blob: f611c5b19a69e95c14ceb65f016808f7e3896e3f [file] [log] [blame]
/*
* Copyright (c) 2015, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/c2/shenandoahSupport.hpp"
#include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
#include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
#include "gc/shenandoah/shenandoahForwarding.hpp"
#include "gc/shenandoah/shenandoahHeap.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.hpp"
#include "gc/shenandoah/shenandoahRuntime.hpp"
#include "gc/shenandoah/shenandoahThreadLocalData.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/block.hpp"
#include "opto/callnode.hpp"
#include "opto/castnode.hpp"
#include "opto/movenode.hpp"
#include "opto/phaseX.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
bool ShenandoahBarrierC2Support::expand(Compile* C, PhaseIterGVN& igvn) {
ShenandoahBarrierSetC2State* state = ShenandoahBarrierSetC2::bsc2()->state();
if ((state->enqueue_barriers_count() +
state->load_reference_barriers_count()) > 0) {
bool attempt_more_loopopts = ShenandoahLoopOptsAfterExpansion;
C->clear_major_progress();
PhaseIdealLoop ideal_loop(igvn, LoopOptsShenandoahExpand);
if (C->failing()) return false;
PhaseIdealLoop::verify(igvn);
DEBUG_ONLY(verify_raw_mem(C->root());)
if (attempt_more_loopopts) {
C->set_major_progress();
if (!C->optimize_loops(igvn, LoopOptsShenandoahPostExpand)) {
return false;
}
C->clear_major_progress();
}
}
return true;
}
bool ShenandoahBarrierC2Support::is_heap_state_test(Node* iff, int mask) {
if (!UseShenandoahGC) {
return false;
}
assert(iff->is_If(), "bad input");
if (iff->Opcode() != Op_If) {
return false;
}
Node* bol = iff->in(1);
if (!bol->is_Bool() || bol->as_Bool()->_test._test != BoolTest::ne) {
return false;
}
Node* cmp = bol->in(1);
if (cmp->Opcode() != Op_CmpI) {
return false;
}
Node* in1 = cmp->in(1);
Node* in2 = cmp->in(2);
if (in2->find_int_con(-1) != 0) {
return false;
}
if (in1->Opcode() != Op_AndI) {
return false;
}
in2 = in1->in(2);
if (in2->find_int_con(-1) != mask) {
return false;
}
in1 = in1->in(1);
return is_gc_state_load(in1);
}
bool ShenandoahBarrierC2Support::is_heap_stable_test(Node* iff) {
return is_heap_state_test(iff, ShenandoahHeap::HAS_FORWARDED);
}
bool ShenandoahBarrierC2Support::is_gc_state_load(Node *n) {
if (!UseShenandoahGC) {
return false;
}
if (n->Opcode() != Op_LoadB && n->Opcode() != Op_LoadUB) {
return false;
}
Node* addp = n->in(MemNode::Address);
if (!addp->is_AddP()) {
return false;
}
Node* base = addp->in(AddPNode::Address);
Node* off = addp->in(AddPNode::Offset);
if (base->Opcode() != Op_ThreadLocal) {
return false;
}
if (off->find_intptr_t_con(-1) != in_bytes(ShenandoahThreadLocalData::gc_state_offset())) {
return false;
}
return true;
}
bool ShenandoahBarrierC2Support::has_safepoint_between(Node* start, Node* stop, PhaseIdealLoop *phase) {
assert(phase->is_dominator(stop, start), "bad inputs");
ResourceMark rm;
Unique_Node_List wq;
wq.push(start);
for (uint next = 0; next < wq.size(); next++) {
Node *m = wq.at(next);
if (m == stop) {
continue;
}
if (m->is_SafePoint() && !m->is_CallLeaf()) {
return true;
}
if (m->is_Region()) {
for (uint i = 1; i < m->req(); i++) {
wq.push(m->in(i));
}
} else {
wq.push(m->in(0));
}
}
return false;
}
bool ShenandoahBarrierC2Support::try_common_gc_state_load(Node *n, PhaseIdealLoop *phase) {
assert(is_gc_state_load(n), "inconsistent");
Node* addp = n->in(MemNode::Address);
Node* dominator = NULL;
for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
Node* u = addp->fast_out(i);
assert(is_gc_state_load(u), "inconsistent");
if (u != n && phase->is_dominator(u->in(0), n->in(0))) {
if (dominator == NULL) {
dominator = u;
} else {
if (phase->dom_depth(u->in(0)) < phase->dom_depth(dominator->in(0))) {
dominator = u;
}
}
}
}
if (dominator == NULL || has_safepoint_between(n->in(0), dominator->in(0), phase)) {
return false;
}
phase->igvn().replace_node(n, dominator);
return true;
}
#ifdef ASSERT
bool ShenandoahBarrierC2Support::verify_helper(Node* in, Node_Stack& phis, VectorSet& visited, verify_type t, bool trace, Unique_Node_List& barriers_used) {
assert(phis.size() == 0, "");
while (true) {
if (in->bottom_type() == TypePtr::NULL_PTR) {
if (trace) {tty->print_cr("NULL");}
} else if (!in->bottom_type()->make_ptr()->make_oopptr()) {
if (trace) {tty->print_cr("Non oop");}
} else if (t == ShenandoahLoad && ShenandoahOptimizeStableFinals &&
in->bottom_type()->make_ptr()->isa_aryptr() &&
in->bottom_type()->make_ptr()->is_aryptr()->is_stable()) {
if (trace) {tty->print_cr("Stable array load");}
} else {
if (in->is_ConstraintCast()) {
in = in->in(1);
continue;
} else if (in->is_AddP()) {
assert(!in->in(AddPNode::Address)->is_top(), "no raw memory access");
in = in->in(AddPNode::Address);
continue;
} else if (in->is_Con()) {
if (trace) {
tty->print("Found constant");
in->dump();
}
} else if (in->Opcode() == Op_Parm) {
if (trace) {
tty->print("Found argument");
}
} else if (in->Opcode() == Op_CreateEx) {
if (trace) {
tty->print("Found create-exception");
}
} else if (in->Opcode() == Op_LoadP && in->adr_type() == TypeRawPtr::BOTTOM) {
if (trace) {
tty->print("Found raw LoadP (OSR argument?)");
}
} else if (in->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
if (t == ShenandoahOopStore) {
uint i = 0;
for (; i < phis.size(); i++) {
Node* n = phis.node_at(i);
if (n->Opcode() == Op_ShenandoahEnqueueBarrier) {
break;
}
}
if (i == phis.size()) {
return false;
}
}
barriers_used.push(in);
if (trace) {tty->print("Found barrier"); in->dump();}
} else if (in->Opcode() == Op_ShenandoahEnqueueBarrier) {
if (t != ShenandoahOopStore) {
in = in->in(1);
continue;
}
if (trace) {tty->print("Found enqueue barrier"); in->dump();}
phis.push(in, in->req());
in = in->in(1);
continue;
} else if (in->is_Proj() && in->in(0)->is_Allocate()) {
if (trace) {
tty->print("Found alloc");
in->in(0)->dump();
}
} else if (in->is_Proj() && (in->in(0)->Opcode() == Op_CallStaticJava || in->in(0)->Opcode() == Op_CallDynamicJava)) {
if (trace) {
tty->print("Found Java call");
}
} else if (in->is_Phi()) {
if (!visited.test_set(in->_idx)) {
if (trace) {tty->print("Pushed phi:"); in->dump();}
phis.push(in, 2);
in = in->in(1);
continue;
}
if (trace) {tty->print("Already seen phi:"); in->dump();}
} else if (in->Opcode() == Op_CMoveP || in->Opcode() == Op_CMoveN) {
if (!visited.test_set(in->_idx)) {
if (trace) {tty->print("Pushed cmovep:"); in->dump();}
phis.push(in, CMoveNode::IfTrue);
in = in->in(CMoveNode::IfFalse);
continue;
}
if (trace) {tty->print("Already seen cmovep:"); in->dump();}
} else if (in->Opcode() == Op_EncodeP || in->Opcode() == Op_DecodeN) {
in = in->in(1);
continue;
} else {
return false;
}
}
bool cont = false;
while (phis.is_nonempty()) {
uint idx = phis.index();
Node* phi = phis.node();
if (idx >= phi->req()) {
if (trace) {tty->print("Popped phi:"); phi->dump();}
phis.pop();
continue;
}
if (trace) {tty->print("Next entry(%d) for phi:", idx); phi->dump();}
in = phi->in(idx);
phis.set_index(idx+1);
cont = true;
break;
}
if (!cont) {
break;
}
}
return true;
}
void ShenandoahBarrierC2Support::report_verify_failure(const char* msg, Node* n1, Node* n2) {
if (n1 != NULL) {
n1->dump(+10);
}
if (n2 != NULL) {
n2->dump(+10);
}
fatal("%s", msg);
}
void ShenandoahBarrierC2Support::verify(RootNode* root) {
ResourceMark rm;
Unique_Node_List wq;
GrowableArray<Node*> barriers;
Unique_Node_List barriers_used;
Node_Stack phis(0);
VectorSet visited(Thread::current()->resource_area());
const bool trace = false;
const bool verify_no_useless_barrier = false;
wq.push(root);
for (uint next = 0; next < wq.size(); next++) {
Node *n = wq.at(next);
if (n->is_Load()) {
const bool trace = false;
if (trace) {tty->print("Verifying"); n->dump();}
if (n->Opcode() == Op_LoadRange || n->Opcode() == Op_LoadKlass || n->Opcode() == Op_LoadNKlass) {
if (trace) {tty->print_cr("Load range/klass");}
} else {
const TypePtr* adr_type = n->as_Load()->adr_type();
if (adr_type->isa_oopptr() && adr_type->is_oopptr()->offset() == oopDesc::mark_offset_in_bytes()) {
if (trace) {tty->print_cr("Mark load");}
} else if (adr_type->isa_instptr() &&
adr_type->is_instptr()->klass()->is_subtype_of(Compile::current()->env()->Reference_klass()) &&
adr_type->is_instptr()->offset() == java_lang_ref_Reference::referent_offset) {
if (trace) {tty->print_cr("Reference.get()");}
} else {
bool verify = true;
if (adr_type->isa_instptr()) {
const TypeInstPtr* tinst = adr_type->is_instptr();
ciKlass* k = tinst->klass();
assert(k->is_instance_klass(), "");
ciInstanceKlass* ik = (ciInstanceKlass*)k;
int offset = adr_type->offset();
if ((ik->debug_final_field_at(offset) && ShenandoahOptimizeInstanceFinals) ||
(ik->debug_stable_field_at(offset) && ShenandoahOptimizeStableFinals)) {
if (trace) {tty->print_cr("Final/stable");}
verify = false;
} else if (k == ciEnv::current()->Class_klass() &&
tinst->const_oop() != NULL &&
tinst->offset() >= (ik->size_helper() * wordSize)) {
ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
ciField* field = k->get_field_by_offset(tinst->offset(), true);
if ((ShenandoahOptimizeStaticFinals && field->is_final()) ||
(ShenandoahOptimizeStableFinals && field->is_stable())) {
verify = false;
}
}
}
if (verify && !verify_helper(n->in(MemNode::Address), phis, visited, ShenandoahLoad, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: Load should have barriers", n);
}
}
}
} else if (n->is_Store()) {
const bool trace = false;
if (trace) {tty->print("Verifying"); n->dump();}
if (n->in(MemNode::ValueIn)->bottom_type()->make_oopptr()) {
Node* adr = n->in(MemNode::Address);
bool verify = true;
if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top()) {
adr = adr->in(AddPNode::Address);
if (adr->is_AddP()) {
assert(adr->in(AddPNode::Base)->is_top(), "");
adr = adr->in(AddPNode::Address);
if (adr->Opcode() == Op_LoadP &&
adr->in(MemNode::Address)->in(AddPNode::Base)->is_top() &&
adr->in(MemNode::Address)->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
adr->in(MemNode::Address)->in(AddPNode::Offset)->find_intptr_t_con(-1) == in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())) {
if (trace) {tty->print_cr("SATB prebarrier");}
verify = false;
}
}
}
if (verify && !verify_helper(n->in(MemNode::ValueIn), phis, visited, ShenandoahStoreValEnqueueBarrier ? ShenandoahOopStore : ShenandoahValue, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: Store should have barriers", n);
}
}
if (!verify_helper(n->in(MemNode::Address), phis, visited, ShenandoahStore, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: Store (address) should have barriers", n);
}
} else if (n->Opcode() == Op_CmpP) {
const bool trace = false;
Node* in1 = n->in(1);
Node* in2 = n->in(2);
if (in1->bottom_type()->isa_oopptr()) {
if (trace) {tty->print("Verifying"); n->dump();}
bool mark_inputs = false;
if (in1->bottom_type() == TypePtr::NULL_PTR || in2->bottom_type() == TypePtr::NULL_PTR ||
(in1->is_Con() || in2->is_Con())) {
if (trace) {tty->print_cr("Comparison against a constant");}
mark_inputs = true;
} else if ((in1->is_CheckCastPP() && in1->in(1)->is_Proj() && in1->in(1)->in(0)->is_Allocate()) ||
(in2->is_CheckCastPP() && in2->in(1)->is_Proj() && in2->in(1)->in(0)->is_Allocate())) {
if (trace) {tty->print_cr("Comparison with newly alloc'ed object");}
mark_inputs = true;
} else {
assert(in2->bottom_type()->isa_oopptr(), "");
if (!verify_helper(in1, phis, visited, ShenandoahStore, trace, barriers_used) ||
!verify_helper(in2, phis, visited, ShenandoahStore, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: Cmp should have barriers", n);
}
}
if (verify_no_useless_barrier &&
mark_inputs &&
(!verify_helper(in1, phis, visited, ShenandoahValue, trace, barriers_used) ||
!verify_helper(in2, phis, visited, ShenandoahValue, trace, barriers_used))) {
phis.clear();
visited.Reset();
}
}
} else if (n->is_LoadStore()) {
if (n->in(MemNode::ValueIn)->bottom_type()->make_ptr() &&
!verify_helper(n->in(MemNode::ValueIn), phis, visited, ShenandoahStoreValEnqueueBarrier ? ShenandoahOopStore : ShenandoahValue, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: LoadStore (value) should have barriers", n);
}
if (n->in(MemNode::Address)->bottom_type()->make_oopptr() && !verify_helper(n->in(MemNode::Address), phis, visited, ShenandoahStore, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: LoadStore (address) should have barriers", n);
}
} else if (n->Opcode() == Op_CallLeafNoFP || n->Opcode() == Op_CallLeaf) {
CallNode* call = n->as_Call();
static struct {
const char* name;
struct {
int pos;
verify_type t;
} args[6];
} calls[] = {
"aescrypt_encryptBlock",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"aescrypt_decryptBlock",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"multiplyToLen",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad }, { TypeFunc::Parms+4, ShenandoahStore },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"squareToLen",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad }, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"montgomery_multiply",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad },
{ TypeFunc::Parms+6, ShenandoahStore }, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"montgomery_square",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+5, ShenandoahStore },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"mulAdd",
{ { TypeFunc::Parms, ShenandoahStore }, { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"vectorizedMismatch",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"updateBytesCRC32",
{ { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"updateBytesAdler32",
{ { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"updateBytesCRC32C",
{ { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahLoad}, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"counterMode_AESCrypt",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad },
{ TypeFunc::Parms+3, ShenandoahStore }, { TypeFunc::Parms+5, ShenandoahStore }, { TypeFunc::Parms+6, ShenandoahStore } },
"cipherBlockChaining_encryptAESCrypt",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad },
{ TypeFunc::Parms+3, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"cipherBlockChaining_decryptAESCrypt",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad },
{ TypeFunc::Parms+3, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"shenandoah_clone_barrier",
{ { TypeFunc::Parms, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone},
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"ghash_processBlocks",
{ { TypeFunc::Parms, ShenandoahStore }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"sha1_implCompress",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"sha256_implCompress",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"sha512_implCompress",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"sha1_implCompressMB",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"sha256_implCompressMB",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"sha512_implCompressMB",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"encodeBlock",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
};
if (call->is_call_to_arraycopystub()) {
Node* dest = NULL;
const TypeTuple* args = n->as_Call()->_tf->domain();
for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
if (args->field_at(i)->isa_ptr()) {
j++;
if (j == 2) {
dest = n->in(i);
break;
}
}
}
if (!verify_helper(n->in(TypeFunc::Parms), phis, visited, ShenandoahLoad, trace, barriers_used) ||
!verify_helper(dest, phis, visited, ShenandoahStore, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: ArrayCopy should have barriers", n);
}
} else if (strlen(call->_name) > 5 &&
!strcmp(call->_name + strlen(call->_name) - 5, "_fill")) {
if (!verify_helper(n->in(TypeFunc::Parms), phis, visited, ShenandoahStore, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: _fill should have barriers", n);
}
} else if (!strcmp(call->_name, "shenandoah_wb_pre")) {
// skip
} else {
const int calls_len = sizeof(calls) / sizeof(calls[0]);
int i = 0;
for (; i < calls_len; i++) {
if (!strcmp(calls[i].name, call->_name)) {
break;
}
}
if (i != calls_len) {
const uint args_len = sizeof(calls[0].args) / sizeof(calls[0].args[0]);
for (uint j = 0; j < args_len; j++) {
int pos = calls[i].args[j].pos;
if (pos == -1) {
break;
}
if (!verify_helper(call->in(pos), phis, visited, calls[i].args[j].t, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: intrinsic calls should have barriers", n);
}
}
for (uint j = TypeFunc::Parms; j < call->req(); j++) {
if (call->in(j)->bottom_type()->make_ptr() &&
call->in(j)->bottom_type()->make_ptr()->isa_oopptr()) {
uint k = 0;
for (; k < args_len && calls[i].args[k].pos != (int)j; k++);
if (k == args_len) {
fatal("arg %d for call %s not covered", j, call->_name);
}
}
}
} else {
for (uint j = TypeFunc::Parms; j < call->req(); j++) {
if (call->in(j)->bottom_type()->make_ptr() &&
call->in(j)->bottom_type()->make_ptr()->isa_oopptr()) {
fatal("%s not covered", call->_name);
}
}
}
}
} else if (n->Opcode() == Op_ShenandoahEnqueueBarrier || n->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
// skip
} else if (n->is_AddP()
|| n->is_Phi()
|| n->is_ConstraintCast()
|| n->Opcode() == Op_Return
|| n->Opcode() == Op_CMoveP
|| n->Opcode() == Op_CMoveN
|| n->Opcode() == Op_Rethrow
|| n->is_MemBar()
|| n->Opcode() == Op_Conv2B
|| n->Opcode() == Op_SafePoint
|| n->is_CallJava()
|| n->Opcode() == Op_Unlock
|| n->Opcode() == Op_EncodeP
|| n->Opcode() == Op_DecodeN) {
// nothing to do
} else {
static struct {
int opcode;
struct {
int pos;
verify_type t;
} inputs[2];
} others[] = {
Op_FastLock,
{ { 1, ShenandoahLoad }, { -1, ShenandoahNone} },
Op_Lock,
{ { TypeFunc::Parms, ShenandoahLoad }, { -1, ShenandoahNone} },
Op_ArrayCopy,
{ { ArrayCopyNode::Src, ShenandoahLoad }, { ArrayCopyNode::Dest, ShenandoahStore } },
Op_StrCompressedCopy,
{ { 2, ShenandoahLoad }, { 3, ShenandoahStore } },
Op_StrInflatedCopy,
{ { 2, ShenandoahLoad }, { 3, ShenandoahStore } },
Op_AryEq,
{ { 2, ShenandoahLoad }, { 3, ShenandoahLoad } },
Op_StrIndexOf,
{ { 2, ShenandoahLoad }, { 4, ShenandoahLoad } },
Op_StrComp,
{ { 2, ShenandoahLoad }, { 4, ShenandoahLoad } },
Op_StrEquals,
{ { 2, ShenandoahLoad }, { 3, ShenandoahLoad } },
Op_EncodeISOArray,
{ { 2, ShenandoahLoad }, { 3, ShenandoahStore } },
Op_HasNegatives,
{ { 2, ShenandoahLoad }, { -1, ShenandoahNone} },
Op_CastP2X,
{ { 1, ShenandoahLoad }, { -1, ShenandoahNone} },
Op_StrIndexOfChar,
{ { 2, ShenandoahLoad }, { -1, ShenandoahNone } },
};
const int others_len = sizeof(others) / sizeof(others[0]);
int i = 0;
for (; i < others_len; i++) {
if (others[i].opcode == n->Opcode()) {
break;
}
}
uint stop = n->is_Call() ? n->as_Call()->tf()->domain()->cnt() : n->req();
if (i != others_len) {
const uint inputs_len = sizeof(others[0].inputs) / sizeof(others[0].inputs[0]);
for (uint j = 0; j < inputs_len; j++) {
int pos = others[i].inputs[j].pos;
if (pos == -1) {
break;
}
if (!verify_helper(n->in(pos), phis, visited, others[i].inputs[j].t, trace, barriers_used)) {
report_verify_failure("Shenandoah verification: intrinsic calls should have barriers", n);
}
}
for (uint j = 1; j < stop; j++) {
if (n->in(j) != NULL && n->in(j)->bottom_type()->make_ptr() &&
n->in(j)->bottom_type()->make_ptr()->make_oopptr()) {
uint k = 0;
for (; k < inputs_len && others[i].inputs[k].pos != (int)j; k++);
if (k == inputs_len) {
fatal("arg %d for node %s not covered", j, n->Name());
}
}
}
} else {
for (uint j = 1; j < stop; j++) {
if (n->in(j) != NULL && n->in(j)->bottom_type()->make_ptr() &&
n->in(j)->bottom_type()->make_ptr()->make_oopptr()) {
fatal("%s not covered", n->Name());
}
}
}
}
if (n->is_SafePoint()) {
SafePointNode* sfpt = n->as_SafePoint();
if (verify_no_useless_barrier && sfpt->jvms() != NULL) {
for (uint i = sfpt->jvms()->scloff(); i < sfpt->jvms()->endoff(); i++) {
if (!verify_helper(sfpt->in(i), phis, visited, ShenandoahLoad, trace, barriers_used)) {
phis.clear();
visited.Reset();
}
}
}
}
for( uint i = 0; i < n->len(); ++i ) {
Node *m = n->in(i);
if (m == NULL) continue;
// In most cases, inputs should be known to be non null. If it's
// not the case, it could be a missing cast_not_null() in an
// intrinsic or support might be needed in AddPNode::Ideal() to
// avoid a NULL+offset input.
if (!(n->is_Phi() ||
(n->is_SafePoint() && (!n->is_CallRuntime() || !strcmp(n->as_Call()->_name, "shenandoah_wb_pre") || !strcmp(n->as_Call()->_name, "unsafe_arraycopy"))) ||
n->Opcode() == Op_CmpP ||
n->Opcode() == Op_CmpN ||
(n->Opcode() == Op_StoreP && i == StoreNode::ValueIn) ||
(n->Opcode() == Op_StoreN && i == StoreNode::ValueIn) ||
n->is_ConstraintCast() ||
n->Opcode() == Op_Return ||
n->Opcode() == Op_Conv2B ||
n->is_AddP() ||
n->Opcode() == Op_CMoveP ||
n->Opcode() == Op_CMoveN ||
n->Opcode() == Op_Rethrow ||
n->is_MemBar() ||
n->is_Mem() ||
n->Opcode() == Op_AryEq ||
n->Opcode() == Op_SCMemProj ||
n->Opcode() == Op_EncodeP ||
n->Opcode() == Op_DecodeN ||
n->Opcode() == Op_ShenandoahEnqueueBarrier ||
n->Opcode() == Op_ShenandoahLoadReferenceBarrier)) {
if (m->bottom_type()->make_oopptr() && m->bottom_type()->make_oopptr()->meet(TypePtr::NULL_PTR) == m->bottom_type()) {
report_verify_failure("Shenandoah verification: null input", n, m);
}
}
wq.push(m);
}
}
if (verify_no_useless_barrier) {
for (int i = 0; i < barriers.length(); i++) {
Node* n = barriers.at(i);
if (!barriers_used.member(n)) {
tty->print("XXX useless barrier"); n->dump(-2);
ShouldNotReachHere();
}
}
}
}
#endif
bool ShenandoahBarrierC2Support::is_dominator_same_ctrl(Node* c, Node* d, Node* n, PhaseIdealLoop* phase) {
// That both nodes have the same control is not sufficient to prove
// domination, verify that there's no path from d to n
ResourceMark rm;
Unique_Node_List wq;
wq.push(d);
for (uint next = 0; next < wq.size(); next++) {
Node *m = wq.at(next);
if (m == n) {
return false;
}
if (m->is_Phi() && m->in(0)->is_Loop()) {
assert(phase->ctrl_or_self(m->in(LoopNode::EntryControl)) != c, "following loop entry should lead to new control");
} else {
for (uint i = 0; i < m->req(); i++) {
if (m->in(i) != NULL && phase->ctrl_or_self(m->in(i)) == c) {
wq.push(m->in(i));
}
}
}
}
return true;
}
bool ShenandoahBarrierC2Support::is_dominator(Node* d_c, Node* n_c, Node* d, Node* n, PhaseIdealLoop* phase) {
if (d_c != n_c) {
return phase->is_dominator(d_c, n_c);
}
return is_dominator_same_ctrl(d_c, d, n, phase);
}
Node* next_mem(Node* mem, int alias) {
Node* res = NULL;
if (mem->is_Proj()) {
res = mem->in(0);
} else if (mem->is_SafePoint() || mem->is_MemBar()) {
res = mem->in(TypeFunc::Memory);
} else if (mem->is_Phi()) {
res = mem->in(1);
} else if (mem->is_MergeMem()) {
res = mem->as_MergeMem()->memory_at(alias);
} else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) {
assert(alias = Compile::AliasIdxRaw, "following raw memory can't lead to a barrier");
res = mem->in(MemNode::Memory);
} else {
#ifdef ASSERT
mem->dump();
#endif
ShouldNotReachHere();
}
return res;
}
Node* ShenandoahBarrierC2Support::no_branches(Node* c, Node* dom, bool allow_one_proj, PhaseIdealLoop* phase) {
Node* iffproj = NULL;
while (c != dom) {
Node* next = phase->idom(c);
assert(next->unique_ctrl_out() == c || c->is_Proj() || c->is_Region(), "multiple control flow out but no proj or region?");
if (c->is_Region()) {
ResourceMark rm;
Unique_Node_List wq;
wq.push(c);
for (uint i = 0; i < wq.size(); i++) {
Node *n = wq.at(i);
if (n == next) {
continue;
}
if (n->is_Region()) {
for (uint j = 1; j < n->req(); j++) {
wq.push(n->in(j));
}
} else {
wq.push(n->in(0));
}
}
for (uint i = 0; i < wq.size(); i++) {
Node *n = wq.at(i);
assert(n->is_CFG(), "");
if (n->is_Multi()) {
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* u = n->fast_out(j);
if (u->is_CFG()) {
if (!wq.member(u) && !u->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
return NodeSentinel;
}
}
}
}
}
} else if (c->is_Proj()) {
if (c->is_IfProj()) {
if (c->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) != NULL) {
// continue;
} else {
if (!allow_one_proj) {
return NodeSentinel;
}
if (iffproj == NULL) {
iffproj = c;
} else {
return NodeSentinel;
}
}
} else if (c->Opcode() == Op_JumpProj) {
return NodeSentinel; // unsupported
} else if (c->Opcode() == Op_CatchProj) {
return NodeSentinel; // unsupported
} else if (c->Opcode() == Op_CProj && next->Opcode() == Op_NeverBranch) {
return NodeSentinel; // unsupported
} else {
assert(next->unique_ctrl_out() == c, "unsupported branch pattern");
}
}
c = next;
}
return iffproj;
}
Node* ShenandoahBarrierC2Support::dom_mem(Node* mem, Node* ctrl, int alias, Node*& mem_ctrl, PhaseIdealLoop* phase) {
ResourceMark rm;
VectorSet wq(Thread::current()->resource_area());
wq.set(mem->_idx);
mem_ctrl = phase->ctrl_or_self(mem);
while (!phase->is_dominator(mem_ctrl, ctrl) || mem_ctrl == ctrl) {
mem = next_mem(mem, alias);
if (wq.test_set(mem->_idx)) {
return NULL;
}
mem_ctrl = phase->ctrl_or_self(mem);
}
if (mem->is_MergeMem()) {
mem = mem->as_MergeMem()->memory_at(alias);
mem_ctrl = phase->ctrl_or_self(mem);
}
return mem;
}
Node* ShenandoahBarrierC2Support::find_bottom_mem(Node* ctrl, PhaseIdealLoop* phase) {
Node* mem = NULL;
Node* c = ctrl;
do {
if (c->is_Region()) {
Node* phi_bottom = NULL;
for (DUIterator_Fast imax, i = c->fast_outs(imax); i < imax && mem == NULL; i++) {
Node* u = c->fast_out(i);
if (u->is_Phi() && u->bottom_type() == Type::MEMORY) {
if (u->adr_type() == TypePtr::BOTTOM) {
mem = u;
}
}
}
} else {
if (c->is_Call() && c->as_Call()->adr_type() != NULL) {
CallProjections projs;
c->as_Call()->extract_projections(&projs, true, false);
if (projs.fallthrough_memproj != NULL) {
if (projs.fallthrough_memproj->adr_type() == TypePtr::BOTTOM) {
if (projs.catchall_memproj == NULL) {
mem = projs.fallthrough_memproj;
} else {
if (phase->is_dominator(projs.fallthrough_catchproj, ctrl)) {
mem = projs.fallthrough_memproj;
} else {
assert(phase->is_dominator(projs.catchall_catchproj, ctrl), "one proj must dominate barrier");
mem = projs.catchall_memproj;
}
}
}
} else {
Node* proj = c->as_Call()->proj_out(TypeFunc::Memory);
if (proj != NULL &&
proj->adr_type() == TypePtr::BOTTOM) {
mem = proj;
}
}
} else {
for (DUIterator_Fast imax, i = c->fast_outs(imax); i < imax; i++) {
Node* u = c->fast_out(i);
if (u->is_Proj() &&
u->bottom_type() == Type::MEMORY &&
u->adr_type() == TypePtr::BOTTOM) {
assert(c->is_SafePoint() || c->is_MemBar() || c->is_Start(), "");
assert(mem == NULL, "only one proj");
mem = u;
}
}
assert(!c->is_Call() || c->as_Call()->adr_type() != NULL || mem == NULL, "no mem projection expected");
}
}
c = phase->idom(c);
} while (mem == NULL);
return mem;
}
void ShenandoahBarrierC2Support::follow_barrier_uses(Node* n, Node* ctrl, Unique_Node_List& uses, PhaseIdealLoop* phase) {
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* u = n->fast_out(i);
if (!u->is_CFG() && phase->get_ctrl(u) == ctrl && (!u->is_Phi() || !u->in(0)->is_Loop() || u->in(LoopNode::LoopBackControl) != n)) {
uses.push(u);
}
}
}
static void hide_strip_mined_loop(OuterStripMinedLoopNode* outer, CountedLoopNode* inner, PhaseIdealLoop* phase) {
OuterStripMinedLoopEndNode* le = inner->outer_loop_end();
Node* new_outer = new LoopNode(outer->in(LoopNode::EntryControl), outer->in(LoopNode::LoopBackControl));
phase->register_control(new_outer, phase->get_loop(outer), outer->in(LoopNode::EntryControl));
Node* new_le = new IfNode(le->in(0), le->in(1), le->_prob, le->_fcnt);
phase->register_control(new_le, phase->get_loop(le), le->in(0));
phase->lazy_replace(outer, new_outer);
phase->lazy_replace(le, new_le);
inner->clear_strip_mined();
}
void ShenandoahBarrierC2Support::test_heap_stable(Node*& ctrl, Node* raw_mem, Node*& heap_stable_ctrl,
PhaseIdealLoop* phase) {
IdealLoopTree* loop = phase->get_loop(ctrl);
Node* thread = new ThreadLocalNode();
phase->register_new_node(thread, ctrl);
Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
phase->set_ctrl(offset, phase->C->root());
Node* gc_state_addr = new AddPNode(phase->C->top(), thread, offset);
phase->register_new_node(gc_state_addr, ctrl);
uint gc_state_idx = Compile::AliasIdxRaw;
const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument
debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
Node* gc_state = new LoadBNode(ctrl, raw_mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered);
phase->register_new_node(gc_state, ctrl);
Node* heap_stable_and = new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED));
phase->register_new_node(heap_stable_and, ctrl);
Node* heap_stable_cmp = new CmpINode(heap_stable_and, phase->igvn().zerocon(T_INT));
phase->register_new_node(heap_stable_cmp, ctrl);
Node* heap_stable_test = new BoolNode(heap_stable_cmp, BoolTest::ne);
phase->register_new_node(heap_stable_test, ctrl);
IfNode* heap_stable_iff = new IfNode(ctrl, heap_stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN);
phase->register_control(heap_stable_iff, loop, ctrl);
heap_stable_ctrl = new IfFalseNode(heap_stable_iff);
phase->register_control(heap_stable_ctrl, loop, heap_stable_iff);
ctrl = new IfTrueNode(heap_stable_iff);
phase->register_control(ctrl, loop, heap_stable_iff);
assert(is_heap_stable_test(heap_stable_iff), "Should match the shape");
}
void ShenandoahBarrierC2Support::test_null(Node*& ctrl, Node* val, Node*& null_ctrl, PhaseIdealLoop* phase) {
const Type* val_t = phase->igvn().type(val);
if (val_t->meet(TypePtr::NULL_PTR) == val_t) {
IdealLoopTree* loop = phase->get_loop(ctrl);
Node* null_cmp = new CmpPNode(val, phase->igvn().zerocon(T_OBJECT));
phase->register_new_node(null_cmp, ctrl);
Node* null_test = new BoolNode(null_cmp, BoolTest::ne);
phase->register_new_node(null_test, ctrl);
IfNode* null_iff = new IfNode(ctrl, null_test, PROB_LIKELY(0.999), COUNT_UNKNOWN);
phase->register_control(null_iff, loop, ctrl);
ctrl = new IfTrueNode(null_iff);
phase->register_control(ctrl, loop, null_iff);
null_ctrl = new IfFalseNode(null_iff);
phase->register_control(null_ctrl, loop, null_iff);
}
}
Node* ShenandoahBarrierC2Support::clone_null_check(Node*& c, Node* val, Node* unc_ctrl, PhaseIdealLoop* phase) {
IdealLoopTree *loop = phase->get_loop(c);
Node* iff = unc_ctrl->in(0);
assert(iff->is_If(), "broken");
Node* new_iff = iff->clone();
new_iff->set_req(0, c);
phase->register_control(new_iff, loop, c);
Node* iffalse = new IfFalseNode(new_iff->as_If());
phase->register_control(iffalse, loop, new_iff);
Node* iftrue = new IfTrueNode(new_iff->as_If());
phase->register_control(iftrue, loop, new_iff);
c = iftrue;
const Type *t = phase->igvn().type(val);
assert(val->Opcode() == Op_CastPP, "expect cast to non null here");
Node* uncasted_val = val->in(1);
val = new CastPPNode(uncasted_val, t);
val->init_req(0, c);
phase->register_new_node(val, c);
return val;
}
void ShenandoahBarrierC2Support::fix_null_check(Node* unc, Node* unc_ctrl, Node* new_unc_ctrl,
Unique_Node_List& uses, PhaseIdealLoop* phase) {
IfNode* iff = unc_ctrl->in(0)->as_If();
Node* proj = iff->proj_out(0);
assert(proj != unc_ctrl, "bad projection");
Node* use = proj->unique_ctrl_out();
assert(use == unc || use->is_Region(), "what else?");
uses.clear();
if (use == unc) {
phase->set_idom(use, new_unc_ctrl, phase->dom_depth(use));
for (uint i = 1; i < unc->req(); i++) {
Node* n = unc->in(i);
if (phase->has_ctrl(n) && phase->get_ctrl(n) == proj) {
uses.push(n);
}
}
} else {
assert(use->is_Region(), "what else?");
uint idx = 1;
for (; use->in(idx) != proj; idx++);
for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
Node* u = use->fast_out(i);
if (u->is_Phi() && phase->get_ctrl(u->in(idx)) == proj) {
uses.push(u->in(idx));
}
}
}
for(uint next = 0; next < uses.size(); next++ ) {
Node *n = uses.at(next);
assert(phase->get_ctrl(n) == proj, "bad control");
phase->set_ctrl_and_loop(n, new_unc_ctrl);
if (n->in(0) == proj) {
phase->igvn().replace_input_of(n, 0, new_unc_ctrl);
}
for (uint i = 0; i < n->req(); i++) {
Node* m = n->in(i);
if (m != NULL && phase->has_ctrl(m) && phase->get_ctrl(m) == proj) {
uses.push(m);
}
}
}
phase->igvn().rehash_node_delayed(use);
int nb = use->replace_edge(proj, new_unc_ctrl);
assert(nb == 1, "only use expected");
}
void ShenandoahBarrierC2Support::in_cset_fast_test(Node*& ctrl, Node*& not_cset_ctrl, Node* val, Node* raw_mem, PhaseIdealLoop* phase) {
IdealLoopTree *loop = phase->get_loop(ctrl);
Node* raw_rbtrue = new CastP2XNode(ctrl, val);
phase->register_new_node(raw_rbtrue, ctrl);
Node* cset_offset = new URShiftXNode(raw_rbtrue, phase->igvn().intcon(ShenandoahHeapRegion::region_size_bytes_shift_jint()));
phase->register_new_node(cset_offset, ctrl);
Node* in_cset_fast_test_base_addr = phase->igvn().makecon(TypeRawPtr::make(ShenandoahHeap::in_cset_fast_test_addr()));
phase->set_ctrl(in_cset_fast_test_base_addr, phase->C->root());
Node* in_cset_fast_test_adr = new AddPNode(phase->C->top(), in_cset_fast_test_base_addr, cset_offset);
phase->register_new_node(in_cset_fast_test_adr, ctrl);
uint in_cset_fast_test_idx = Compile::AliasIdxRaw;
const TypePtr* in_cset_fast_test_adr_type = NULL; // debug-mode-only argument
debug_only(in_cset_fast_test_adr_type = phase->C->get_adr_type(in_cset_fast_test_idx));
Node* in_cset_fast_test_load = new LoadBNode(ctrl, raw_mem, in_cset_fast_test_adr, in_cset_fast_test_adr_type, TypeInt::BYTE, MemNode::unordered);
phase->register_new_node(in_cset_fast_test_load, ctrl);
Node* in_cset_fast_test_cmp = new CmpINode(in_cset_fast_test_load, phase->igvn().zerocon(T_INT));
phase->register_new_node(in_cset_fast_test_cmp, ctrl);
Node* in_cset_fast_test_test = new BoolNode(in_cset_fast_test_cmp, BoolTest::eq);
phase->register_new_node(in_cset_fast_test_test, ctrl);
IfNode* in_cset_fast_test_iff = new IfNode(ctrl, in_cset_fast_test_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN);
phase->register_control(in_cset_fast_test_iff, loop, ctrl);
not_cset_ctrl = new IfTrueNode(in_cset_fast_test_iff);
phase->register_control(not_cset_ctrl, loop, in_cset_fast_test_iff);
ctrl = new IfFalseNode(in_cset_fast_test_iff);
phase->register_control(ctrl, loop, in_cset_fast_test_iff);
}
void ShenandoahBarrierC2Support::call_lrb_stub(Node*& ctrl, Node*& val, Node*& result_mem, Node* raw_mem, PhaseIdealLoop* phase) {
IdealLoopTree*loop = phase->get_loop(ctrl);
const TypePtr* obj_type = phase->igvn().type(val)->is_oopptr()->cast_to_nonconst();
// The slow path stub consumes and produces raw memory in addition
// to the existing memory edges
Node* base = find_bottom_mem(ctrl, phase);
MergeMemNode* mm = MergeMemNode::make(base);
mm->set_memory_at(Compile::AliasIdxRaw, raw_mem);
phase->register_new_node(mm, ctrl);
Node* call = new CallLeafNode(ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type(), CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_JRT), "shenandoah_load_reference_barrier", TypeRawPtr::BOTTOM);
call->init_req(TypeFunc::Control, ctrl);
call->init_req(TypeFunc::I_O, phase->C->top());
call->init_req(TypeFunc::Memory, mm);
call->init_req(TypeFunc::FramePtr, phase->C->top());
call->init_req(TypeFunc::ReturnAdr, phase->C->top());
call->init_req(TypeFunc::Parms, val);
phase->register_control(call, loop, ctrl);
ctrl = new ProjNode(call, TypeFunc::Control);
phase->register_control(ctrl, loop, call);
result_mem = new ProjNode(call, TypeFunc::Memory);
phase->register_new_node(result_mem, call);
val = new ProjNode(call, TypeFunc::Parms);
phase->register_new_node(val, call);
val = new CheckCastPPNode(ctrl, val, obj_type);
phase->register_new_node(val, ctrl);
}
void ShenandoahBarrierC2Support::fix_ctrl(Node* barrier, Node* region, const MemoryGraphFixer& fixer, Unique_Node_List& uses, Unique_Node_List& uses_to_ignore, uint last, PhaseIdealLoop* phase) {
Node* ctrl = phase->get_ctrl(barrier);
Node* init_raw_mem = fixer.find_mem(ctrl, barrier);
// Update the control of all nodes that should be after the
// barrier control flow
uses.clear();
// Every node that is control dependent on the barrier's input
// control will be after the expanded barrier. The raw memory (if
// its memory is control dependent on the barrier's input control)
// must stay above the barrier.
uses_to_ignore.clear();
if (phase->has_ctrl(init_raw_mem) && phase->get_ctrl(init_raw_mem) == ctrl && !init_raw_mem->is_Phi()) {
uses_to_ignore.push(init_raw_mem);
}
for (uint next = 0; next < uses_to_ignore.size(); next++) {
Node *n = uses_to_ignore.at(next);
for (uint i = 0; i < n->req(); i++) {
Node* in = n->in(i);
if (in != NULL && phase->has_ctrl(in) && phase->get_ctrl(in) == ctrl) {
uses_to_ignore.push(in);
}
}
}
for (DUIterator_Fast imax, i = ctrl->fast_outs(imax); i < imax; i++) {
Node* u = ctrl->fast_out(i);
if (u->_idx < last &&
u != barrier &&
!uses_to_ignore.member(u) &&
(u->in(0) != ctrl || (!u->is_Region() && !u->is_Phi())) &&
(ctrl->Opcode() != Op_CatchProj || u->Opcode() != Op_CreateEx)) {
Node* old_c = phase->ctrl_or_self(u);
Node* c = old_c;
if (c != ctrl ||
is_dominator_same_ctrl(old_c, barrier, u, phase) ||
ShenandoahBarrierSetC2::is_shenandoah_state_load(u)) {
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(ctrl, region);
if (u->is_CFG()) {
if (phase->idom(u) == ctrl) {
phase->set_idom(u, region, phase->dom_depth(region));
}
} else if (phase->get_ctrl(u) == ctrl) {
assert(u != init_raw_mem, "should leave input raw mem above the barrier");
uses.push(u);
}
assert(nb == 1, "more than 1 ctrl input?");
--i, imax -= nb;
}
}
}
}
static Node* create_phis_on_call_return(Node* ctrl, Node* c, Node* n, Node* n_clone, const CallProjections& projs, PhaseIdealLoop* phase) {
Node* region = NULL;
while (c != ctrl) {
if (c->is_Region()) {
region = c;
}
c = phase->idom(c);
}
assert(region != NULL, "");
Node* phi = new PhiNode(region, n->bottom_type());
for (uint j = 1; j < region->req(); j++) {
Node* in = region->in(j);
if (phase->is_dominator(projs.fallthrough_catchproj, in)) {
phi->init_req(j, n);
} else if (phase->is_dominator(projs.catchall_catchproj, in)) {
phi->init_req(j, n_clone);
} else {
phi->init_req(j, create_phis_on_call_return(ctrl, in, n, n_clone, projs, phase));
}
}
phase->register_new_node(phi, region);
return phi;
}
void ShenandoahBarrierC2Support::pin_and_expand(PhaseIdealLoop* phase) {
ShenandoahBarrierSetC2State* state = ShenandoahBarrierSetC2::bsc2()->state();
// Collect raw memory state at CFG points in the entire graph and
// record it in memory_nodes. Optimize the raw memory graph in the
// process. Optimizing the memory graph also makes the memory graph
// simpler.
GrowableArray<MemoryGraphFixer*> memory_graph_fixers;
Unique_Node_List uses;
for (int i = 0; i < state->enqueue_barriers_count(); i++) {
Node* barrier = state->enqueue_barrier(i);
Node* ctrl = phase->get_ctrl(barrier);
IdealLoopTree* loop = phase->get_loop(ctrl);
if (loop->_head->is_OuterStripMinedLoop()) {
// Expanding a barrier here will break loop strip mining
// verification. Transform the loop so the loop nest doesn't
// appear as strip mined.
OuterStripMinedLoopNode* outer = loop->_head->as_OuterStripMinedLoop();
hide_strip_mined_loop(outer, outer->unique_ctrl_out()->as_CountedLoop(), phase);
}
}
Node_Stack stack(0);
Node_List clones;
for (int i = state->load_reference_barriers_count() - 1; i >= 0; i--) {
ShenandoahLoadReferenceBarrierNode* lrb = state->load_reference_barrier(i);
if (lrb->get_barrier_strength() == ShenandoahLoadReferenceBarrierNode::NONE) {
continue;
}
Node* ctrl = phase->get_ctrl(lrb);
Node* val = lrb->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
CallStaticJavaNode* unc = NULL;
Node* unc_ctrl = NULL;
Node* uncasted_val = val;
for (DUIterator_Fast imax, i = lrb->fast_outs(imax); i < imax; i++) {
Node* u = lrb->fast_out(i);
if (u->Opcode() == Op_CastPP &&
u->in(0) != NULL &&
phase->is_dominator(u->in(0), ctrl)) {
const Type* u_t = phase->igvn().type(u);
if (u_t->meet(TypePtr::NULL_PTR) != u_t &&
u->in(0)->Opcode() == Op_IfTrue &&
u->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) &&
u->in(0)->in(0)->is_If() &&
u->in(0)->in(0)->in(1)->Opcode() == Op_Bool &&
u->in(0)->in(0)->in(1)->as_Bool()->_test._test == BoolTest::ne &&
u->in(0)->in(0)->in(1)->in(1)->Opcode() == Op_CmpP &&
u->in(0)->in(0)->in(1)->in(1)->in(1) == val &&
u->in(0)->in(0)->in(1)->in(1)->in(2)->bottom_type() == TypePtr::NULL_PTR) {
IdealLoopTree* loop = phase->get_loop(ctrl);
IdealLoopTree* unc_loop = phase->get_loop(u->in(0));
if (!unc_loop->is_member(loop)) {
continue;
}
Node* branch = no_branches(ctrl, u->in(0), false, phase);
assert(branch == NULL || branch == NodeSentinel, "was not looking for a branch");
if (branch == NodeSentinel) {
continue;
}
phase->igvn().replace_input_of(u, 1, val);
phase->igvn().replace_input_of(lrb, ShenandoahLoadReferenceBarrierNode::ValueIn, u);
phase->set_ctrl(u, u->in(0));
phase->set_ctrl(lrb, u->in(0));
unc = u->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none);
unc_ctrl = u->in(0);
val = u;
for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
Node* u = val->fast_out(j);
if (u == lrb) continue;
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(val, lrb);
--j; jmax -= nb;
}
RegionNode* r = new RegionNode(3);
IfNode* iff = unc_ctrl->in(0)->as_If();
Node* ctrl_use = unc_ctrl->unique_ctrl_out();
Node* unc_ctrl_clone = unc_ctrl->clone();
phase->register_control(unc_ctrl_clone, loop, iff);
Node* c = unc_ctrl_clone;
Node* new_cast = clone_null_check(c, val, unc_ctrl_clone, phase);
r->init_req(1, new_cast->in(0)->in(0)->as_If()->proj_out(0));
phase->igvn().replace_input_of(unc_ctrl, 0, c->in(0));
phase->set_idom(unc_ctrl, c->in(0), phase->dom_depth(unc_ctrl));
phase->lazy_replace(c, unc_ctrl);
c = NULL;;
phase->igvn().replace_input_of(val, 0, unc_ctrl_clone);
phase->set_ctrl(val, unc_ctrl_clone);
IfNode* new_iff = new_cast->in(0)->in(0)->as_If();
fix_null_check(unc, unc_ctrl_clone, r, uses, phase);
Node* iff_proj = iff->proj_out(0);
r->init_req(2, iff_proj);
phase->register_control(r, phase->ltree_root(), iff);
Node* new_bol = new_iff->in(1)->clone();
Node* new_cmp = new_bol->in(1)->clone();
assert(new_cmp->Opcode() == Op_CmpP, "broken");
assert(new_cmp->in(1) == val->in(1), "broken");
new_bol->set_req(1, new_cmp);
new_cmp->set_req(1, lrb);
phase->register_new_node(new_bol, new_iff->in(0));
phase->register_new_node(new_cmp, new_iff->in(0));
phase->igvn().replace_input_of(new_iff, 1, new_bol);
phase->igvn().replace_input_of(new_cast, 1, lrb);
for (DUIterator_Fast imax, i = lrb->fast_outs(imax); i < imax; i++) {
Node* u = lrb->fast_out(i);
if (u == new_cast || u == new_cmp) {
continue;
}
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(lrb, new_cast);
assert(nb > 0, "no update?");
--i; imax -= nb;
}
for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
Node* u = val->fast_out(i);
if (u == lrb) {
continue;
}
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(val, new_cast);
assert(nb > 0, "no update?");
--i; imax -= nb;
}
ctrl = unc_ctrl_clone;
phase->set_ctrl_and_loop(lrb, ctrl);
break;
}
}
}
if ((ctrl->is_Proj() && ctrl->in(0)->is_CallJava()) || ctrl->is_CallJava()) {
CallNode* call = ctrl->is_Proj() ? ctrl->in(0)->as_CallJava() : ctrl->as_CallJava();
CallProjections projs;
call->extract_projections(&projs, false, false);
Node* lrb_clone = lrb->clone();
phase->register_new_node(lrb_clone, projs.catchall_catchproj);
phase->set_ctrl(lrb, projs.fallthrough_catchproj);
stack.push(lrb, 0);
clones.push(lrb_clone);
do {
assert(stack.size() == clones.size(), "");
Node* n = stack.node();
#ifdef ASSERT
if (n->is_Load()) {
Node* mem = n->in(MemNode::Memory);
for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
Node* u = mem->fast_out(j);
assert(!u->is_Store() || !u->is_LoadStore() || phase->get_ctrl(u) != ctrl, "anti dependent store?");
}
}
#endif
uint idx = stack.index();
Node* n_clone = clones.at(clones.size()-1);
if (idx < n->outcnt()) {
Node* u = n->raw_out(idx);
Node* c = phase->ctrl_or_self(u);
if (phase->is_dominator(call, c) && phase->is_dominator(c, projs.fallthrough_proj)) {
stack.set_index(idx+1);
assert(!u->is_CFG(), "");
stack.push(u, 0);
Node* u_clone = u->clone();
int nb = u_clone->replace_edge(n, n_clone);
assert(nb > 0, "should have replaced some uses");
phase->register_new_node(u_clone, projs.catchall_catchproj);
clones.push(u_clone);
phase->set_ctrl(u, projs.fallthrough_catchproj);
} else {
bool replaced = false;
if (u->is_Phi()) {
for (uint k = 1; k < u->req(); k++) {
if (u->in(k) == n) {
if (phase->is_dominator(projs.catchall_catchproj, u->in(0)->in(k))) {
phase->igvn().replace_input_of(u, k, n_clone);
replaced = true;
} else if (!phase->is_dominator(projs.fallthrough_catchproj, u->in(0)->in(k))) {
phase->igvn().replace_input_of(u, k, create_phis_on_call_return(ctrl, u->in(0)->in(k), n, n_clone, projs, phase));
replaced = true;
}
}
}
} else {
if (phase->is_dominator(projs.catchall_catchproj, c)) {
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(n, n_clone);
assert(nb > 0, "should have replaced some uses");
replaced = true;
} else if (!phase->is_dominator(projs.fallthrough_catchproj, c)) {
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(n, create_phis_on_call_return(ctrl, c, n, n_clone, projs, phase));
assert(nb > 0, "should have replaced some uses");
replaced = true;
}
}
if (!replaced) {
stack.set_index(idx+1);
}
}
} else {
stack.pop();
clones.pop();
}
} while (stack.size() > 0);
assert(stack.size() == 0 && clones.size() == 0, "");
}
}
// Expand load-reference-barriers
MemoryGraphFixer fixer(Compile::AliasIdxRaw, true, phase);
Unique_Node_List uses_to_ignore;
for (int i = state->load_reference_barriers_count() - 1; i >= 0; i--) {
ShenandoahLoadReferenceBarrierNode* lrb = state->load_reference_barrier(i);
if (lrb->get_barrier_strength() == ShenandoahLoadReferenceBarrierNode::NONE) {
phase->igvn().replace_node(lrb, lrb->in(ShenandoahLoadReferenceBarrierNode::ValueIn));
continue;
}
uint last = phase->C->unique();
Node* ctrl = phase->get_ctrl(lrb);
Node* val = lrb->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
Node* orig_ctrl = ctrl;
Node* raw_mem = fixer.find_mem(ctrl, lrb);
Node* init_raw_mem = raw_mem;
Node* raw_mem_for_ctrl = fixer.find_mem(ctrl, NULL);
// int alias = phase->C->get_alias_index(lrb->adr_type());
IdealLoopTree *loop = phase->get_loop(ctrl);
CallStaticJavaNode* unc = lrb->pin_and_expand_null_check(phase->igvn());
Node* unc_ctrl = NULL;
if (unc != NULL) {
if (val->in(ShenandoahLoadReferenceBarrierNode::Control) != ctrl) {
unc = NULL;
} else {
unc_ctrl = val->in(ShenandoahLoadReferenceBarrierNode::Control);
}
}
Node* uncasted_val = val;
if (unc != NULL) {
uncasted_val = val->in(1);
}
Node* heap_stable_ctrl = NULL;
Node* null_ctrl = NULL;
assert(val->bottom_type()->make_oopptr(), "need oop");
assert(val->bottom_type()->make_oopptr()->const_oop() == NULL, "expect non-constant");
enum { _heap_stable = 1, _not_cset, _fwded, _evac_path, _null_path, PATH_LIMIT };
Node* region = new RegionNode(PATH_LIMIT);
Node* val_phi = new PhiNode(region, uncasted_val->bottom_type()->is_oopptr());
Node* raw_mem_phi = PhiNode::make(region, raw_mem, Type::MEMORY, TypeRawPtr::BOTTOM);
// Stable path.
test_heap_stable(ctrl, raw_mem, heap_stable_ctrl, phase);
IfNode* heap_stable_iff = heap_stable_ctrl->in(0)->as_If();
// Heap stable case
region->init_req(_heap_stable, heap_stable_ctrl);
val_phi->init_req(_heap_stable, uncasted_val);
raw_mem_phi->init_req(_heap_stable, raw_mem);
Node* reg2_ctrl = NULL;
// Null case
test_null(ctrl, val, null_ctrl, phase);
if (null_ctrl != NULL) {
reg2_ctrl = null_ctrl->in(0);
region->init_req(_null_path, null_ctrl);
val_phi->init_req(_null_path, uncasted_val);
raw_mem_phi->init_req(_null_path, raw_mem);
} else {
region->del_req(_null_path);
val_phi->del_req(_null_path);
raw_mem_phi->del_req(_null_path);
}
// Test for in-cset.
// Wires !in_cset(obj) to slot 2 of region and phis
Node* not_cset_ctrl = NULL;
in_cset_fast_test(ctrl, not_cset_ctrl, uncasted_val, raw_mem, phase);
if (not_cset_ctrl != NULL) {
if (reg2_ctrl == NULL) reg2_ctrl = not_cset_ctrl->in(0);
region->init_req(_not_cset, not_cset_ctrl);
val_phi->init_req(_not_cset, uncasted_val);
raw_mem_phi->init_req(_not_cset, raw_mem);
}
// Resolve object when orig-value is in cset.
// Make the unconditional resolve for fwdptr.
Node* new_val = uncasted_val;
if (unc_ctrl != NULL) {
// Clone the null check in this branch to allow implicit null check
new_val = clone_null_check(ctrl, val, unc_ctrl, phase);
fix_null_check(unc, unc_ctrl, ctrl->in(0)->as_If()->proj_out(0), uses, phase);
IfNode* iff = unc_ctrl->in(0)->as_If();
phase->igvn().replace_input_of(iff, 1, phase->igvn().intcon(1));
}
Node* addr = new AddPNode(new_val, uncasted_val, phase->igvn().MakeConX(oopDesc::mark_offset_in_bytes()));
phase->register_new_node(addr, ctrl);
assert(new_val->bottom_type()->isa_oopptr(), "what else?");
Node* markword = new LoadXNode(ctrl, raw_mem, addr, TypeRawPtr::BOTTOM, TypeX_X, MemNode::unordered);
phase->register_new_node(markword, ctrl);
// Test if object is forwarded. This is the case if lowest two bits are set.
Node* masked = new AndXNode(markword, phase->igvn().MakeConX(markOopDesc::lock_mask_in_place));
phase->register_new_node(masked, ctrl);
Node* cmp = new CmpXNode(masked, phase->igvn().MakeConX(markOopDesc::marked_value));
phase->register_new_node(cmp, ctrl);
// Only branch to LRB stub if object is not forwarded; otherwise reply with fwd ptr
Node* bol = new BoolNode(cmp, BoolTest::eq); // Equals 3 means it's forwarded
phase->register_new_node(bol, ctrl);
IfNode* iff = new IfNode(ctrl, bol, PROB_LIKELY(0.999), COUNT_UNKNOWN);
phase->register_control(iff, loop, ctrl);
Node* if_fwd = new IfTrueNode(iff);
phase->register_control(if_fwd, loop, iff);
Node* if_not_fwd = new IfFalseNode(iff);
phase->register_control(if_not_fwd, loop, iff);
// Decode forward pointer: since we already have the lowest bits, we can just subtract them
// from the mark word without the need for large immediate mask.
Node* masked2 = new SubXNode(markword, masked);
phase->register_new_node(masked2, if_fwd);
Node* fwdraw = new CastX2PNode(masked2);
fwdraw->init_req(0, if_fwd);
phase->register_new_node(fwdraw, if_fwd);
Node* fwd = new CheckCastPPNode(NULL, fwdraw, val->bottom_type());
phase->register_new_node(fwd, if_fwd);
// Wire up not-equal-path in slots 3.
region->init_req(_fwded, if_fwd);
val_phi->init_req(_fwded, fwd);
raw_mem_phi->init_req(_fwded, raw_mem);
// Call lrb-stub and wire up that path in slots 4
Node* result_mem = NULL;
ctrl = if_not_fwd;
fwd = new_val;
call_lrb_stub(ctrl, fwd, result_mem, raw_mem, phase);
region->init_req(_evac_path, ctrl);
val_phi->init_req(_evac_path, fwd);
raw_mem_phi->init_req(_evac_path, result_mem);
phase->register_control(region, loop, heap_stable_iff);
Node* out_val = val_phi;
phase->register_new_node(val_phi, region);
phase->register_new_node(raw_mem_phi, region);
fix_ctrl(lrb, region, fixer, uses, uses_to_ignore, last, phase);
ctrl = orig_ctrl;
if (unc != NULL) {
for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
Node* u = val->fast_out(i);
Node* c = phase->ctrl_or_self(u);
if (u != lrb && (c != ctrl || is_dominator_same_ctrl(c, lrb, u, phase))) {
phase->igvn().rehash_node_delayed(u);
int nb = u->replace_edge(val, out_val);
--i, imax -= nb;
}
}
if (val->outcnt() == 0) {
phase->igvn()._worklist.push(val);
}
}
phase->igvn().replace_node(lrb, out_val);
follow_barrier_uses(out_val, ctrl, uses, phase);
for(uint next = 0; next < uses.size(); next++ ) {
Node *n = uses.at(next);
assert(phase->get_ctrl(n) == ctrl, "bad control");
assert(n != init_raw_mem, "should leave input raw mem above the barrier");
phase->set_ctrl(n, region);
follow_barrier_uses(n, ctrl, uses, phase);
}
// The slow path call produces memory: hook the raw memory phi
// from the expanded load reference barrier with the rest of the graph
// which may require adding memory phis at every post dominated
// region and at enclosing loop heads. Use the memory state
// collected in memory_nodes to fix the memory graph. Update that
// memory state as we go.
fixer.fix_mem(ctrl, region, init_raw_mem, raw_mem_for_ctrl, raw_mem_phi, uses);
}
// Done expanding load-reference-barriers.
assert(ShenandoahBarrierSetC2::bsc2()->state()->load_reference_barriers_count() == 0, "all load reference barrier nodes should have been replaced");
for (int i = state->enqueue_barriers_count() - 1; i >= 0; i--) {
Node* barrier = state->enqueue_barrier(i);
Node* pre_val = barrier->in(1);
if (phase->igvn().type(pre_val)->higher_equal(TypePtr::NULL_PTR)) {
ShouldNotReachHere();
continue;
}
Node* ctrl = phase->get_ctrl(barrier);
if (ctrl->is_Proj() && ctrl->in(0)->is_CallJava()) {
assert(is_dominator(phase->get_ctrl(pre_val), ctrl->in(0)->in(0), pre_val, ctrl->in(0), phase), "can't move");
ctrl = ctrl->in(0)->in(0);
phase->set_ctrl(barrier, ctrl);
} else if (ctrl->is_CallRuntime()) {
assert(is_dominator(phase->get_ctrl(pre_val), ctrl->in(0), pre_val, ctrl, phase), "can't move");
ctrl = ctrl->in(0);
phase->set_ctrl(barrier, ctrl);
}
Node* init_ctrl = ctrl;
IdealLoopTree* loop = phase->get_loop(ctrl);
Node* raw_mem = fixer.find_mem(ctrl, barrier);
Node* init_raw_mem = raw_mem;
Node* raw_mem_for_ctrl = fixer.find_mem(ctrl, NULL);
Node* heap_stable_ctrl = NULL;
Node* null_ctrl = NULL;
uint last = phase->C->unique();
enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
Node* region = new RegionNode(PATH_LIMIT);
Node* phi = PhiNode::make(region, raw_mem, Type::MEMORY, TypeRawPtr::BOTTOM);
enum { _fast_path = 1, _slow_path, _null_path, PATH_LIMIT2 };
Node* region2 = new RegionNode(PATH_LIMIT2);
Node* phi2 = PhiNode::make(region2, raw_mem, Type::MEMORY, TypeRawPtr::BOTTOM);
// Stable path.
test_heap_stable(ctrl, raw_mem, heap_stable_ctrl, phase);
region->init_req(_heap_stable, heap_stable_ctrl);
phi->init_req(_heap_stable, raw_mem);
// Null path
Node* reg2_ctrl = NULL;
test_null(ctrl, pre_val, null_ctrl, phase);
if (null_ctrl != NULL) {
reg2_ctrl = null_ctrl->in(0);
region2->init_req(_null_path, null_ctrl);
phi2->init_req(_null_path, raw_mem);
} else {
region2->del_req(_null_path);
phi2->del_req(_null_path);
}
const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
Node* thread = new ThreadLocalNode();
phase->register_new_node(thread, ctrl);
Node* buffer_adr = new AddPNode(phase->C->top(), thread, phase->igvn().MakeConX(buffer_offset));
phase->register_new_node(buffer_adr, ctrl);
Node* index_adr = new AddPNode(phase->C->top(), thread, phase->igvn().MakeConX(index_offset));
phase->register_new_node(index_adr, ctrl);
BasicType index_bt = TypeX_X->basic_type();
assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
const TypePtr* adr_type = TypeRawPtr::BOTTOM;
Node* index = new LoadXNode(ctrl, raw_mem, index_adr, adr_type, TypeX_X, MemNode::unordered);
phase->register_new_node(index, ctrl);
Node* index_cmp = new CmpXNode(index, phase->igvn().MakeConX(0));
phase->register_new_node(index_cmp, ctrl);
Node* index_test = new BoolNode(index_cmp, BoolTest::ne);
phase->register_new_node(index_test, ctrl);
IfNode* queue_full_iff = new IfNode(ctrl, index_test, PROB_LIKELY(0.999), COUNT_UNKNOWN);
if (reg2_ctrl == NULL) reg2_ctrl = queue_full_iff;
phase->register_control(queue_full_iff, loop, ctrl);
Node* not_full = new IfTrueNode(queue_full_iff);
phase->register_control(not_full, loop, queue_full_iff);
Node* full = new IfFalseNode(queue_full_iff);
phase->register_control(full, loop, queue_full_iff);
ctrl = not_full;
Node* next_index = new SubXNode(index, phase->igvn().MakeConX(sizeof(intptr_t)));
phase->register_new_node(next_index, ctrl);
Node* buffer = new LoadPNode(ctrl, raw_mem, buffer_adr, adr_type, TypeRawPtr::NOTNULL, MemNode::unordered);
phase->register_new_node(buffer, ctrl);
Node *log_addr = new AddPNode(phase->C->top(), buffer, next_index);
phase->register_new_node(log_addr, ctrl);
Node* log_store = new StorePNode(ctrl, raw_mem, log_addr, adr_type, pre_val, MemNode::unordered);
phase->register_new_node(log_store, ctrl);
// update the index
Node* index_update = new StoreXNode(ctrl, log_store, index_adr, adr_type, next_index, MemNode::unordered);
phase->register_new_node(index_update, ctrl);
// Fast-path case
region2->init_req(_fast_path, ctrl);
phi2->init_req(_fast_path, index_update);
ctrl = full;
Node* base = find_bottom_mem(ctrl, phase);
MergeMemNode* mm = MergeMemNode::make(base);
mm->set_memory_at(Compile::AliasIdxRaw, raw_mem);
phase->register_new_node(mm, ctrl);
Node* call = new CallLeafNode(ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(), CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", TypeRawPtr::BOTTOM);
call->init_req(TypeFunc::Control, ctrl);
call->init_req(TypeFunc::I_O, phase->C->top());
call->init_req(TypeFunc::Memory, mm);
call->init_req(TypeFunc::FramePtr, phase->C->top());
call->init_req(TypeFunc::ReturnAdr, phase->C->top());
call->init_req(TypeFunc::Parms, pre_val);
call->init_req(TypeFunc::Parms+1, thread);
phase->register_control(call, loop, ctrl);
Node* ctrl_proj = new ProjNode(call, TypeFunc::Control);
phase->register_control(ctrl_proj, loop, call);
Node* mem_proj = new ProjNode(call, TypeFunc::Memory);
phase->register_new_node(mem_proj, call);
// Slow-path case
region2->init_req(_slow_path, ctrl_proj);
phi2->init_req(_slow_path, mem_proj);
phase->register_control(region2, loop, reg2_ctrl);
phase->register_new_node(phi2, region2);
region->init_req(_heap_unstable, region2);
phi->init_req(_heap_unstable, phi2);
phase->register_control(region, loop, heap_stable_ctrl->in(0));
phase->register_new_node(phi, region);
fix_ctrl(barrier, region, fixer, uses, uses_to_ignore, last, phase);
for(uint next = 0; next < uses.size(); next++ ) {
Node *n = uses.at(next);
assert(phase->get_ctrl(n) == init_ctrl, "bad control");
assert(n != init_raw_mem, "should leave input raw mem above the barrier");
phase->set_ctrl(n, region);
follow_barrier_uses(n, init_ctrl, uses, phase);
}
fixer.fix_mem(init_ctrl, region, init_raw_mem, raw_mem_for_ctrl, phi, uses);
phase->igvn().replace_node(barrier, pre_val);
}
assert(state->enqueue_barriers_count() == 0, "all enqueue barrier nodes should have been replaced");
}
void ShenandoahBarrierC2Support::move_heap_stable_test_out_of_loop(IfNode* iff, PhaseIdealLoop* phase) {
IdealLoopTree *loop = phase->get_loop(iff);
Node* loop_head = loop->_head;
Node* entry_c = loop_head->in(LoopNode::EntryControl);
Node* bol = iff->in(1);
Node* cmp = bol->in(1);
Node* andi = cmp->in(1);
Node* load = andi->in(1);
assert(is_gc_state_load(load), "broken");
if (!phase->is_dominator(load->in(0), entry_c)) {
Node* mem_ctrl = NULL;
Node* mem = dom_mem(load->in(MemNode::Memory), loop_head, Compile::AliasIdxRaw, mem_ctrl, phase);
load = load->clone();
load->set_req(MemNode::Memory, mem);
load->set_req(0, entry_c);
phase->register_new_node(load, entry_c);
andi = andi->clone();
andi->set_req(1, load);
phase->register_new_node(andi, entry_c);
cmp = cmp->clone();
cmp->set_req(1, andi);
phase->register_new_node(cmp, entry_c);
bol = bol->clone();
bol->set_req(1, cmp);
phase->register_new_node(bol, entry_c);
Node* old_bol =iff->in(1);
phase->igvn().replace_input_of(iff, 1, bol);
}
}
bool ShenandoahBarrierC2Support::identical_backtoback_ifs(Node* n, PhaseIdealLoop* phase) {
if (!n->is_If() || n->is_CountedLoopEnd()) {
return false;
}
Node* region = n->in(0);
if (!region->is_Region()) {
return false;
}
Node* dom = phase->idom(region);
if (!dom->is_If()) {
return false;
}
if (!is_heap_stable_test(n) || !is_heap_stable_test(dom)) {
return false;
}
IfNode* dom_if = dom->as_If();
Node* proj_true = dom_if->proj_out(1);
Node* proj_false = dom_if->proj_out(0);
for (uint i = 1; i < region->req(); i++) {
if (phase->is_dominator(proj_true, region->in(i))) {
continue;
}
if (phase->is_dominator(proj_false, region->in(i))) {
continue;
}
return false;
}
return true;
}
void ShenandoahBarrierC2Support::merge_back_to_back_tests(Node* n, PhaseIdealLoop* phase) {
assert(is_heap_stable_test(n), "no other tests");
if (identical_backtoback_ifs(n, phase)) {
Node* n_ctrl = n->in(0);
if (phase->can_split_if(n_ctrl)) {
IfNode* dom_if = phase->idom(n_ctrl)->as_If();
if (is_heap_stable_test(n)) {
Node* gc_state_load = n->in(1)->in(1)->in(1)->in(1);
assert(is_gc_state_load(gc_state_load), "broken");
Node* dom_gc_state_load = dom_if->in(1)->in(1)->in(1)->in(1);
assert(is_gc_state_load(dom_gc_state_load), "broken");
if (gc_state_load != dom_gc_state_load) {
phase->igvn().replace_node(gc_state_load, dom_gc_state_load);
}
}
PhiNode* bolphi = PhiNode::make_blank(n_ctrl, n->in(1));
Node* proj_true = dom_if->proj_out(1);
Node* proj_false = dom_if->proj_out(0);
Node* con_true = phase->igvn().makecon(TypeInt::ONE);
Node* con_false = phase->igvn().makecon(TypeInt::ZERO);
for (uint i = 1; i < n_ctrl->req(); i++) {
if (phase->is_dominator(proj_true, n_ctrl->in(i))) {
bolphi->init_req(i, con_true);
} else {
assert(phase->is_dominator(proj_false, n_ctrl->in(i)), "bad if");
bolphi->init_req(i, con_false);
}
}
phase->register_new_node(bolphi, n_ctrl);
phase->igvn().replace_input_of(n, 1, bolphi);
phase->do_split_if(n);
}
}
}
IfNode* ShenandoahBarrierC2Support::find_unswitching_candidate(const IdealLoopTree* loop, PhaseIdealLoop* phase) {
// Find first invariant test that doesn't exit the loop
LoopNode *head = loop->_head->as_Loop();
IfNode* unswitch_iff = NULL;
Node* n = head->in(LoopNode::LoopBackControl);
int loop_has_sfpts = -1;
while (n != head) {
Node* n_dom = phase->idom(n);
if (n->is_Region()) {
if (n_dom->is_If()) {
IfNode* iff = n_dom->as_If();
if (iff->in(1)->is_Bool()) {
BoolNode* bol = iff->in(1)->as_Bool();
if (bol->in(1)->is_Cmp()) {
// If condition is invariant and not a loop exit,
// then found reason to unswitch.
if (is_heap_stable_test(iff) &&
(loop_has_sfpts == -1 || loop_has_sfpts == 0)) {
assert(!loop->is_loop_exit(iff), "both branches should be in the loop");
if (loop_has_sfpts == -1) {
for(uint i = 0; i < loop->_body.size(); i++) {
Node *m = loop->_body[i];
if (m->is_SafePoint() && !m->is_CallLeaf()) {
loop_has_sfpts = 1;
break;
}
}
if (loop_has_sfpts == -1) {
loop_has_sfpts = 0;
}
}
if (!loop_has_sfpts) {
unswitch_iff = iff;
}
}
}
}
}
}
n = n_dom;
}
return unswitch_iff;
}
void ShenandoahBarrierC2Support::optimize_after_expansion(VectorSet &visited, Node_Stack &stack, Node_List &old_new, PhaseIdealLoop* phase) {
Node_List heap_stable_tests;
Node_List gc_state_loads;
stack.push(phase->C->start(), 0);
do {
Node* n = stack.node();
uint i = stack.index();
if (i < n->outcnt()) {
Node* u = n->raw_out(i);
stack.set_index(i+1);
if (!visited.test_set(u->_idx)) {
stack.push(u, 0);
}
} else {
stack.pop();
if (ShenandoahCommonGCStateLoads && is_gc_state_load(n)) {
gc_state_loads.push(n);
}
if (n->is_If() && is_heap_stable_test(n)) {
heap_stable_tests.push(n);
}
}
} while (stack.size() > 0);
bool progress;
do {
progress = false;
for (uint i = 0; i < gc_state_loads.size(); i++) {
Node* n = gc_state_loads.at(i);
if (n->outcnt() != 0) {
progress |= try_common_gc_state_load(n, phase);
}
}
} while (progress);
for (uint i = 0; i < heap_stable_tests.size(); i++) {
Node* n = heap_stable_tests.at(i);
assert(is_heap_stable_test(n), "only evacuation test");
merge_back_to_back_tests(n, phase);
}
if (!phase->C->major_progress()) {
VectorSet seen(Thread::current()->resource_area());
for (uint i = 0; i < heap_stable_tests.size(); i++) {
Node* n = heap_stable_tests.at(i);
IdealLoopTree* loop = phase->get_loop(n);
if (loop != phase->ltree_root() &&
loop->_child == NULL &&
!loop->_irreducible) {
LoopNode* head = loop->_head->as_Loop();
if ((!head->is_CountedLoop() || head->as_CountedLoop()->is_main_loop() || head->as_CountedLoop()->is_normal_loop()) &&
!seen.test_set(head->_idx)) {
IfNode* iff = find_unswitching_candidate(loop, phase);
if (iff != NULL) {
Node* bol = iff->in(1);
if (head->is_strip_mined()) {
head->verify_strip_mined(0);
}
move_heap_stable_test_out_of_loop(iff, phase);
AutoNodeBudget node_budget(phase);
if (loop->policy_unswitching(phase)) {
if (head->is_strip_mined()) {
OuterStripMinedLoopNode* outer = head->as_CountedLoop()->outer_loop();
hide_strip_mined_loop(outer, head->as_CountedLoop(), phase);
}
phase->do_unswitching(loop, old_new);
} else {
// Not proceeding with unswitching. Move load back in
// the loop.
phase->igvn().replace_input_of(iff, 1, bol);
}
}
}
}
}
}
}
#ifdef ASSERT
void ShenandoahBarrierC2Support::verify_raw_mem(RootNode* root) {
const bool trace = false;
ResourceMark rm;
Unique_Node_List nodes;
Unique_Node_List controls;
Unique_Node_List memories;
nodes.push(root);
for (uint next = 0; next < nodes.size(); next++) {
Node *n = nodes.at(next);
if (ShenandoahBarrierSetC2::is_shenandoah_lrb_call(n)) {
controls.push(n);
if (trace) { tty->print("XXXXXX verifying"); n->dump(); }
for (uint next2 = 0; next2 < controls.size(); next2++) {
Node *m = controls.at(next2);
for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
Node* u = m->fast_out(i);
if (u->is_CFG() && !u->is_Root() &&
!(u->Opcode() == Op_CProj && u->in(0)->Opcode() == Op_NeverBranch && u->as_Proj()->_con == 1) &&
!(u->is_Region() && u->unique_ctrl_out()->Opcode() == Op_Halt)) {
if (trace) { tty->print("XXXXXX pushing control"); u->dump(); }
controls.push(u);
}
}
}
memories.push(n->as_Call()->proj_out(TypeFunc::Memory));
for (uint next2 = 0; next2 < memories.size(); next2++) {
Node *m = memories.at(next2);
assert(m->bottom_type() == Type::MEMORY, "");
for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
Node* u = m->fast_out(i);
if (u->bottom_type() == Type::MEMORY && (u->is_Mem() || u->is_ClearArray())) {
if (trace) { tty->print("XXXXXX pushing memory"); u->dump(); }
memories.push(u);
} else if (u->is_LoadStore()) {
if (trace) { tty->print("XXXXXX pushing memory"); u->find_out_with(Op_SCMemProj)->dump(); }
memories.push(u->find_out_with(Op_SCMemProj));
} else if (u->is_MergeMem() && u->as_MergeMem()->memory_at(Compile::AliasIdxRaw) == m) {
if (trace) { tty->print("XXXXXX pushing memory"); u->dump(); }
memories.push(u);
} else if (u->is_Phi()) {
assert(u->bottom_type() == Type::MEMORY, "");
if (u->adr_type() == TypeRawPtr::BOTTOM || u->adr_type() == TypePtr::BOTTOM) {
assert(controls.member(u->in(0)), "");
if (trace) { tty->print("XXXXXX pushing memory"); u->dump(); }
memories.push(u);
}
} else if (u->is_SafePoint() || u->is_MemBar()) {
for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
Node* uu = u->fast_out(j);
if (uu->bottom_type() == Type::MEMORY) {
if (trace) { tty->print("XXXXXX pushing memory"); uu->dump(); }
memories.push(uu);
}
}
}
}
}
for (uint next2 = 0; next2 < controls.size(); next2++) {
Node *m = controls.at(next2);
if (m->is_Region()) {
bool all_in = true;
for (uint i = 1; i < m->req(); i++) {
if (!controls.member(m->in(i))) {
all_in = false;
break;
}
}
if (trace) { tty->print("XXX verifying %s", all_in ? "all in" : ""); m->dump(); }
bool found_phi = false;
for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax && !found_phi; j++) {
Node* u = m->fast_out(j);
if (u->is_Phi() && memories.member(u)) {
found_phi = true;
for (uint i = 1; i < u->req() && found_phi; i++) {
Node* k = u->in(i);
if (memories.member(k) != controls.member(m->in(i))) {
found_phi = false;
}
}
}
}
assert(found_phi || all_in, "");
}
}
controls.clear();
memories.clear();
}
for( uint i = 0; i < n->len(); ++i ) {
Node *m = n->in(i);
if (m != NULL) {
nodes.push(m);
}
}
}
}
#endif
ShenandoahEnqueueBarrierNode::ShenandoahEnqueueBarrierNode(Node* val) : Node(NULL, val) {
ShenandoahBarrierSetC2::bsc2()->state()->add_enqueue_barrier(this);
}
const Type* ShenandoahEnqueueBarrierNode::bottom_type() const {
if (in(1) == NULL || in(1)->is_top()) {
return Type::TOP;
}
const Type* t = in(1)->bottom_type();
if (t == TypePtr::NULL_PTR) {
return t;
}
return t->is_oopptr()->cast_to_nonconst();
}
const Type* ShenandoahEnqueueBarrierNode::Value(PhaseGVN* phase) const {
if (in(1) == NULL) {
return Type::TOP;
}
const Type* t = phase->type(in(1));
if (t == Type::TOP) {
return Type::TOP;
}
if (t == TypePtr::NULL_PTR) {
return t;
}
return t->is_oopptr()->cast_to_nonconst();
}
int ShenandoahEnqueueBarrierNode::needed(Node* n) {
if (n == NULL ||
n->is_Allocate() ||
n->Opcode() == Op_ShenandoahEnqueueBarrier ||
n->bottom_type() == TypePtr::NULL_PTR ||
(n->bottom_type()->make_oopptr() != NULL && n->bottom_type()->make_oopptr()->const_oop() != NULL)) {
return NotNeeded;
}
if (n->is_Phi() ||
n->is_CMove()) {
return MaybeNeeded;
}
return Needed;
}
Node* ShenandoahEnqueueBarrierNode::next(Node* n) {
for (;;) {
if (n == NULL) {
return n;
} else if (n->bottom_type() == TypePtr::NULL_PTR) {
return n;
} else if (n->bottom_type()->make_oopptr() != NULL && n->bottom_type()->make_oopptr()->const_oop() != NULL) {
return n;
} else if (n->is_ConstraintCast() ||
n->Opcode() == Op_DecodeN ||
n->Opcode() == Op_EncodeP) {
n = n->in(1);
} else if (n->is_Proj()) {
n = n->in(0);
} else {
return n;
}
}
ShouldNotReachHere();
return NULL;
}
Node* ShenandoahEnqueueBarrierNode::Identity(PhaseGVN* phase) {
PhaseIterGVN* igvn = phase->is_IterGVN();
Node* n = next(in(1));
int cont = needed(n);
if (cont == NotNeeded) {
return in(1);
} else if (cont == MaybeNeeded) {
if (igvn == NULL) {
phase->record_for_igvn(this);
return this;
} else {
ResourceMark rm;
Unique_Node_List wq;
uint wq_i = 0;
for (;;) {
if (n->is_Phi()) {
for (uint i = 1; i < n->req(); i++) {
Node* m = n->in(i);
if (m != NULL) {
wq.push(m);
}
}
} else {
assert(n->is_CMove(), "nothing else here");
Node* m = n->in(CMoveNode::IfFalse);
wq.push(m);
m = n->in(CMoveNode::IfTrue);
wq.push(m);
}
Node* orig_n = NULL;
do {
if (wq_i >= wq.size()) {
return in(1);
}
n = wq.at(wq_i);
wq_i++;
orig_n = n;
n = next(n);
cont = needed(n);
if (cont == Needed) {
return this;
}
} while (cont != MaybeNeeded || (orig_n != n && wq.member(n)));
}
}
}
return this;
}
#ifdef ASSERT
static bool has_never_branch(Node* root) {
for (uint i = 1; i < root->req(); i++) {
Node* in = root->in(i);
if (in != NULL && in->Opcode() == Op_Halt && in->in(0)->is_Proj() && in->in(0)->in(0)->Opcode() == Op_NeverBranch) {
return true;
}
}
return false;
}
#endif
void MemoryGraphFixer::collect_memory_nodes() {
Node_Stack stack(0);
VectorSet visited(Thread::current()->resource_area());
Node_List regions;
// Walk the raw memory graph and create a mapping from CFG node to
// memory node. Exclude phis for now.
stack.push(_phase->C->root(), 1);
do {
Node* n = stack.node();
int opc = n->Opcode();
uint i = stack.index();
if (i < n->req()) {
Node* mem = NULL;
if (opc == Op_Root) {
Node* in = n->in(i);
int in_opc = in->Opcode();
if (in_opc == Op_Return || in_opc == Op_Rethrow) {
mem = in->in(TypeFunc::Memory);
} else if (in_opc == Op_Halt) {
if (!in->in(0)->is_Region()) {
Node* proj = in->in(0);
assert(proj->is_Proj(), "");
Node* in = proj->in(0);
assert(in->is_CallStaticJava() || in->Opcode() == Op_NeverBranch || in->Opcode() == Op_Catch || proj->is_IfProj(), "");
if (in->is_CallStaticJava()) {
mem = in->in(TypeFunc::Memory);
} else if (in->Opcode() == Op_Catch) {
Node* call = in->in(0)->in(0);
assert(call->is_Call(), "");
mem = call->in(TypeFunc::Memory);
} else if (in->Opcode() == Op_NeverBranch) {
ResourceMark rm;
Unique_Node_List wq;
wq.push(in);
wq.push(in->as_Multi()->proj_out(0));
for (uint j = 1; j < wq.size(); j++) {
Node* c = wq.at(j);
assert(!c->is_Root(), "shouldn't leave loop");
if (c->is_SafePoint()) {
assert(mem == NULL, "only one safepoint");
mem = c->in(TypeFunc::Memory);
}
for (DUIterator_Fast kmax, k = c->fast_outs(kmax); k < kmax; k++) {
Node* u = c->fast_out(k);
if (u->is_CFG()) {
wq.push(u);
}
}
}
assert(mem != NULL, "should have found safepoint");
}
}
} else {
#ifdef ASSERT
n->dump();
in->dump();
#endif
ShouldNotReachHere();
}
} else {
assert(n->is_Phi() && n->bottom_type() == Type::MEMORY, "");
assert(n->adr_type() == TypePtr::BOTTOM || _phase->C->get_alias_index(n->adr_type()) == _alias, "");
mem = n->in(i);
}
i++;
stack.set_index(i);
if (mem == NULL) {
continue;
}
for (;;) {
if (visited.test_set(mem->_idx) || mem->is_Start()) {
break;
}
if (mem->is_Phi()) {
stack.push(mem, 2);
mem = mem->in(1);
} else if (mem->is_Proj()) {
stack.push(mem, mem->req());
mem = mem->in(0);
} else if (mem->is_SafePoint() || mem->is_MemBar()) {
mem = mem->in(TypeFunc::Memory);
} else if (mem->is_MergeMem()) {
MergeMemNode* mm = mem->as_MergeMem();
mem = mm->memory_at(_alias);
} else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) {
assert(_alias == Compile::AliasIdxRaw, "");
stack.push(mem, mem->req());
mem = mem->in(MemNode::Memory);
} else {
#ifdef ASSERT
mem->dump();
#endif
ShouldNotReachHere();
}
}
} else {
if (n->is_Phi()) {
// Nothing
} else if (!n->is_Root()) {
Node* c = get_ctrl(n);
_memory_nodes.map(c->_idx, n);
}
stack.pop();
}
} while(stack.is_nonempty());
// Iterate over CFG nodes in rpo and propagate memory state to
// compute memory state at regions, creating new phis if needed.
Node_List rpo_list;
visited.Clear();
_phase->rpo(_phase->C->root(), stack, visited, rpo_list);
Node* root = rpo_list.pop();
assert(root == _phase->C->root(), "");
const bool trace = false;
#ifdef ASSERT
if (trace) {
for (int i = rpo_list.size() - 1; i >= 0; i--) {
Node* c = rpo_list.at(i);
if (_memory_nodes[c->_idx] != NULL) {
tty->print("X %d", c->_idx); _memory_nodes[c->_idx]->dump();
}
}
}
#endif
uint last = _phase->C->unique();
#ifdef ASSERT
uint8_t max_depth = 0;
for (LoopTreeIterator iter(_phase->ltree_root()); !iter.done(); iter.next()) {
IdealLoopTree* lpt = iter.current();
max_depth = MAX2(max_depth, lpt->_nest);
}
#endif
bool progress = true;
int iteration = 0;
Node_List dead_phis;
while (progress) {
progress = false;
iteration++;
assert(iteration <= 2+max_depth || _phase->C->has_irreducible_loop() || has_never_branch(_phase->C->root()), "");
if (trace) { tty->print_cr("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"); }
IdealLoopTree* last_updated_ilt = NULL;
for (int i = rpo_list.size() - 1; i >= 0; i--) {
Node* c = rpo_list.at(i);
Node* prev_mem = _memory_nodes[c->_idx];
if (c->is_Region() && (_include_lsm || !c->is_OuterStripMinedLoop())) {
Node* prev_region = regions[c->_idx];
Node* unique = NULL;
for (uint j = 1; j < c->req() && unique != NodeSentinel; j++) {
Node* m = _memory_nodes[c->in(j)->_idx];
assert(m != NULL || (c->is_Loop() && j == LoopNode::LoopBackControl && iteration == 1) || _phase->C->has_irreducible_loop() || has_never_branch(_phase->C->root()), "expect memory state");
if (m != NULL) {
if (m == prev_region && ((c->is_Loop() && j == LoopNode::LoopBackControl) || (prev_region->is_Phi() && prev_region->in(0) == c))) {
assert(c->is_Loop() && j == LoopNode::LoopBackControl || _phase->C->has_irreducible_loop(), "");
// continue
} else if (unique == NULL) {
unique = m;
} else if (m == unique) {
// continue
} else {
unique = NodeSentinel;
}
}
}
assert(unique != NULL, "empty phi???");
if (unique != NodeSentinel) {
if (prev_region != NULL && prev_region->is_Phi() && prev_region->in(0) == c) {
dead_phis.push(prev_region);
}
regions.map(c->_idx, unique);
} else {
Node* phi = NULL;
if (prev_region != NULL && prev_region->is_Phi() && prev_region->in(0) == c && prev_region->_idx >= last) {
phi = prev_region;
for (uint k = 1; k < c->req(); k++) {
Node* m = _memory_nodes[c->in(k)->_idx];
assert(m != NULL, "expect memory state");
phi->set_req(k, m);
}
} else {
for (DUIterator_Fast jmax, j = c->fast_outs(jmax); j < jmax && phi == NULL; j++) {
Node* u = c->fast_out(j);
if (u->is_Phi() && u->bottom_type() == Type::MEMORY &&
(u->adr_type() == TypePtr::BOTTOM || _phase->C->get_alias_index(u->adr_type()) == _alias)) {
phi = u;
for (uint k = 1; k < c->req() && phi != NULL; k++) {
Node* m = _memory_nodes[c->in(k)->_idx];
assert(m != NULL, "expect memory state");
if (u->in(k) != m) {
phi = NULL;
}
}
}
}
if (phi == NULL) {
phi = new PhiNode(c, Type::MEMORY, _phase->C->get_adr_type(_alias));
for (uint k = 1; k < c->req(); k++) {
Node* m = _memory_nodes[c->in(k)->_idx];
assert(m != NULL, "expect memory state");
phi->init_req(k, m);
}
}
}
assert(phi != NULL, "");
regions.map(c->_idx, phi);
}
Node* current_region = regions[c->_idx];
if (current_region != prev_region) {
progress = true;
if (prev_region == prev_mem) {
_memory_nodes.map(c->_idx, current_region);
}
}
} else if (prev_mem == NULL || prev_mem->is_Phi() || ctrl_or_self(prev_mem) != c) {
Node* m = _memory_nodes[_phase->idom(c)->_idx];
assert(m != NULL, "expect memory state");
if (m != prev_mem) {
_memory_nodes.map(c->_idx, m);
progress = true;
}
}
#ifdef ASSERT
if (trace) { tty->print("X %d", c->_idx); _memory_nodes[c->_idx]->dump(); }
#endif
}
}
// Replace existing phi with computed memory state for that region
// if different (could be a new phi or a dominating memory node if
// that phi was found to be useless).
while (dead_phis.size() > 0) {
Node* n = dead_phis.pop();
n->replace_by(_phase->C->top());
n->destruct();
}
for (int i = rpo_list.size() - 1; i >= 0; i--) {
Node* c = rpo_list.at(i);
if (c->is_Region() && (_include_lsm || !c->is_OuterStripMinedLoop())) {
Node* n = regions[c->_idx];
if (n->is_Phi() && n->_idx >= last && n->in(0) == c) {
_phase->register_new_node(n, c);
}
}
}
for (int i = rpo_list.size() - 1; i >= 0; i--) {
Node* c = rpo_list.at(i);
if (c->is_Region() && (_include_lsm || !c->is_OuterStripMinedLoop())) {
Node* n = regions[c->_idx];
for (DUIterator_Fast imax, i = c->fast_outs(imax); i < imax; i++) {
Node* u = c->fast_out(i);
if (u->is_Phi() && u->bottom_type() == Type::MEMORY &&
u != n) {
if (u->adr_type() == TypePtr::BOTTOM) {
fix_memory_uses(u, n, n, c);
} else if (_phase->C->get_alias_index(u->adr_type()) == _alias) {
_phase->lazy_replace(u, n);
--i; --imax;
}
}
}
}
}
}
Node* MemoryGraphFixer::get_ctrl(Node* n) const {
Node* c = _phase->get_ctrl(n);
if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Call()) {
assert(c == n->in(0), "");
CallNode* call = c->as_Call();
CallProjections projs;
call->extract_projections(&projs, true, false);
if (projs.catchall_memproj != NULL) {
if (projs.fallthrough_memproj == n) {
c = projs.fallthrough_catchproj;
} else {
assert(projs.catchall_memproj == n, "");
c = projs.catchall_catchproj;
}
}
}
return c;
}
Node* MemoryGraphFixer::ctrl_or_self(Node* n) const {
if (_phase->has_ctrl(n))
return get_ctrl(n);
else {
assert (n->is_CFG(), "must be a CFG node");
return n;
}
}
bool MemoryGraphFixer::mem_is_valid(Node* m, Node* c) const {
return m != NULL && get_ctrl(m) == c;
}
Node* MemoryGraphFixer::find_mem(Node* ctrl, Node* n) const {
assert(n == NULL || _phase->ctrl_or_self(n) == ctrl, "");
Node* mem = _memory_nodes[ctrl->_idx];
Node* c = ctrl;
while (!mem_is_valid(mem, c) &&
(!c->is_CatchProj() || mem == NULL || c->in(0)->in(0)->in(0) != get_ctrl(mem))) {
c = _phase->idom(c);
mem = _memory_nodes[c->_idx];
}
if (n != NULL && mem_is_valid(mem, c)) {
while (!ShenandoahBarrierC2Support::is_dominator_same_ctrl(c, mem, n, _phase) && _phase->ctrl_or_self(mem) == ctrl) {
mem = next_mem(mem, _alias);
}
if (mem->is_MergeMem()) {
mem = mem->as_MergeMem()->memory_at(_alias);
}
if (!mem_is_valid(mem, c)) {
do {
c = _phase->idom(c);
mem = _memory_nodes[c->_idx];
} while (!mem_is_valid(mem, c) &&
(!c->is_CatchProj() || mem == NULL || c->in(0)->in(0)->in(0) != get_ctrl(mem)));
}
}
assert(mem->bottom_type() == Type::MEMORY, "");
return mem;
}
bool MemoryGraphFixer::has_mem_phi(Node* region) const {
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
Node* use = region->fast_out(i);
if (use->is_Phi() && use->bottom_type() == Type::MEMORY &&
(_phase->C->get_alias_index(use->adr_type()) == _alias)) {
return true;
}
}
return false;
}
void MemoryGraphFixer::fix_mem(Node* ctrl, Node* new_ctrl, Node* mem, Node* mem_for_ctrl, Node* new_mem, Unique_Node_List& uses) {
assert(_phase->ctrl_or_self(new_mem) == new_ctrl, "");
const bool trace = false;
DEBUG_ONLY(if (trace) { tty->print("ZZZ control is"); ctrl->dump(); });
DEBUG_ONLY(if (trace) { tty->print("ZZZ mem is"); mem->dump(); });
GrowableArray<Node*> phis;
if (mem_for_ctrl != mem) {
Node* old = mem_for_ctrl;
Node* prev = NULL;
while (old != mem) {
prev = old;
if (old->is_Store() || old->is_ClearArray() || old->is_LoadStore()) {
assert(_alias == Compile::AliasIdxRaw, "");
old = old->in(MemNode::Memory);
} else if (old->Opcode() == Op_SCMemProj) {
assert(_alias == Compile::AliasIdxRaw, "");
old = old->in(0);
} else {
ShouldNotReachHere();
}
}
assert(prev != NULL, "");
if (new_ctrl != ctrl) {
_memory_nodes.map(ctrl->_idx, mem);
_memory_nodes.map(new_ctrl->_idx, mem_for_ctrl);
}
uint input = (uint)MemNode::Memory;
_phase->igvn().replace_input_of(prev, input, new_mem);
} else {
uses.clear();
_memory_nodes.map(new_ctrl->_idx, new_mem);
uses.push(new_ctrl);
for(uint next = 0; next < uses.size(); next++ ) {
Node *n = uses.at(next);
assert(n->is_CFG(), "");
DEBUG_ONLY(if (trace) { tty->print("ZZZ ctrl"); n->dump(); });
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* u = n->fast_out(i);
if (!u->is_Root() && u->is_CFG() && u != n) {
Node* m = _memory_nodes[u->_idx];
if (u->is_Region() && (!u->is_OuterStripMinedLoop() || _include_lsm) &&
!has_mem_phi(u) &&
u->unique_ctrl_out()->Opcode() != Op_Halt) {
DEBUG_ONLY(if (trace) { tty->print("ZZZ region"); u->dump(); });
DEBUG_ONLY(if (trace && m != NULL) { tty->print("ZZZ mem"); m->dump(); });
if (!mem_is_valid(m, u) || !m->is_Phi()) {
bool push = true;
bool create_phi = true;
if (_phase->is_dominator(new_ctrl, u)) {
create_phi = false;
} else if (!_phase->C->has_irreducible_loop()) {
IdealLoopTree* loop = _phase->get_loop(ctrl);
bool do_check = true;
IdealLoopTree* l = loop;
create_phi = false;
while (l != _phase->ltree_root()) {
if (_phase->is_dominator(l->_head, u) && _phase->is_dominator(_phase->idom(u), l->_head)) {
create_phi = true;
do_check = false;
break;
}
l = l->_parent;
}
if (do_check) {
assert(!create_phi, "");
IdealLoopTree* u_loop = _phase->get_loop(u);
if (u_loop != _phase->ltree_root() && u_loop->is_member(loop)) {
Node* c = ctrl;
while (!_phase->is_dominator(c, u_loop->tail())) {
c = _phase->idom(c);
}
if (!_phase->is_dominator(c, u)) {
do_check = false;
}
}
}
if (do_check && _phase->is_dominator(_phase->idom(u), new_ctrl)) {
create_phi = true;
}
}
if (create_phi) {
Node* phi = new PhiNode(u, Type::MEMORY, _phase->C->get_adr_type(_alias));
_phase->register_new_node(phi, u);
phis.push(phi);
DEBUG_ONLY(if (trace) { tty->print("ZZZ new phi"); phi->dump(); });
if (!mem_is_valid(m, u)) {
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting mem"); phi->dump(); });
_memory_nodes.map(u->_idx, phi);
} else {
DEBUG_ONLY(if (trace) { tty->print("ZZZ NOT setting mem"); m->dump(); });
for (;;) {
assert(m->is_Mem() || m->is_LoadStore() || m->is_Proj(), "");
Node* next = NULL;
if (m->is_Proj()) {
next = m->in(0);
} else {
assert(m->is_Mem() || m->is_LoadStore(), "");
assert(_alias == Compile::AliasIdxRaw, "");
next = m->in(MemNode::Memory);
}
if (_phase->get_ctrl(next) != u) {
break;
}
if (next->is_MergeMem()) {
assert(_phase->get_ctrl(next->as_MergeMem()->memory_at(_alias)) != u, "");
break;
}
if (next->is_Phi()) {
assert(next->adr_type() == TypePtr::BOTTOM && next->in(0) == u, "");
break;
}
m = next;
}
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting to phi"); m->dump(); });
assert(m->is_Mem() || m->is_LoadStore(), "");
uint input = (uint)MemNode::Memory;
_phase->igvn().replace_input_of(m, input, phi);
push = false;
}
} else {
DEBUG_ONLY(if (trace) { tty->print("ZZZ skipping region"); u->dump(); });
}
if (push) {
uses.push(u);
}
}
} else if (!mem_is_valid(m, u) &&
!(u->Opcode() == Op_CProj && u->in(0)->Opcode() == Op_NeverBranch && u->as_Proj()->_con == 1)) {
uses.push(u);
}
}
}
}
for (int i = 0; i < phis.length(); i++) {
Node* n = phis.at(i);
Node* r = n->in(0);
DEBUG_ONLY(if (trace) { tty->print("ZZZ fixing new phi"); n->dump(); });
for (uint j = 1; j < n->req(); j++) {
Node* m = find_mem(r->in(j), NULL);
_phase->igvn().replace_input_of(n, j, m);
DEBUG_ONLY(if (trace) { tty->print("ZZZ fixing new phi: %d", j); m->dump(); });
}
}
}
uint last = _phase->C->unique();
MergeMemNode* mm = NULL;
int alias = _alias;
DEBUG_ONLY(if (trace) { tty->print("ZZZ raw mem is"); mem->dump(); });
for (DUIterator i = mem->outs(); mem->has_out(i); i++) {
Node* u = mem->out(i);
if (u->_idx < last) {
if (u->is_Mem()) {
if (_phase->C->get_alias_index(u->adr_type()) == alias) {
Node* m = find_mem(_phase->get_ctrl(u), u);
if (m != mem) {
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); u->dump(); });
_phase->igvn().replace_input_of(u, MemNode::Memory, m);
--i;
}
}
} else if (u->is_MergeMem()) {
MergeMemNode* u_mm = u->as_MergeMem();
if (u_mm->memory_at(alias) == mem) {
MergeMemNode* newmm = NULL;
for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
Node* uu = u->fast_out(j);
assert(!uu->is_MergeMem(), "chain of MergeMems?");
if (uu->is_Phi()) {
assert(uu->adr_type() == TypePtr::BOTTOM, "");
Node* region = uu->in(0);
int nb = 0;
for (uint k = 1; k < uu->req(); k++) {
if (uu->in(k) == u) {
Node* m = find_mem(region->in(k), NULL);
if (m != mem) {
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of phi %d", k); uu->dump(); });
newmm = clone_merge_mem(u, mem, m, _phase->ctrl_or_self(m), i);
if (newmm != u) {
_phase->igvn().replace_input_of(uu, k, newmm);
nb++;
--jmax;
}
}
}
}
if (nb > 0) {
--j;
}
} else {
Node* m = find_mem(_phase->ctrl_or_self(uu), uu);
if (m != mem) {
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); uu->dump(); });
newmm = clone_merge_mem(u, mem, m, _phase->ctrl_or_self(m), i);
if (newmm != u) {
_phase->igvn().replace_input_of(uu, uu->find_edge(u), newmm);
--j, --jmax;
}
}
}
}
}
} else if (u->is_Phi()) {
assert(u->bottom_type() == Type::MEMORY, "what else?");
if (_phase->C->get_alias_index(u->adr_type()) == alias || u->adr_type() == TypePtr::BOTTOM) {
Node* region = u->in(0);
bool replaced = false;
for (uint j = 1; j < u->req(); j++) {
if (u->in(j) == mem) {
Node* m = find_mem(region->in(j), NULL);
Node* nnew = m;
if (m != mem) {
if (u->adr_type() == TypePtr::BOTTOM) {
mm = allocate_merge_mem(mem, m, _phase->ctrl_or_self(m));
nnew = mm;
}
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of phi %d", j); u->dump(); });
_phase->igvn().replace_input_of(u, j, nnew);
replaced = true;
}
}
}
if (replaced) {
--i;
}
}
} else if ((u->adr_type() == TypePtr::BOTTOM && u->Opcode() != Op_StrInflatedCopy) ||
u->adr_type() == NULL) {
assert(u->adr_type() != NULL ||
u->Opcode() == Op_Rethrow ||
u->Opcode() == Op_Return ||
u->Opcode() == Op_SafePoint ||
(u->is_CallStaticJava() && u->as_CallStaticJava()->uncommon_trap_request() != 0) ||
(u->is_CallStaticJava() && u->as_CallStaticJava()->_entry_point == OptoRuntime::rethrow_stub()) ||
u->Opcode() == Op_CallLeaf, "");
Node* m = find_mem(_phase->ctrl_or_self(u), u);
if (m != mem) {
mm = allocate_merge_mem(mem, m, _phase->get_ctrl(m));
_phase->igvn().replace_input_of(u, u->find_edge(mem), mm);
--i;
}
} else if (_phase->C->get_alias_index(u->adr_type()) == alias) {
Node* m = find_mem(_phase->ctrl_or_self(u), u);
if (m != mem) {
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); u->dump(); });
_phase->igvn().replace_input_of(u, u->find_edge(mem), m);
--i;
}
} else if (u->adr_type() != TypePtr::BOTTOM &&
_memory_nodes[_phase->ctrl_or_self(u)->_idx] == u) {
Node* m = find_mem(_phase->ctrl_or_self(u), u);
assert(m != mem, "");
// u is on the wrong slice...
assert(u->is_ClearArray(), "");
DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); u->dump(); });
_phase->igvn().replace_input_of(u, u->find_edge(mem), m);
--i;
}
}
}
#ifdef ASSERT
assert(new_mem->outcnt() > 0, "");
for (int i = 0; i < phis.length(); i++) {
Node* n = phis.at(i);
assert(n->outcnt() > 0, "new phi must have uses now");
}
#endif
}
MergeMemNode* MemoryGraphFixer::allocate_merge_mem(Node* mem, Node* rep_proj, Node* rep_ctrl) const {
MergeMemNode* mm = MergeMemNode::make(mem);
mm->set_memory_at(_alias, rep_proj);
_phase->register_new_node(mm, rep_ctrl);
return mm;
}
MergeMemNode* MemoryGraphFixer::clone_merge_mem(Node* u, Node* mem, Node* rep_proj, Node* rep_ctrl, DUIterator& i) const {
MergeMemNode* newmm = NULL;
MergeMemNode* u_mm = u->as_MergeMem();
Node* c = _phase->get_ctrl(u);
if (_phase->is_dominator(c, rep_ctrl)) {
c = rep_ctrl;
} else {
assert(_phase->is_dominator(rep_ctrl, c), "one must dominate the other");
}
if (u->outcnt() == 1) {
if (u->req() > (uint)_alias && u->in(_alias) == mem) {
_phase->igvn().replace_input_of(u, _alias, rep_proj);
--i;
} else {
_phase->igvn().rehash_node_delayed(u);
u_mm->set_memory_at(_alias, rep_proj);
}
newmm = u_mm;
_phase->set_ctrl_and_loop(u, c);
} else {
// can't simply clone u and then change one of its input because
// it adds and then removes an edge which messes with the
// DUIterator
newmm = MergeMemNode::make(u_mm->base_memory());
for (uint j = 0; j < u->req(); j++) {
if (j < newmm->req()) {
if (j == (uint)_alias) {
newmm->set_req(j, rep_proj);
} else if (newmm->in(j) != u->in(j)) {
newmm->set_req(j, u->in(j));
}
} else if (j == (uint)_alias) {
newmm->add_req(rep_proj);
} else {
newmm->add_req(u->in(j));
}
}
if ((uint)_alias >= u->req()) {
newmm->set_memory_at(_alias, rep_proj);
}
_phase->register_new_node(newmm, c);
}
return newmm;
}
bool MemoryGraphFixer::should_process_phi(Node* phi) const {
if (phi->adr_type() == TypePtr::BOTTOM) {
Node* region = phi->in(0);
for (DUIterator_Fast jmax, j = region->fast_outs(jmax); j < jmax; j++) {
Node* uu = region->fast_out(j);
if (uu->is_Phi() && uu != phi && uu->bottom_type() == Type::MEMORY && _phase->C->get_alias_index(uu->adr_type()) == _alias) {
return false;
}
}
return true;
}
return _phase->C->get_alias_index(phi->adr_type()) == _alias;
}
void MemoryGraphFixer::fix_memory_uses(Node* mem, Node* replacement, Node* rep_proj, Node* rep_ctrl) const {
uint last = _phase-> C->unique();
MergeMemNode* mm = NULL;
assert(mem->bottom_type() == Type::MEMORY, "");
for (DUIterator i = mem->outs(); mem->has_out(i); i++) {
Node* u = mem->out(i);
if (u != replacement && u->_idx < last) {
if (u->is_MergeMem()) {
MergeMemNode* u_mm = u->as_MergeMem();
if (u_mm->memory_at(_alias) == mem) {
MergeMemNode* newmm = NULL;
for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
Node* uu = u->fast_out(j);
assert(!uu->is_MergeMem(), "chain of MergeMems?");
if (uu->is_Phi()) {
if (should_process_phi(uu)) {
Node* region = uu->in(0);
int nb = 0;
for (uint k = 1; k < uu->req(); k++) {
if (uu->in(k) == u && _phase->is_dominator(rep_ctrl, region->in(k))) {
if (newmm == NULL) {
newmm = clone_merge_mem(u, mem, rep_proj, rep_ctrl, i);
}
if (newmm != u) {
_phase->igvn().replace_input_of(uu, k, newmm);
nb++;
--jmax;
}
}
}
if (nb > 0) {
--j;
}
}
} else {
if (rep_ctrl != uu && ShenandoahBarrierC2Support::is_dominator(rep_ctrl, _phase->ctrl_or_self(uu), replacement, uu, _phase)) {
if (newmm == NULL) {
newmm = clone_merge_mem(u, mem, rep_proj, rep_ctrl, i);
}
if (newmm != u) {
_phase->igvn().replace_input_of(uu, uu->find_edge(u), newmm);
--j, --jmax;
}
}
}
}
}
} else if (u->is_Phi()) {
assert(u->bottom_type() == Type::MEMORY, "what else?");
Node* region = u->in(0);
if (should_process_phi(u)) {
bool replaced = false;
for (uint j = 1; j < u->req(); j++) {
if (u->in(j) == mem && _phase->is_dominator(rep_ctrl, region->in(j))) {
Node* nnew = rep_proj;
if (u->adr_type() == TypePtr::BOTTOM) {
if (mm == NULL) {
mm = allocate_merge_mem(mem, rep_proj, rep_ctrl);
}
nnew = mm;
}
_phase->igvn().replace_input_of(u, j, nnew);
replaced = true;
}
}
if (replaced) {
--i;
}
}
} else if ((u->adr_type() == TypePtr::BOTTOM && u->Opcode() != Op_StrInflatedCopy) ||
u->adr_type() == NULL) {
assert(u->adr_type() != NULL ||
u->Opcode() == Op_Rethrow ||
u->Opcode() == Op_Return ||
u->Opcode() == Op_SafePoint ||
u->Opcode() == Op_StoreLConditional ||
(u->is_CallStaticJava() && u->as_CallStaticJava()->uncommon_trap_request() != 0) ||
(u->is_CallStaticJava() && u->as_CallStaticJava()->_entry_point == OptoRuntime::rethrow_stub()) ||
u->Opcode() == Op_CallLeaf, "");
if (ShenandoahBarrierC2Support::is_dominator(rep_ctrl, _phase->ctrl_or_self(u), replacement, u, _phase)) {
if (mm == NULL) {
mm = allocate_merge_mem(mem, rep_proj, rep_ctrl);
}
_phase->igvn().replace_input_of(u, u->find_edge(mem), mm);
--i;
}
} else if (_phase->C->get_alias_index(u->adr_type()) == _alias) {
if (ShenandoahBarrierC2Support::is_dominator(rep_ctrl, _phase->ctrl_or_self(u), replacement, u, _phase)) {
_phase->igvn().replace_input_of(u, u->find_edge(mem), rep_proj);
--i;
}
}
}
}
}
ShenandoahLoadReferenceBarrierNode::ShenandoahLoadReferenceBarrierNode(Node* ctrl, Node* obj)
: Node(ctrl, obj) {
ShenandoahBarrierSetC2::bsc2()->state()->add_load_reference_barrier(this);
}
const Type* ShenandoahLoadReferenceBarrierNode::bottom_type() const {
if (in(ValueIn) == NULL || in(ValueIn)->is_top()) {
return Type::TOP;
}
const Type* t = in(ValueIn)->bottom_type();
if (t == TypePtr::NULL_PTR) {
return t;
}
return t->is_oopptr();
}
const Type* ShenandoahLoadReferenceBarrierNode::Value(PhaseGVN* phase) const {
// Either input is TOP ==> the result is TOP
const Type *t2 = phase->type(in(ValueIn));
if( t2 == Type::TOP ) return Type::TOP;
if (t2 == TypePtr::NULL_PTR) {
return t2;
}
const Type* type = t2->is_oopptr()/*->cast_to_nonconst()*/;
return type;
}
Node* ShenandoahLoadReferenceBarrierNode::Identity(PhaseGVN* phase) {
Node* value = in(ValueIn);
if (!needs_barrier(phase, value)) {
return value;
}
return this;
}
bool ShenandoahLoadReferenceBarrierNode::needs_barrier(PhaseGVN* phase, Node* n) {
Unique_Node_List visited;
return needs_barrier_impl(phase, n, visited);
}
bool ShenandoahLoadReferenceBarrierNode::needs_barrier_impl(PhaseGVN* phase, Node* n, Unique_Node_List &visited) {
if (n == NULL) return false;
if (visited.member(n)) {
return false; // Been there.
}
visited.push(n);
if (n->is_Allocate()) {
// tty->print_cr("optimize barrier on alloc");
return false;
}
if (n->is_Call()) {
// tty->print_cr("optimize barrier on call");
return false;
}
const Type* type = phase->type(n);
if (type == Type::TOP) {
return false;
}
if (type->make_ptr()->higher_equal(TypePtr::NULL_PTR)) {
// tty->print_cr("optimize barrier on null");
return false;
}
if (type->make_oopptr() && type->make_oopptr()->const_oop() != NULL) {
// tty->print_cr("optimize barrier on constant");
return false;
}
switch (n->Opcode()) {
case Op_AddP:
return true; // TODO: Can refine?
case Op_LoadP:
case Op_ShenandoahCompareAndExchangeN:
case Op_ShenandoahCompareAndExchangeP:
case Op_CompareAndExchangeN:
case Op_CompareAndExchangeP:
case Op_GetAndSetN:
case Op_GetAndSetP:
return true;
case Op_Phi: {
for (uint i = 1; i < n->req(); i++) {
if (needs_barrier_impl(phase, n->in(i), visited)) return true;
}
return false;
}
case Op_CheckCastPP:
case Op_CastPP:
return needs_barrier_impl(phase, n->in(1), visited);
case Op_Proj:
return needs_barrier_impl(phase, n->in(0), visited);
case Op_ShenandoahLoadReferenceBarrier:
// tty->print_cr("optimize barrier on barrier");
return false;
case Op_Parm:
// tty->print_cr("optimize barrier on input arg");
return false;
case Op_DecodeN:
case Op_EncodeP:
return needs_barrier_impl(phase, n->in(1), visited);
case Op_LoadN:
return true;
case Op_CMoveP:
return needs_barrier_impl(phase, n->in(2), visited) ||
needs_barrier_impl(phase, n->in(3), visited);
case Op_ShenandoahEnqueueBarrier:
return needs_barrier_impl(phase, n->in(1), visited);
default:
break;
}
#ifdef ASSERT
tty->print("need barrier on?: ");
tty->print_cr("ins:");
n->dump(2);
tty->print_cr("outs:");
n->dump(-2);
ShouldNotReachHere();
#endif
return true;
}
ShenandoahLoadReferenceBarrierNode::Strength ShenandoahLoadReferenceBarrierNode::get_barrier_strength() {
Unique_Node_List visited;
Node_Stack stack(0);
stack.push(this, 0);
Strength strength = NONE;
while (strength != STRONG && stack.size() > 0) {
Node* n = stack.node();
if (visited.member(n)) {
stack.pop();
continue;
}
visited.push(n);
bool visit_users = false;
switch (n->Opcode()) {
case Op_StoreN:
case Op_StoreP: {
strength = STRONG;
break;
}
case Op_CmpP: {
if (!n->in(1)->bottom_type()->higher_equal(TypePtr::NULL_PTR) &&
!n->in(2)->bottom_type()->higher_equal(TypePtr::NULL_PTR)) {
strength = STRONG;
}
break;
}
case Op_CallStaticJava: {
strength = STRONG;
break;
}
case Op_CallDynamicJava:
case Op_CallLeaf:
case Op_CallLeafNoFP:
case Op_CompareAndSwapL:
case Op_CompareAndSwapI:
case Op_CompareAndSwapB:
case Op_CompareAndSwapS:
case Op_CompareAndSwapN:
case Op_CompareAndSwapP:
case Op_CompareAndExchangeL:
case Op_CompareAndExchangeI:
case Op_CompareAndExchangeB:
case Op_CompareAndExchangeS:
case Op_CompareAndExchangeN:
case Op_CompareAndExchangeP:
case Op_WeakCompareAndSwapL:
case Op_WeakCompareAndSwapI:
case Op_WeakCompareAndSwapB:
case Op_WeakCompareAndSwapS:
case Op_WeakCompareAndSwapN:
case Op_WeakCompareAndSwapP:
case Op_ShenandoahCompareAndSwapN:
case Op_ShenandoahCompareAndSwapP:
case Op_ShenandoahWeakCompareAndSwapN:
case Op_ShenandoahWeakCompareAndSwapP:
case Op_ShenandoahCompareAndExchangeN:
case Op_ShenandoahCompareAndExchangeP:
case Op_GetAndSetL:
case Op_GetAndSetI:
case Op_GetAndSetB:
case Op_GetAndSetS:
case Op_GetAndSetP:
case Op_GetAndSetN:
case Op_GetAndAddL:
case Op_GetAndAddI:
case Op_GetAndAddB:
case Op_GetAndAddS:
case Op_ShenandoahEnqueueBarrier:
case Op_FastLock:
case Op_FastUnlock:
case Op_Rethrow:
case Op_Return:
case Op_StoreB:
case Op_StoreC:
case Op_StoreD:
case Op_StoreF:
case Op_StoreL:
case Op_StoreLConditional:
case Op_StoreI:
case Op_StoreVector:
case Op_StrInflatedCopy:
case Op_StrCompressedCopy:
case Op_EncodeP:
case Op_CastP2X:
case Op_SafePoint:
case Op_EncodeISOArray:
strength = STRONG;
break;
case Op_LoadB:
case Op_LoadUB:
case Op_LoadUS:
case Op_LoadD:
case Op_LoadF:
case Op_LoadL:
case Op_LoadI:
case Op_LoadS:
case Op_LoadN:
case Op_LoadP:
case Op_LoadVector: {
const TypePtr* adr_type = n->adr_type();
int alias_idx = Compile::current()->get_alias_index(adr_type);
Compile::AliasType* alias_type = Compile::current()->alias_type(alias_idx);
ciField* field = alias_type->field();
bool is_static = field != NULL && field->is_static();
bool is_final = field != NULL && field->is_final();
bool is_stable = field != NULL && field->is_stable();
if (ShenandoahOptimizeStaticFinals && is_static && is_final) {
// Leave strength as is.
} else if (ShenandoahOptimizeInstanceFinals && !is_static && is_final) {
// Leave strength as is.
} else if (ShenandoahOptimizeStableFinals && (is_stable || (adr_type->isa_aryptr() && adr_type->isa_aryptr()->is_stable()))) {
// Leave strength as is.
} else {
strength = WEAK;
}
break;
}
case Op_AryEq: {
Node* n1 = n->in(2);
Node* n2 = n->in(3);
if (!ShenandoahOptimizeStableFinals ||
!n1->bottom_type()->isa_aryptr() || !n1->bottom_type()->isa_aryptr()->is_stable() ||
!n2->bottom_type()->isa_aryptr() || !n2->bottom_type()->isa_aryptr()->is_stable()) {
strength = WEAK;
}
break;
}
case Op_StrEquals:
case Op_StrComp:
case Op_StrIndexOf:
case Op_StrIndexOfChar:
if (!ShenandoahOptimizeStableFinals) {
strength = WEAK;
}
break;
case Op_Conv2B:
case Op_LoadRange:
case Op_LoadKlass:
case Op_LoadNKlass:
// NONE, i.e. leave current strength as is
break;
case Op_AddP:
case Op_CheckCastPP:
case Op_CastPP:
case Op_CMoveP:
case Op_Phi:
case Op_ShenandoahLoadReferenceBarrier:
visit_users = true;
break;
default: {
#ifdef ASSERT
tty->print_cr("Unknown node in get_barrier_strength:");
n->dump(1);
ShouldNotReachHere();
#else
strength = STRONG;
#endif
}
}
#ifdef ASSERT
/*
if (strength == STRONG) {
tty->print("strengthening node: ");
n->dump();
}
*/
#endif
stack.pop();
if (visit_users) {
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* user = n->fast_out(i);
if (user != NULL) {
stack.push(user, 0);
}
}
}
}
return strength;
}
CallStaticJavaNode* ShenandoahLoadReferenceBarrierNode::pin_and_expand_null_check(PhaseIterGVN& igvn) {
Node* val = in(ValueIn);
const Type* val_t = igvn.type(val);
if (val_t->meet(TypePtr::NULL_PTR) != val_t &&
val->Opcode() == Op_CastPP &&
val->in(0) != NULL &&
val->in(0)->Opcode() == Op_IfTrue &&
val->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) &&
val->in(0)->in(0)->is_If() &&
val->in(0)->in(0)->in(1)->Opcode() == Op_Bool &&
val->in(0)->in(0)->in(1)->as_Bool()->_test._test == BoolTest::ne &&
val->in(0)->in(0)->in(1)->in(1)->Opcode() == Op_CmpP &&
val->in(0)->in(0)->in(1)->in(1)->in(1) == val->in(1) &&
val->in(0)->in(0)->in(1)->in(1)->in(2)->bottom_type() == TypePtr::NULL_PTR) {
assert(val->in(0)->in(0)->in(1)->in(1)->in(1) == val->in(1), "");
CallStaticJavaNode* unc = val->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none);
return unc;
}
return NULL;
}