2.toDouble()) < ASPECT_RATIO_TOLERANCE;
}
/**
* Selects the maximal resolution for the given desired aspect ratio from all available
* resolutions. If no resolution exists for the desired aspect ratio, return a resolution
* with the maximum number of pixels.
*
* @param desiredAspectRatio The desired aspect ratio.
* @param sizes All available resolutions.
* @return The maximal resolution for desired aspect ratio ; if no sizes are found, then
* return size of (0,0)
*/
public static Size getLargestPictureSize(Rational desiredAspectRatio, List<Size> sizes) {
int maxPixelNumNoAspect = 0;
Size maxSize = new Size(0, 0);
// Fix for b/21758681
// Do first pass with the candidate with closest size, regardless of aspect ratio,
// to loosen the requirement of valid preview sizes. As long as one size exists
// in the list, we should pass back a valid size.
for (Size size : sizes) {
int pixelNum = size.getWidth() * size.getHeight();
if (pixelNum > maxPixelNumNoAspect) {
maxPixelNumNoAspect = pixelNum;
maxSize = size;
}
}
// With second pass, override first pass with the candidate with closest
// size AND similar aspect ratio. If there are no valid candidates are found
// in the second pass, take the candidate from the first pass.
int maxPixelNumWithAspect = 0;
for (Size size : sizes) {
Rational aspectRatio = getAspectRatio(size);
// Skip if the aspect ratio is not desired.
if (!hasSameAspectRatio(aspectRatio, desiredAspectRatio)) {
continue;
}
int pixelNum = size.getWidth() * size.getHeight();
if (pixelNum > maxPixelNumWithAspect) {
maxPixelNumWithAspect = pixelNum;
maxSize = size;
}
}
return maxSize;
}
public static DisplayMetrics getDisplayMetrics(Context context) {
DisplayMetrics displayMetrics = new DisplayMetrics();
WindowManager wm = AndroidServices.instance().provideWindowManager();
if (wm != null) {
wm.getDefaultDisplay().getMetrics(displayMetrics);
}
return displayMetrics;
}
/**
* Takes selected sizes and a list of blacklisted sizes. All the blacklistes
* sizes will be removed from the 'sizes' list.
*
* @param sizes the sizes to be filtered.
* @param blacklistString a String containing a comma-separated list of
* sizes that should be removed from the original list.
* @return A list that contains the filtered items.
*/
@ParametersAreNonnullByDefault
public static List<Size> filterBlackListedSizes(List<Size> sizes, String blacklistString) {
String[] blacklistStringArray = blacklistString.split(",");
if (blacklistStringArray.length == 0) {
return sizes;
}
Set<String> blacklistedSizes = new HashSet(Lists.newArrayList(blacklistStringArray));
List<Size> newSizeList = new ArrayList<>();
for (Size size : sizes) {
if (!isBlackListed(size, blacklistedSizes)) {
newSizeList.add(size);
}
}
return newSizeList;
}
/**
* Returns whether the given size is within the blacklist string.
*
* @param size the size to check
* @param blacklistString a String containing a comma-separated list of
* sizes that should not be available on the device.
* @return Whether the given size is blacklisted.
*/
public static boolean isBlackListed(@Nonnull Size size, @Nonnull String blacklistString) {
String[] blacklistStringArray = blacklistString.split(",");
if (blacklistStringArray.length == 0) {
return false;
}
Set<String> blacklistedSizes = new HashSet(Lists.newArrayList(blacklistStringArray));
return isBlackListed(size, blacklistedSizes);
}
private static boolean isBlackListed(@Nonnull Size size, @Nonnull Set<String> blacklistedSizes) {
String sizeStr = size.getWidth() + "x" + size.getHeight();
return blacklistedSizes.contains(sizeStr);
}
}