blob: aaad7f85e76ab56d9417e767ab0cc74fa293415a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* $Id: db_image_homography.cpp,v 1.2 2011/06/17 14:03:31 mbansal Exp $ */
#include "db_utilities.h"
#include "db_image_homography.h"
#include "db_framestitching.h"
#include "db_metrics.h"
/*****************************************************************
* Lean and mean begins here *
*****************************************************************/
/*Compute the linear constraint on H obtained by requiring that the
ratio between coordinate i_num and i_den of xp is equal to the ratio
between coordinate i_num and i_den of Hx. i_zero should be set to
the coordinate not equal to i_num or i_den. No normalization is used*/
inline void db_SProjImagePointPointConstraint(double c[9],int i_num,int i_den,int i_zero,
double xp[3],double x[3])
{
db_MultiplyScalarCopy3(c+3*i_den,x, xp[i_num]);
db_MultiplyScalarCopy3(c+3*i_num,x, -xp[i_den]);
db_Zero3(c+3*i_zero);
}
/*Compute two constraints on H generated by the correspondence (Xp,X),
assuming that Xp ~= H*X. No normalization is used*/
inline void db_SProjImagePointPointConstraints(double c1[9],double c2[9],double xp[3],double x[3])
{
int ma_ind;
/*Find index of coordinate of Xp with largest absolute value*/
ma_ind=db_MaxAbsIndex3(xp);
/*Generate 2 constraints,
each constraint is generated by considering the ratio between a
coordinate and the largest absolute value coordinate*/
switch(ma_ind)
{
case 0:
db_SProjImagePointPointConstraint(c1,1,0,2,xp,x);
db_SProjImagePointPointConstraint(c2,2,0,1,xp,x);
break;
case 1:
db_SProjImagePointPointConstraint(c1,0,1,2,xp,x);
db_SProjImagePointPointConstraint(c2,2,1,0,xp,x);
break;
default:
db_SProjImagePointPointConstraint(c1,0,2,1,xp,x);
db_SProjImagePointPointConstraint(c2,1,2,0,xp,x);
}
}
inline void db_SAffineImagePointPointConstraints(double c1[7],double c2[7],double xp[3],double x[3])
{
double ct1[9],ct2[9];
db_SProjImagePointPointConstraints(ct1,ct2,xp,x);
db_Copy6(c1,ct1); c1[6]=ct1[8];
db_Copy6(c2,ct2); c2[6]=ct2[8];
}
void db_StitchProjective2D_4Points(double H[9],
double x1[3],double x2[3],double x3[3],double x4[3],
double xp1[3],double xp2[3],double xp3[3],double xp4[3])
{
double c[72];
/*Collect the constraints*/
db_SProjImagePointPointConstraints(c ,c+9 ,xp1,x1);
db_SProjImagePointPointConstraints(c+18,c+27,xp2,x2);
db_SProjImagePointPointConstraints(c+36,c+45,xp3,x3);
db_SProjImagePointPointConstraints(c+54,c+63,xp4,x4);
/*Solve for the nullvector*/
db_NullVector8x9Destructive(H,c);
}
void db_StitchAffine2D_3Points(double H[9],
double x1[3],double x2[3],double x3[3],
double xp1[3],double xp2[3],double xp3[3])
{
double c[42];
/*Collect the constraints*/
db_SAffineImagePointPointConstraints(c ,c+7 ,xp1,x1);
db_SAffineImagePointPointConstraints(c+14,c+21,xp2,x2);
db_SAffineImagePointPointConstraints(c+28,c+35,xp3,x3);
/*Solve for the nullvector*/
db_NullVector6x7Destructive(H,c);
db_MultiplyScalar6(H,db_SafeReciprocal(H[6]));
H[6]=H[7]=0; H[8]=1.0;
}
/*Compute up to three solutions for the focal length given two point correspondences
generated by a rotation with a common unknown focal length. No specific normalization
of the input points is required. If signed_disambiguation is true, the points are
required to be in front of the camera*/
inline void db_CommonFocalLengthFromRotation_2Point(double fsol[3],int *nr_sols,double x1[3],double x2[3],double xp1[3],double xp2[3],int signed_disambiguation=1)
{
double m,ax,ay,apx,apy,bx,by,bpx,bpy;
double p1[2],p2[2],p3[2],p4[2],p5[2],p6[2];
double p7[3],p8[4],p9[5],p10[3],p11[4];
double roots[3];
int nr_roots,i,j;
/*Solve for focal length using the equation
<a,b>^2*<ap,ap><bp,bp>=<ap,bp>^2*<a,a><b,b>
where a and ap are the homogenous vectors in the first image
after focal length scaling and b,bp are the vectors in the
second image*/
/*Normalize homogenous coordinates so that last coordinate is one*/
m=db_SafeReciprocal(x1[2]);
ax=x1[0]*m;
ay=x1[1]*m;
m=db_SafeReciprocal(xp1[2]);
apx=xp1[0]*m;
apy=xp1[1]*m;
m=db_SafeReciprocal(x2[2]);
bx=x2[0]*m;
by=x2[1]*m;
m=db_SafeReciprocal(xp2[2]);
bpx=xp2[0]*m;
bpy=xp2[1]*m;
/*Compute cubic in l=1/(f^2)
by dividing out the root l=0 from the equation
(l(ax*bx+ay*by)+1)^2*(l(apx^2+apy^2)+1)*(l(bpx^2+bpy^2)+1)=
(l(apx*bpx+apy*bpy)+1)^2*(l(ax^2+ay^2)+1)*(l(bx^2+by^2)+1)*/
p1[1]=ax*bx+ay*by;
p2[1]=db_sqr(apx)+db_sqr(apy);
p3[1]=db_sqr(bpx)+db_sqr(bpy);
p4[1]=apx*bpx+apy*bpy;
p5[1]=db_sqr(ax)+db_sqr(ay);
p6[1]=db_sqr(bx)+db_sqr(by);
p1[0]=p2[0]=p3[0]=p4[0]=p5[0]=p6[0]=1;
db_MultiplyPoly1_1(p7,p1,p1);
db_MultiplyPoly1_2(p8,p2,p7);
db_MultiplyPoly1_3(p9,p3,p8);
db_MultiplyPoly1_1(p10,p4,p4);
db_MultiplyPoly1_2(p11,p5,p10);
db_SubtractPolyProduct1_3(p9,p6,p11);
/*Cubic starts at p9[1]*/
db_SolveCubic(roots,&nr_roots,p9[4],p9[3],p9[2],p9[1]);
for(j=0,i=0;i<nr_roots;i++)
{
if(roots[i]>0)
{
if((!signed_disambiguation) || (db_PolyEval1(p1,roots[i])*db_PolyEval1(p4,roots[i])>0))
{
fsol[j++]=db_SafeSqrtReciprocal(roots[i]);
}
}
}
*nr_sols=j;
}
int db_StitchRotationCommonFocalLength_3Points(double H[9],double x1[3],double x2[3],double x3[3],double xp1[3],double xp2[3],double xp3[3],double *f,int signed_disambiguation)
{
double fsol[3];
int nr_sols,i,best_sol,done;
double cost,best_cost;
double m,hyp[27],x1_temp[3],x2_temp[3],xp1_temp[3],xp2_temp[3];
double *hyp_point,ft;
double y[2];
db_CommonFocalLengthFromRotation_2Point(fsol,&nr_sols,x1,x2,xp1,xp2,signed_disambiguation);
if(nr_sols)
{
db_DeHomogenizeImagePoint(y,xp3);
done=0;
for(i=0;i<nr_sols;i++)
{
ft=fsol[i];
m=db_SafeReciprocal(ft);
x1_temp[0]=x1[0]*m;
x1_temp[1]=x1[1]*m;
x1_temp[2]=x1[2];
x2_temp[0]=x2[0]*m;
x2_temp[1]=x2[1]*m;
x2_temp[2]=x2[2];
xp1_temp[0]=xp1[0]*m;
xp1_temp[1]=xp1[1]*m;
xp1_temp[2]=xp1[2];
xp2_temp[0]=xp2[0]*m;
xp2_temp[1]=xp2[1]*m;
xp2_temp[2]=xp2[2];
hyp_point=hyp+9*i;
db_StitchCameraRotation_2Points(hyp_point,x1_temp,x2_temp,xp1_temp,xp2_temp);
hyp_point[2]*=ft;
hyp_point[5]*=ft;
hyp_point[6]*=m;
hyp_point[7]*=m;
cost=db_SquaredReprojectionErrorHomography(y,hyp_point,x3);
if(!done || cost<best_cost)
{
done=1;
best_cost=cost;
best_sol=i;
}
}
if(f) *f=fsol[best_sol];
db_Copy9(H,hyp+9*best_sol);
return(1);
}
else
{
db_Identity3x3(H);
if(f) *f=1.0;
return(0);
}
}
void db_StitchSimilarity2DRaw(double *scale,double R[4],double t[2],
double **Xp,double **X,int nr_points,int orientation_preserving,
int allow_scaling,int allow_rotation,int allow_translation)
{
int i;
double c[2],cp[2],r[2],rp[2],M[4],s,sp,sc;
double *temp,*temp_p;
double Aacc,Bacc,Aacc2,Bacc2,divisor,divisor2,m,Am,Bm;
if(allow_translation)
{
db_PointCentroid2D(c,X,nr_points);
db_PointCentroid2D(cp,Xp,nr_points);
}
else
{
db_Zero2(c);
db_Zero2(cp);
}
db_Zero4(M);
s=sp=0;
for(i=0;i<nr_points;i++)
{
temp= *X++;
temp_p= *Xp++;
r[0]=(*temp++)-c[0];
r[1]=(*temp++)-c[1];
rp[0]=(*temp_p++)-cp[0];
rp[1]=(*temp_p++)-cp[1];
M[0]+=r[0]*rp[0];
M[1]+=r[0]*rp[1];
M[2]+=r[1]*rp[0];
M[3]+=r[1]*rp[1];
s+=db_sqr(r[0])+db_sqr(r[1]);
sp+=db_sqr(rp[0])+db_sqr(rp[1]);
}
/*Compute scale*/
if(allow_scaling) sc=sqrt(db_SafeDivision(sp,s));
else sc=1.0;
*scale=sc;
/*Compute rotation*/
if(allow_rotation)
{
/*orientation preserving*/
Aacc=M[0]+M[3];
Bacc=M[2]-M[1];
/*orientation reversing*/
Aacc2=M[0]-M[3];
Bacc2=M[2]+M[1];
if(Aacc!=0.0 || Bacc!=0.0)
{
divisor=sqrt(Aacc*Aacc+Bacc*Bacc);
m=db_SafeReciprocal(divisor);
Am=Aacc*m;
Bm=Bacc*m;
R[0]= Am;
R[1]= Bm;
R[2]= -Bm;
R[3]= Am;
}
else
{
db_Identity2x2(R);
divisor=0.0;
}
if(!orientation_preserving && (Aacc2!=0.0 || Bacc2!=0.0))
{
divisor2=sqrt(Aacc2*Aacc2+Bacc2*Bacc2);
if(divisor2>divisor)
{
m=db_SafeReciprocal(divisor2);
Am=Aacc2*m;
Bm=Bacc2*m;
R[0]= Am;
R[1]= Bm;
R[2]= Bm;
R[3]= -Am;
}
}
}
else db_Identity2x2(R);
/*Compute translation*/
if(allow_translation)
{
t[0]=cp[0]-sc*(R[0]*c[0]+R[1]*c[1]);
t[1]=cp[1]-sc*(R[2]*c[0]+R[3]*c[1]);
}
else db_Zero2(t);
}