blob: f194644715edec2d7395bbc2a270987e3ae77368 [file] [log] [blame]
/*
* Copyright 2008-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
/*
* JSR 292 reference implementation: method handles
*/
#include "incls/_precompiled.incl"
#include "incls/_methodHandles.cpp.incl"
bool MethodHandles::_enabled = false; // set true after successful native linkage
MethodHandleEntry* MethodHandles::_entries[MethodHandles::_EK_LIMIT] = {NULL};
const char* MethodHandles::_entry_names[_EK_LIMIT+1] = {
"check_mtype",
"wrong_method_type", // what happens when there is a type mismatch
"invokestatic", // how a MH emulates invokestatic
"invokespecial", // ditto for the other invokes...
"invokevirtual",
"invokeinterface",
"bound_ref", // these are for BMH...
"bound_int",
"bound_long",
"bound_ref_direct", // (direct versions have a direct methodOop)
"bound_int_direct",
"bound_long_direct",
// starting at _adapter_mh_first:
"adapter_retype_only", // these are for AMH...
"adapter_check_cast",
"adapter_prim_to_prim",
"adapter_ref_to_prim",
"adapter_prim_to_ref",
"adapter_swap_args",
"adapter_rot_args",
"adapter_dup_args",
"adapter_drop_args",
"adapter_collect_args",
"adapter_spread_args",
"adapter_flyby",
"adapter_ricochet",
// optimized adapter types:
"adapter_swap_args/1",
"adapter_swap_args/2",
"adapter_rot_args/1,up",
"adapter_rot_args/1,down",
"adapter_rot_args/2,up",
"adapter_rot_args/2,down",
"adapter_prim_to_prim/i2i",
"adapter_prim_to_prim/l2i",
"adapter_prim_to_prim/d2f",
"adapter_prim_to_prim/i2l",
"adapter_prim_to_prim/f2d",
"adapter_ref_to_prim/unboxi",
"adapter_ref_to_prim/unboxl",
"adapter_spread_args/0",
"adapter_spread_args/1",
"adapter_spread_args/more",
NULL
};
#ifdef ASSERT
bool MethodHandles::spot_check_entry_names() {
assert(!strcmp(entry_name(_invokestatic_mh), "invokestatic"), "");
assert(!strcmp(entry_name(_bound_ref_mh), "bound_ref"), "");
assert(!strcmp(entry_name(_adapter_retype_only), "adapter_retype_only"), "");
assert(!strcmp(entry_name(_adapter_ricochet), "adapter_ricochet"), "");
assert(!strcmp(entry_name(_adapter_opt_unboxi), "adapter_ref_to_prim/unboxi"), "");
return true;
}
#endif
void MethodHandles::set_enabled(bool z) {
if (_enabled != z) {
guarantee(z && EnableMethodHandles, "can only enable once, and only if -XX:+EnableMethodHandles");
_enabled = z;
}
}
// Note: A method which does not have a TRAPS argument cannot block in the GC
// or throw exceptions. Such methods are used in this file to do something quick
// and local, like parse a data structure. For speed, such methods work on plain
// oops, not handles. Trapping methods uniformly operate on handles.
methodOop MethodHandles::decode_vmtarget(oop vmtarget, int vmindex, oop mtype,
klassOop& receiver_limit_result, int& decode_flags_result) {
if (vmtarget == NULL) return NULL;
assert(methodOopDesc::nonvirtual_vtable_index < 0, "encoding");
if (vmindex < 0) {
// this DMH performs no dispatch; it is directly bound to a methodOop
// A MemberName may either be directly bound to a methodOop,
// or it may use the klass/index form; both forms mean the same thing.
methodOop m = decode_methodOop(methodOop(vmtarget), decode_flags_result);
if ((decode_flags_result & _dmf_has_receiver) != 0
&& java_dyn_MethodType::is_instance(mtype)) {
// Extract receiver type restriction from mtype.ptypes[0].
objArrayOop ptypes = java_dyn_MethodType::ptypes(mtype);
oop ptype0 = (ptypes == NULL || ptypes->length() < 1) ? oop(NULL) : ptypes->obj_at(0);
if (java_lang_Class::is_instance(ptype0))
receiver_limit_result = java_lang_Class::as_klassOop(ptype0);
}
if (vmindex == methodOopDesc::nonvirtual_vtable_index) {
// this DMH can be an "invokespecial" version
decode_flags_result &= ~_dmf_does_dispatch;
} else {
assert(vmindex == methodOopDesc::invalid_vtable_index, "random vmindex?");
}
return m;
} else {
decode_flags_result |= MethodHandles::_dmf_does_dispatch;
assert(vmtarget->is_klass(), "must be class or interface");
receiver_limit_result = (klassOop)vmtarget;
Klass* tk = Klass::cast((klassOop)vmtarget);
if (tk->is_interface()) {
// an itable linkage is <interface, itable index>
decode_flags_result |= MethodHandles::_dmf_from_interface;
return klassItable::method_for_itable_index((klassOop)vmtarget, vmindex);
} else {
if (!tk->oop_is_instance())
tk = instanceKlass::cast(SystemDictionary::object_klass());
return ((instanceKlass*)tk)->method_at_vtable(vmindex);
}
}
}
// MemberName and DirectMethodHandle have the same linkage to the JVM internals.
// (MemberName is the non-operational name used for queries and setup.)
methodOop MethodHandles::decode_DirectMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
oop vmtarget = sun_dyn_DirectMethodHandle::vmtarget(mh);
int vmindex = sun_dyn_DirectMethodHandle::vmindex(mh);
oop mtype = sun_dyn_DirectMethodHandle::type(mh);
return decode_vmtarget(vmtarget, vmindex, mtype, receiver_limit_result, decode_flags_result);
}
methodOop MethodHandles::decode_BoundMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
assert(mh->klass() == SystemDictionary::BoundMethodHandle_klass(), "");
for (oop bmh = mh;;) {
// Bound MHs can be stacked to bind several arguments.
oop target = java_dyn_MethodHandle::vmtarget(bmh);
if (target == NULL) return NULL;
decode_flags_result |= MethodHandles::_dmf_binds_argument;
klassOop tk = target->klass();
if (tk == SystemDictionary::BoundMethodHandle_klass()) {
bmh = target;
continue;
} else {
if (java_dyn_MethodHandle::is_subclass(tk)) {
//assert(tk == SystemDictionary::DirectMethodHandle_klass(), "end of BMH chain must be DMH");
return decode_MethodHandle(target, receiver_limit_result, decode_flags_result);
} else {
// Optimized case: binding a receiver to a non-dispatched DMH
// short-circuits directly to the methodOop.
assert(target->is_method(), "must be a simple method");
methodOop m = (methodOop) target;
DEBUG_ONLY(int argslot = sun_dyn_BoundMethodHandle::vmargslot(bmh));
assert(argslot == m->size_of_parameters() - 1, "must be initial argument (receiver)");
decode_flags_result |= MethodHandles::_dmf_binds_method;
return m;
}
}
}
}
methodOop MethodHandles::decode_AdapterMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
assert(mh->klass() == SystemDictionary::AdapterMethodHandle_klass(), "");
for (oop amh = mh;;) {
// Adapter MHs can be stacked to convert several arguments.
int conv_op = adapter_conversion_op(sun_dyn_AdapterMethodHandle::conversion(amh));
decode_flags_result |= (_dmf_adapter_lsb << conv_op) & _DMF_ADAPTER_MASK;
oop target = java_dyn_MethodHandle::vmtarget(amh);
if (target == NULL) return NULL;
klassOop tk = target->klass();
if (tk == SystemDictionary::AdapterMethodHandle_klass()) {
amh = target;
continue;
} else {
// must be a BMH (which will bind some more arguments) or a DMH (for the final call)
return MethodHandles::decode_MethodHandle(target, receiver_limit_result, decode_flags_result);
}
}
}
methodOop MethodHandles::decode_MethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
if (mh == NULL) return NULL;
klassOop mhk = mh->klass();
assert(java_dyn_MethodHandle::is_subclass(mhk), "must be a MethodHandle");
if (mhk == SystemDictionary::DirectMethodHandle_klass()) {
return decode_DirectMethodHandle(mh, receiver_limit_result, decode_flags_result);
} else if (mhk == SystemDictionary::BoundMethodHandle_klass()) {
return decode_BoundMethodHandle(mh, receiver_limit_result, decode_flags_result);
} else if (mhk == SystemDictionary::AdapterMethodHandle_klass()) {
return decode_AdapterMethodHandle(mh, receiver_limit_result, decode_flags_result);
} else {
assert(false, "cannot parse this MH");
return NULL; // random MH?
}
}
methodOop MethodHandles::decode_methodOop(methodOop m, int& decode_flags_result) {
assert(m->is_method(), "");
if (m->is_static()) {
// check that signature begins '(L' or '([' (not '(I', '()', etc.)
symbolOop sig = m->signature();
BasicType recv_bt = char2type(sig->byte_at(1));
// Note: recv_bt might be T_ILLEGAL if byte_at(2) is ')'
assert(sig->byte_at(0) == '(', "must be method sig");
if (recv_bt == T_OBJECT || recv_bt == T_ARRAY)
decode_flags_result |= _dmf_has_receiver;
} else {
// non-static method
decode_flags_result |= _dmf_has_receiver;
if (!m->can_be_statically_bound() && !m->is_initializer()) {
decode_flags_result |= _dmf_does_dispatch;
if (Klass::cast(m->method_holder())->is_interface())
decode_flags_result |= _dmf_from_interface;
}
}
return m;
}
// A trusted party is handing us a cookie to determine a method.
// Let's boil it down to the method oop they really want.
methodOop MethodHandles::decode_method(oop x, klassOop& receiver_limit_result, int& decode_flags_result) {
decode_flags_result = 0;
receiver_limit_result = NULL;
klassOop xk = x->klass();
if (xk == Universe::methodKlassObj()) {
return decode_methodOop((methodOop) x, decode_flags_result);
} else if (xk == SystemDictionary::MemberName_klass()) {
// Note: This only works if the MemberName has already been resolved.
return decode_MemberName(x, receiver_limit_result, decode_flags_result);
} else if (java_dyn_MethodHandle::is_subclass(xk)) {
return decode_MethodHandle(x, receiver_limit_result, decode_flags_result);
} else if (xk == SystemDictionary::reflect_method_klass()) {
oop clazz = java_lang_reflect_Method::clazz(x);
int slot = java_lang_reflect_Method::slot(x);
klassOop k = java_lang_Class::as_klassOop(clazz);
if (k != NULL && Klass::cast(k)->oop_is_instance())
return decode_methodOop(instanceKlass::cast(k)->method_with_idnum(slot),
decode_flags_result);
} else if (xk == SystemDictionary::reflect_constructor_klass()) {
oop clazz = java_lang_reflect_Constructor::clazz(x);
int slot = java_lang_reflect_Constructor::slot(x);
klassOop k = java_lang_Class::as_klassOop(clazz);
if (k != NULL && Klass::cast(k)->oop_is_instance())
return decode_methodOop(instanceKlass::cast(k)->method_with_idnum(slot),
decode_flags_result);
} else {
// unrecognized object
assert(!x->is_method(), "already checked");
assert(!sun_dyn_MemberName::is_instance(x), "already checked");
}
return NULL;
}
int MethodHandles::decode_MethodHandle_stack_pushes(oop mh) {
if (mh->klass() == SystemDictionary::DirectMethodHandle_klass())
return 0; // no push/pop
int this_vmslots = java_dyn_MethodHandle::vmslots(mh);
int last_vmslots = 0;
oop last_mh = mh;
for (;;) {
oop target = java_dyn_MethodHandle::vmtarget(last_mh);
if (target->klass() == SystemDictionary::DirectMethodHandle_klass()) {
last_vmslots = java_dyn_MethodHandle::vmslots(target);
break;
} else if (!java_dyn_MethodHandle::is_instance(target)) {
// might be klass or method
assert(target->is_method(), "must get here with a direct ref to method");
last_vmslots = methodOop(target)->size_of_parameters();
break;
}
last_mh = target;
}
// If I am called with fewer VM slots than my ultimate callee,
// it must be that I push the additionally needed slots.
// Likewise if am called with more VM slots, I will pop them.
return (last_vmslots - this_vmslots);
}
// MemberName support
// import sun_dyn_MemberName.*
enum {
IS_METHOD = sun_dyn_MemberName::MN_IS_METHOD,
IS_CONSTRUCTOR = sun_dyn_MemberName::MN_IS_CONSTRUCTOR,
IS_FIELD = sun_dyn_MemberName::MN_IS_FIELD,
IS_TYPE = sun_dyn_MemberName::MN_IS_TYPE,
SEARCH_SUPERCLASSES = sun_dyn_MemberName::MN_SEARCH_SUPERCLASSES,
SEARCH_INTERFACES = sun_dyn_MemberName::MN_SEARCH_INTERFACES,
ALL_KINDS = IS_METHOD | IS_CONSTRUCTOR | IS_FIELD | IS_TYPE,
VM_INDEX_UNINITIALIZED = sun_dyn_MemberName::VM_INDEX_UNINITIALIZED
};
void MethodHandles::init_MemberName(oop mname_oop, oop target_oop) {
if (target_oop->klass() == SystemDictionary::reflect_field_klass()) {
oop clazz = java_lang_reflect_Field::clazz(target_oop); // fd.field_holder()
int slot = java_lang_reflect_Field::slot(target_oop); // fd.index()
int mods = java_lang_reflect_Field::modifiers(target_oop);
klassOop k = java_lang_Class::as_klassOop(clazz);
int offset = instanceKlass::cast(k)->offset_from_fields(slot);
init_MemberName(mname_oop, k, accessFlags_from(mods), offset);
} else {
int decode_flags = 0; klassOop receiver_limit = NULL;
methodOop m = MethodHandles::decode_method(target_oop,
receiver_limit, decode_flags);
bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0);
init_MemberName(mname_oop, m, do_dispatch);
}
}
void MethodHandles::init_MemberName(oop mname_oop, methodOop m, bool do_dispatch) {
int flags = ((m->is_initializer() ? IS_CONSTRUCTOR : IS_METHOD)
| (jushort)( m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS ));
oop vmtarget = m;
int vmindex = methodOopDesc::invalid_vtable_index; // implies no info yet
if (!do_dispatch || (flags & IS_CONSTRUCTOR) || m->can_be_statically_bound())
vmindex = methodOopDesc::nonvirtual_vtable_index; // implies never any dispatch
assert(vmindex != VM_INDEX_UNINITIALIZED, "Java sentinel value");
sun_dyn_MemberName::set_vmtarget(mname_oop, vmtarget);
sun_dyn_MemberName::set_vmindex(mname_oop, vmindex);
sun_dyn_MemberName::set_flags(mname_oop, flags);
}
void MethodHandles::init_MemberName(oop mname_oop, klassOop field_holder, AccessFlags mods, int offset) {
int flags = (IS_FIELD | (jushort)( mods.as_short() & JVM_RECOGNIZED_FIELD_MODIFIERS ));
oop vmtarget = field_holder;
int vmindex = offset; // implies no info yet
assert(vmindex != VM_INDEX_UNINITIALIZED, "bad alias on vmindex");
sun_dyn_MemberName::set_vmtarget(mname_oop, vmtarget);
sun_dyn_MemberName::set_vmindex(mname_oop, vmindex);
sun_dyn_MemberName::set_flags(mname_oop, flags);
}
methodOop MethodHandles::decode_MemberName(oop mname, klassOop& receiver_limit_result, int& decode_flags_result) {
int flags = sun_dyn_MemberName::flags(mname);
if ((flags & (IS_METHOD | IS_CONSTRUCTOR)) == 0) return NULL; // not invocable
oop vmtarget = sun_dyn_MemberName::vmtarget(mname);
int vmindex = sun_dyn_MemberName::vmindex(mname);
if (vmindex == VM_INDEX_UNINITIALIZED) return NULL; // not resolved
return decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit_result, decode_flags_result);
}
// An unresolved member name is a mere symbolic reference.
// Resolving it plants a vmtarget/vmindex in it,
// which refers dirctly to JVM internals.
void MethodHandles::resolve_MemberName(Handle mname, TRAPS) {
assert(sun_dyn_MemberName::is_instance(mname()), "");
#ifdef ASSERT
// If this assert throws, renegotiate the sentinel value used by the Java code,
// so that it is distinct from any valid vtable index value, and any special
// values defined in methodOopDesc::VtableIndexFlag.
// The point of the slop is to give the Java code and the JVM some room
// to independently specify sentinel values.
const int sentinel_slop = 10;
const int sentinel_limit = methodOopDesc::highest_unused_vtable_index_value - sentinel_slop;
assert(VM_INDEX_UNINITIALIZED < sentinel_limit, "Java sentinel != JVM sentinels");
#endif
if (sun_dyn_MemberName::vmindex(mname()) != VM_INDEX_UNINITIALIZED)
return; // already resolved
oop defc_oop = sun_dyn_MemberName::clazz(mname());
oop name_str = sun_dyn_MemberName::name(mname());
oop type_str = sun_dyn_MemberName::type(mname());
int flags = sun_dyn_MemberName::flags(mname());
if (defc_oop == NULL || name_str == NULL || type_str == NULL) {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to resolve");
}
klassOop defc_klassOop = java_lang_Class::as_klassOop(defc_oop);
defc_oop = NULL; // safety
if (defc_klassOop == NULL) return; // a primitive; no resolution possible
if (!Klass::cast(defc_klassOop)->oop_is_instance()) {
if (!Klass::cast(defc_klassOop)->oop_is_array()) return;
defc_klassOop = SystemDictionary::object_klass();
}
instanceKlassHandle defc(THREAD, defc_klassOop);
defc_klassOop = NULL; // safety
if (defc.is_null()) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "primitive class");
}
defc->link_class(CHECK);
// convert the external string name to an internal symbol
symbolHandle name(THREAD, java_lang_String::as_symbol_or_null(name_str));
if (name.is_null()) return; // no such name
name_str = NULL; // safety
// convert the external string or reflective type to an internal signature
bool force_signature = (name() == vmSymbols::invoke_name());
symbolHandle type; {
symbolOop type_sym = NULL;
if (java_dyn_MethodType::is_instance(type_str)) {
type_sym = java_dyn_MethodType::as_signature(type_str, force_signature, CHECK);
} else if (java_lang_Class::is_instance(type_str)) {
type_sym = java_lang_Class::as_signature(type_str, force_signature, CHECK);
} else if (java_lang_String::is_instance(type_str)) {
if (force_signature) {
type = java_lang_String::as_symbol(type_str, CHECK);
} else {
type_sym = java_lang_String::as_symbol_or_null(type_str);
}
} else {
THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized type");
}
if (type_sym != NULL)
type = symbolHandle(THREAD, type_sym);
}
if (type.is_null()) return; // no such signature exists in the VM
type_str = NULL; // safety
// Time to do the lookup.
switch (flags & ALL_KINDS) {
case IS_METHOD:
{
CallInfo result;
{
EXCEPTION_MARK;
if ((flags & JVM_ACC_STATIC) != 0) {
LinkResolver::resolve_static_call(result,
defc, name, type, KlassHandle(), false, false, THREAD);
} else if (defc->is_interface()) {
LinkResolver::resolve_interface_call(result, Handle(), defc,
defc, name, type, KlassHandle(), false, false, THREAD);
} else {
LinkResolver::resolve_virtual_call(result, Handle(), defc,
defc, name, type, KlassHandle(), false, false, THREAD);
}
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
return;
}
}
methodHandle m = result.resolved_method();
oop vmtarget = NULL;
int vmindex = methodOopDesc::nonvirtual_vtable_index;
if (defc->is_interface()) {
vmindex = klassItable::compute_itable_index(m());
assert(vmindex >= 0, "");
} else if (result.has_vtable_index()) {
vmindex = result.vtable_index();
assert(vmindex >= 0, "");
}
assert(vmindex != VM_INDEX_UNINITIALIZED, "");
if (vmindex < 0) {
assert(result.is_statically_bound(), "");
vmtarget = m();
} else {
vmtarget = result.resolved_klass()->as_klassOop();
}
int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS);
sun_dyn_MemberName::set_vmtarget(mname(), vmtarget);
sun_dyn_MemberName::set_vmindex(mname(), vmindex);
sun_dyn_MemberName::set_modifiers(mname(), mods);
DEBUG_ONLY(int junk; klassOop junk2);
assert(decode_MemberName(mname(), junk2, junk) == result.resolved_method()(),
"properly stored for later decoding");
return;
}
case IS_CONSTRUCTOR:
{
CallInfo result;
{
EXCEPTION_MARK;
if (name() == vmSymbols::object_initializer_name()) {
LinkResolver::resolve_special_call(result,
defc, name, type, KlassHandle(), false, THREAD);
} else {
break; // will throw after end of switch
}
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
return;
}
}
assert(result.is_statically_bound(), "");
methodHandle m = result.resolved_method();
oop vmtarget = m();
int vmindex = methodOopDesc::nonvirtual_vtable_index;
int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS);
sun_dyn_MemberName::set_vmtarget(mname(), vmtarget);
sun_dyn_MemberName::set_vmindex(mname(), vmindex);
sun_dyn_MemberName::set_modifiers(mname(), mods);
DEBUG_ONLY(int junk; klassOop junk2);
assert(decode_MemberName(mname(), junk2, junk) == result.resolved_method()(),
"properly stored for later decoding");
return;
}
case IS_FIELD:
{
// This is taken from LinkResolver::resolve_field, sans access checks.
fieldDescriptor fd; // find_field initializes fd if found
KlassHandle sel_klass(THREAD, instanceKlass::cast(defc())->find_field(name(), type(), &fd));
// check if field exists; i.e., if a klass containing the field def has been selected
if (sel_klass.is_null()) return;
oop vmtarget = sel_klass->as_klassOop();
int vmindex = fd.offset();
int mods = (fd.access_flags().as_short() & JVM_RECOGNIZED_FIELD_MODIFIERS);
if (vmindex == VM_INDEX_UNINITIALIZED) break; // should not happen
sun_dyn_MemberName::set_vmtarget(mname(), vmtarget);
sun_dyn_MemberName::set_vmindex(mname(), vmindex);
sun_dyn_MemberName::set_modifiers(mname(), mods);
return;
}
}
THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized MemberName format");
}
// Conversely, a member name which is only initialized from JVM internals
// may have null defc, name, and type fields.
// Resolving it plants a vmtarget/vmindex in it,
// which refers directly to JVM internals.
void MethodHandles::expand_MemberName(Handle mname, int suppress, TRAPS) {
assert(sun_dyn_MemberName::is_instance(mname()), "");
oop vmtarget = sun_dyn_MemberName::vmtarget(mname());
int vmindex = sun_dyn_MemberName::vmindex(mname());
if (vmtarget == NULL || vmindex == VM_INDEX_UNINITIALIZED) {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to expand");
}
bool have_defc = (sun_dyn_MemberName::clazz(mname()) != NULL);
bool have_name = (sun_dyn_MemberName::name(mname()) != NULL);
bool have_type = (sun_dyn_MemberName::type(mname()) != NULL);
int flags = sun_dyn_MemberName::flags(mname());
if (suppress != 0) {
if (suppress & _suppress_defc) have_defc = true;
if (suppress & _suppress_name) have_name = true;
if (suppress & _suppress_type) have_type = true;
}
if (have_defc && have_name && have_type) return; // nothing needed
switch (flags & ALL_KINDS) {
case IS_METHOD:
case IS_CONSTRUCTOR:
{
klassOop receiver_limit = NULL;
int decode_flags = 0;
methodHandle m(THREAD, decode_vmtarget(vmtarget, vmindex, NULL,
receiver_limit, decode_flags));
if (m.is_null()) break;
if (!have_defc) {
klassOop defc = m->method_holder();
if (receiver_limit != NULL && receiver_limit != defc
&& Klass::cast(receiver_limit)->is_subtype_of(defc))
defc = receiver_limit;
sun_dyn_MemberName::set_clazz(mname(), Klass::cast(defc)->java_mirror());
}
if (!have_name) {
//not java_lang_String::create_from_symbol; let's intern member names
Handle name = StringTable::intern(m->name(), CHECK);
sun_dyn_MemberName::set_name(mname(), name());
}
if (!have_type) {
Handle type = java_lang_String::create_from_symbol(m->signature(), CHECK);
sun_dyn_MemberName::set_type(mname(), type());
}
return;
}
case IS_FIELD:
{
// This is taken from LinkResolver::resolve_field, sans access checks.
if (!vmtarget->is_klass()) break;
if (!Klass::cast((klassOop) vmtarget)->oop_is_instance()) break;
instanceKlassHandle defc(THREAD, (klassOop) vmtarget);
bool is_static = ((flags & JVM_ACC_STATIC) != 0);
fieldDescriptor fd; // find_field initializes fd if found
if (!defc->find_field_from_offset(vmindex, is_static, &fd))
break; // cannot expand
if (!have_defc) {
sun_dyn_MemberName::set_clazz(mname(), defc->java_mirror());
}
if (!have_name) {
//not java_lang_String::create_from_symbol; let's intern member names
Handle name = StringTable::intern(fd.name(), CHECK);
sun_dyn_MemberName::set_name(mname(), name());
}
if (!have_type) {
Handle type = java_lang_String::create_from_symbol(fd.signature(), CHECK);
sun_dyn_MemberName::set_type(mname(), type());
}
return;
}
}
THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized MemberName format");
}
int MethodHandles::find_MemberNames(klassOop k,
symbolOop name, symbolOop sig,
int mflags, klassOop caller,
int skip, objArrayOop results) {
DEBUG_ONLY(No_Safepoint_Verifier nsv);
// this code contains no safepoints!
// %%% take caller into account!
if (k == NULL || !Klass::cast(k)->oop_is_instance()) return -1;
int rfill = 0, rlimit = results->length(), rskip = skip;
// overflow measurement:
int overflow = 0, overflow_limit = MAX2(1000, rlimit);
int match_flags = mflags;
bool search_superc = ((match_flags & SEARCH_SUPERCLASSES) != 0);
bool search_intfc = ((match_flags & SEARCH_INTERFACES) != 0);
bool local_only = !(search_superc | search_intfc);
bool classes_only = false;
if (name != NULL) {
if (name->utf8_length() == 0) return 0; // a match is not possible
}
if (sig != NULL) {
if (sig->utf8_length() == 0) return 0; // a match is not possible
if (sig->byte_at(0) == '(')
match_flags &= ~(IS_FIELD | IS_TYPE);
else
match_flags &= ~(IS_CONSTRUCTOR | IS_METHOD);
}
if ((match_flags & IS_TYPE) != 0) {
// NYI, and Core Reflection works quite well for this query
}
if ((match_flags & IS_FIELD) != 0) {
for (FieldStream st(k, local_only, !search_intfc); !st.eos(); st.next()) {
if (name != NULL && st.name() != name)
continue;
if (sig != NULL && st.signature() != sig)
continue;
// passed the filters
if (rskip > 0) {
--rskip;
} else if (rfill < rlimit) {
oop result = results->obj_at(rfill++);
if (!sun_dyn_MemberName::is_instance(result))
return -99; // caller bug!
MethodHandles::init_MemberName(result, st.klass()->as_klassOop(), st.access_flags(), st.offset());
} else if (++overflow >= overflow_limit) {
match_flags = 0; break; // got tired of looking at overflow
}
}
}
if ((match_flags & (IS_METHOD | IS_CONSTRUCTOR)) != 0) {
// watch out for these guys:
symbolOop init_name = vmSymbols::object_initializer_name();
symbolOop clinit_name = vmSymbols::class_initializer_name();
if (name == clinit_name) clinit_name = NULL; // hack for exposing <clinit>
bool negate_name_test = false;
// fix name so that it captures the intention of IS_CONSTRUCTOR
if (!(match_flags & IS_METHOD)) {
// constructors only
if (name == NULL) {
name = init_name;
} else if (name != init_name) {
return 0; // no constructors of this method name
}
} else if (!(match_flags & IS_CONSTRUCTOR)) {
// methods only
if (name == NULL) {
name = init_name;
negate_name_test = true; // if we see the name, we *omit* the entry
} else if (name == init_name) {
return 0; // no methods of this constructor name
}
} else {
// caller will accept either sort; no need to adjust name
}
for (MethodStream st(k, local_only, !search_intfc); !st.eos(); st.next()) {
methodOop m = st.method();
symbolOop m_name = m->name();
if (m_name == clinit_name)
continue;
if (name != NULL && ((m_name != name) ^ negate_name_test))
continue;
if (sig != NULL && m->signature() != sig)
continue;
// passed the filters
if (rskip > 0) {
--rskip;
} else if (rfill < rlimit) {
oop result = results->obj_at(rfill++);
if (!sun_dyn_MemberName::is_instance(result))
return -99; // caller bug!
MethodHandles::init_MemberName(result, m, true);
} else if (++overflow >= overflow_limit) {
match_flags = 0; break; // got tired of looking at overflow
}
}
}
// return number of elements we at leasted wanted to initialize
return rfill + overflow;
}
// Decode the vmtarget field of a method handle.
// Sanitize out methodOops, klassOops, and any other non-Java data.
// This is for debugging and reflection.
oop MethodHandles::encode_target(Handle mh, int format, TRAPS) {
assert(java_dyn_MethodHandle::is_instance(mh()), "must be a MH");
if (format == ETF_HANDLE_OR_METHOD_NAME) {
oop target = java_dyn_MethodHandle::vmtarget(mh());
if (target == NULL) {
return NULL; // unformed MH
}
klassOop tklass = target->klass();
if (Klass::cast(tklass)->is_subclass_of(SystemDictionary::object_klass())) {
return target; // target is another MH (or something else?)
}
}
if (format == ETF_DIRECT_HANDLE) {
oop target = mh();
for (;;) {
if (target->klass() == SystemDictionary::DirectMethodHandle_klass()) {
return target;
}
if (!java_dyn_MethodHandle::is_instance(target)){
return NULL; // unformed MH
}
target = java_dyn_MethodHandle::vmtarget(target);
}
}
// cases of metadata in MH.vmtarget:
// - AMH can have methodOop for static invoke with bound receiver
// - DMH can have methodOop for static invoke (on variable receiver)
// - DMH can have klassOop for dispatched (non-static) invoke
klassOop receiver_limit = NULL;
int decode_flags = 0;
methodOop m = decode_MethodHandle(mh(), receiver_limit, decode_flags);
if (m == NULL) return NULL;
switch (format) {
case ETF_REFLECT_METHOD:
// same as jni_ToReflectedMethod:
if (m->is_initializer()) {
return Reflection::new_constructor(m, THREAD);
} else {
return Reflection::new_method(m, UseNewReflection, false, THREAD);
}
case ETF_HANDLE_OR_METHOD_NAME: // method, not handle
case ETF_METHOD_NAME:
{
if (SystemDictionary::MemberName_klass() == NULL) break;
instanceKlassHandle mname_klass(THREAD, SystemDictionary::MemberName_klass());
mname_klass->initialize(CHECK_NULL);
Handle mname = mname_klass->allocate_instance_handle(CHECK_NULL);
sun_dyn_MemberName::set_vmindex(mname(), VM_INDEX_UNINITIALIZED);
bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0);
init_MemberName(mname(), m, do_dispatch);
expand_MemberName(mname, 0, CHECK_NULL);
return mname();
}
}
// Unknown format code.
char msg[50];
jio_snprintf(msg, sizeof(msg), "unknown getTarget format=%d", format);
THROW_MSG_NULL(vmSymbols::java_lang_IllegalArgumentException(), msg);
}
bool MethodHandles::class_cast_needed(klassOop src, klassOop dst) {
if (src == dst || dst == SystemDictionary::object_klass())
return false; // quickest checks
Klass* srck = Klass::cast(src);
Klass* dstk = Klass::cast(dst);
if (dstk->is_interface()) {
// interface receivers can safely be viewed as untyped,
// because interface calls always include a dynamic check
//dstk = Klass::cast(SystemDictionary::object_klass());
return false;
}
if (srck->is_interface()) {
// interface arguments must be viewed as untyped
//srck = Klass::cast(SystemDictionary::object_klass());
return true;
}
return !srck->is_subclass_of(dstk->as_klassOop());
}
static oop object_java_mirror() {
return Klass::cast(SystemDictionary::object_klass())->java_mirror();
}
bool MethodHandles::same_basic_type_for_arguments(BasicType src,
BasicType dst,
bool for_return) {
// return values can always be forgotten:
if (for_return && dst == T_VOID) return true;
assert(src != T_VOID && dst != T_VOID, "should not be here");
if (src == dst) return true;
if (type2size[src] != type2size[dst]) return false;
// allow reinterpretation casts for integral widening
if (is_subword_type(src)) { // subwords can fit in int or other subwords
if (dst == T_INT) // any subword fits in an int
return true;
if (src == T_BOOLEAN) // boolean fits in any subword
return is_subword_type(dst);
if (src == T_BYTE && dst == T_SHORT)
return true; // remaining case: byte fits in short
}
// allow float/fixed reinterpretation casts
if (src == T_FLOAT) return dst == T_INT;
if (src == T_INT) return dst == T_FLOAT;
if (src == T_DOUBLE) return dst == T_LONG;
if (src == T_LONG) return dst == T_DOUBLE;
return false;
}
const char* MethodHandles::check_method_receiver(methodOop m,
klassOop passed_recv_type) {
assert(!m->is_static(), "caller resp.");
if (passed_recv_type == NULL)
return "receiver type is primitive";
if (class_cast_needed(passed_recv_type, m->method_holder())) {
Klass* formal = Klass::cast(m->method_holder());
return SharedRuntime::generate_class_cast_message("receiver type",
formal->external_name());
}
return NULL; // checks passed
}
// Verify that m's signature can be called type-safely by a method handle
// of the given method type 'mtype'.
// It takes a TRAPS argument because it must perform symbol lookups.
void MethodHandles::verify_method_signature(methodHandle m,
Handle mtype,
int first_ptype_pos,
KlassHandle insert_ptype,
TRAPS) {
objArrayHandle ptypes(THREAD, java_dyn_MethodType::ptypes(mtype()));
int pnum = first_ptype_pos;
int pmax = ptypes->length();
int mnum = 0; // method argument
const char* err = NULL;
for (SignatureStream ss(m->signature()); !ss.is_done(); ss.next()) {
oop ptype_oop = NULL;
if (ss.at_return_type()) {
if (pnum != pmax)
{ err = "too many arguments"; break; }
ptype_oop = java_dyn_MethodType::rtype(mtype());
} else {
if (pnum >= pmax)
{ err = "not enough arguments"; break; }
if (pnum >= 0)
ptype_oop = ptypes->obj_at(pnum);
else if (insert_ptype.is_null())
ptype_oop = NULL;
else
ptype_oop = insert_ptype->java_mirror();
pnum += 1;
mnum += 1;
}
klassOop mklass = NULL;
BasicType mtype = ss.type();
if (mtype == T_ARRAY) mtype = T_OBJECT; // fold all refs to T_OBJECT
if (mtype == T_OBJECT) {
if (ptype_oop == NULL) {
// null matches any reference
continue;
}
// If we fail to resolve types at this point, we will throw an error.
symbolOop name_oop = ss.as_symbol(CHECK);
symbolHandle name(THREAD, name_oop);
instanceKlass* mk = instanceKlass::cast(m->method_holder());
Handle loader(THREAD, mk->class_loader());
Handle domain(THREAD, mk->protection_domain());
mklass = SystemDictionary::resolve_or_fail(name, loader, domain,
true, CHECK);
}
if (ptype_oop == NULL) {
// null does not match any non-reference; use Object to report the error
ptype_oop = object_java_mirror();
}
klassOop pklass = NULL;
BasicType ptype = java_lang_Class::as_BasicType(ptype_oop, &pklass);
if (!ss.at_return_type()) {
err = check_argument_type_change(ptype, pklass, mtype, mklass, mnum);
} else {
err = check_return_type_change(mtype, mklass, ptype, pklass); // note reversal!
}
if (err != NULL) break;
}
if (err != NULL) {
THROW_MSG(vmSymbols::java_lang_InternalError(), err);
}
}
// Main routine for verifying the MethodHandle.type of a proposed
// direct or bound-direct method handle.
void MethodHandles::verify_method_type(methodHandle m,
Handle mtype,
bool has_bound_recv,
KlassHandle bound_recv_type,
TRAPS) {
bool m_needs_receiver = !m->is_static();
const char* err = NULL;
int first_ptype_pos = m_needs_receiver ? 1 : 0;
if (has_bound_recv && err == NULL) {
first_ptype_pos -= 1;
if (m_needs_receiver && bound_recv_type.is_null())
{ err = "bound receiver is not an object"; goto die; }
}
if (m_needs_receiver && err == NULL) {
objArrayOop ptypes = java_dyn_MethodType::ptypes(mtype());
if (ptypes->length() < first_ptype_pos)
{ err = "receiver argument is missing"; goto die; }
if (first_ptype_pos == -1)
err = check_method_receiver(m(), bound_recv_type->as_klassOop());
else
err = check_method_receiver(m(), java_lang_Class::as_klassOop(ptypes->obj_at(0)));
if (err != NULL) goto die;
}
// Check the other arguments for mistypes.
verify_method_signature(m, mtype, first_ptype_pos, bound_recv_type, CHECK);
return;
die:
THROW_MSG(vmSymbols::java_lang_InternalError(), err);
}
void MethodHandles::verify_vmslots(Handle mh, TRAPS) {
// Verify vmslots.
int check_slots = argument_slot_count(java_dyn_MethodHandle::type(mh()));
if (java_dyn_MethodHandle::vmslots(mh()) != check_slots) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in BMH");
}
}
void MethodHandles::verify_vmargslot(Handle mh, int argnum, int argslot, TRAPS) {
// Verify that argslot points at the given argnum.
int check_slot = argument_slot(java_dyn_MethodHandle::type(mh()), argnum);
if (argslot != check_slot || argslot < 0) {
const char* fmt = "for argnum of %d, vmargslot is %d, should be %d";
size_t msglen = strlen(fmt) + 3*11 + 1;
char* msg = NEW_RESOURCE_ARRAY(char, msglen);
jio_snprintf(msg, msglen, fmt, argnum, argslot, check_slot);
THROW_MSG(vmSymbols::java_lang_InternalError(), msg);
}
}
// Verify the correspondence between two method types.
// Apart from the advertised changes, caller method type X must
// be able to invoke the callee method Y type with no violations
// of type integrity.
// Return NULL if all is well, else a short error message.
const char* MethodHandles::check_method_type_change(oop src_mtype, int src_beg, int src_end,
int insert_argnum, oop insert_type,
int change_argnum, oop change_type,
int delete_argnum,
oop dst_mtype, int dst_beg, int dst_end) {
objArrayOop src_ptypes = java_dyn_MethodType::ptypes(src_mtype);
objArrayOop dst_ptypes = java_dyn_MethodType::ptypes(dst_mtype);
int src_max = src_ptypes->length();
int dst_max = dst_ptypes->length();
if (src_end == -1) src_end = src_max;
if (dst_end == -1) dst_end = dst_max;
assert(0 <= src_beg && src_beg <= src_end && src_end <= src_max, "oob");
assert(0 <= dst_beg && dst_beg <= dst_end && dst_end <= dst_max, "oob");
// pending actions; set to -1 when done:
int ins_idx = insert_argnum, chg_idx = change_argnum, del_idx = delete_argnum;
const char* err = NULL;
// Walk along each array of parameter types, including a virtual
// NULL end marker at the end of each.
for (int src_idx = src_beg, dst_idx = dst_beg;
(src_idx <= src_end && dst_idx <= dst_end);
src_idx++, dst_idx++) {
oop src_type = (src_idx == src_end) ? oop(NULL) : src_ptypes->obj_at(src_idx);
oop dst_type = (dst_idx == dst_end) ? oop(NULL) : dst_ptypes->obj_at(dst_idx);
bool fix_null_src_type = false;
// Perform requested edits.
if (ins_idx == src_idx) {
// note that the inserted guy is never affected by a change or deletion
ins_idx = -1;
src_type = insert_type;
fix_null_src_type = true;
--src_idx; // back up to process src type on next loop
src_idx = src_end;
} else {
// note that the changed guy can be immediately deleted
if (chg_idx == src_idx) {
chg_idx = -1;
assert(src_idx < src_end, "oob");
src_type = change_type;
fix_null_src_type = true;
}
if (del_idx == src_idx) {
del_idx = -1;
assert(src_idx < src_end, "oob");
--dst_idx;
continue; // rerun loop after skipping this position
}
}
if (src_type == NULL && fix_null_src_type)
// explicit null in this case matches any dest reference
src_type = (java_lang_Class::is_primitive(dst_type) ? object_java_mirror() : dst_type);
// Compare the two argument types.
if (src_type != dst_type) {
if (src_type == NULL) return "not enough arguments";
if (dst_type == NULL) return "too many arguments";
err = check_argument_type_change(src_type, dst_type, dst_idx);
if (err != NULL) return err;
}
}
// Now compare return types also.
oop src_rtype = java_dyn_MethodType::rtype(src_mtype);
oop dst_rtype = java_dyn_MethodType::rtype(dst_mtype);
if (src_rtype != dst_rtype) {
err = check_return_type_change(dst_rtype, src_rtype); // note reversal!
if (err != NULL) return err;
}
assert(err == NULL, "");
return NULL; // all is well
}
const char* MethodHandles::check_argument_type_change(BasicType src_type,
klassOop src_klass,
BasicType dst_type,
klassOop dst_klass,
int argnum) {
const char* err = NULL;
// just in case:
if (src_type == T_ARRAY) src_type = T_OBJECT;
if (dst_type == T_ARRAY) dst_type = T_OBJECT;
// Produce some nice messages if VerifyMethodHandles is turned on:
if (!same_basic_type_for_arguments(src_type, dst_type, (argnum < 0))) {
if (src_type == T_OBJECT) {
err = ((argnum >= 0)
? "type mismatch: passing a %s for method argument #%d, which expects primitive %s"
: "type mismatch: returning a %s, but caller expects primitive %s");
} else if (dst_type == T_OBJECT) {
err = ((argnum < 0)
? "type mismatch: passing a primitive %s for method argument #%d, which expects %s"
: "type mismatch: returning a primitive %s, but caller expects %s");
} else {
err = ((argnum < 0)
? "type mismatch: passing a %s for method argument #%d, which expects %s"
: "type mismatch: returning a %s, but caller expects %s");
}
} else if (src_type == T_OBJECT && class_cast_needed(src_klass, dst_klass)) {
if (!class_cast_needed(dst_klass, src_klass)) {
err = ((argnum < 0)
? "cast required: passing a %s for method argument #%d, which expects %s"
: "cast required: returning a %s, but caller expects %s");
} else {
err = ((argnum < 0)
? "reference mismatch: passing a %s for method argument #%d, which expects %s"
: "reference mismatch: returning a %s, but caller expects %s");
}
} else {
// passed the obstacle course
return NULL;
}
// format, format, format
const char* src_name = type2name(src_type);
const char* dst_name = type2name(dst_type);
if (src_type == T_OBJECT) src_name = Klass::cast(src_klass)->external_name();
if (dst_type == T_OBJECT) dst_name = Klass::cast(dst_klass)->external_name();
if (src_name == NULL) src_name = "unknown type";
if (dst_name == NULL) dst_name = "unknown type";
size_t msglen = strlen(err) + strlen(src_name) + strlen(dst_name) + (argnum < 10 ? 1 : 11);
char* msg = NEW_RESOURCE_ARRAY(char, msglen + 1);
if (argnum >= 0) {
assert(strstr(err, "%d") != NULL, "");
jio_snprintf(msg, msglen, err, src_name, argnum, dst_name);
} else {
assert(strstr(err, "%d") == NULL, "");
jio_snprintf(msg, msglen, err, src_name, dst_name);
}
return msg;
}
// Compute the depth within the stack of the given argument, i.e.,
// the combined size of arguments to the right of the given argument.
// For the last argument (ptypes.length-1) this will be zero.
// For the first argument (0) this will be the size of all
// arguments but that one. For the special number -1, this
// will be the size of all arguments, including the first.
// If the argument is neither -1 nor a valid argument index,
// then return a negative number. Otherwise, the result
// is in the range [0..vmslots] inclusive.
int MethodHandles::argument_slot(oop method_type, int arg) {
objArrayOop ptypes = java_dyn_MethodType::ptypes(method_type);
int argslot = 0;
int len = ptypes->length();
if (arg < -1 || arg >= len) return -99;
for (int i = len-1; i > arg; i--) {
BasicType bt = java_lang_Class::as_BasicType(ptypes->obj_at(i));
argslot += type2size[bt];
}
assert(argument_slot_to_argnum(method_type, argslot) == arg, "inverse works");
return argslot;
}
// Given a slot number, return the argument number.
int MethodHandles::argument_slot_to_argnum(oop method_type, int query_argslot) {
objArrayOop ptypes = java_dyn_MethodType::ptypes(method_type);
int argslot = 0;
int len = ptypes->length();
for (int i = len-1; i >= 0; i--) {
if (query_argslot == argslot) return i;
BasicType bt = java_lang_Class::as_BasicType(ptypes->obj_at(i));
argslot += type2size[bt];
}
// return pseudo-arg deepest in stack:
if (query_argslot == argslot) return -1;
return -99; // oob slot, or splitting a double-slot arg
}
methodHandle MethodHandles::dispatch_decoded_method(methodHandle m,
KlassHandle receiver_limit,
int decode_flags,
KlassHandle receiver_klass,
TRAPS) {
assert((decode_flags & ~_DMF_DIRECT_MASK) == 0, "must be direct method reference");
assert((decode_flags & _dmf_has_receiver) != 0, "must have a receiver or first reference argument");
if (!m->is_static() &&
(receiver_klass.is_null() || !receiver_klass->is_subtype_of(m->method_holder())))
// given type does not match class of method, or receiver is null!
// caller should have checked this, but let's be extra careful...
return methodHandle();
if (receiver_limit.not_null() &&
(receiver_klass.not_null() && !receiver_klass->is_subtype_of(receiver_limit())))
// given type is not limited to the receiver type
// note that a null receiver can match any reference value, for a static method
return methodHandle();
if (!(decode_flags & MethodHandles::_dmf_does_dispatch)) {
// pre-dispatched or static method (null receiver is OK for static)
return m;
} else if (receiver_klass.is_null()) {
// null receiver value; cannot dispatch
return methodHandle();
} else if (!(decode_flags & MethodHandles::_dmf_from_interface)) {
// perform virtual dispatch
int vtable_index = m->vtable_index();
guarantee(vtable_index >= 0, "valid vtable index");
// receiver_klass might be an arrayKlassOop but all vtables start at
// the same place. The cast is to avoid virtual call and assertion.
// See also LinkResolver::runtime_resolve_virtual_method.
instanceKlass* inst = (instanceKlass*)Klass::cast(receiver_klass());
DEBUG_ONLY(inst->verify_vtable_index(vtable_index));
methodOop m_oop = inst->method_at_vtable(vtable_index);
return methodHandle(THREAD, m_oop);
} else {
// perform interface dispatch
int itable_index = klassItable::compute_itable_index(m());
guarantee(itable_index >= 0, "valid itable index");
instanceKlass* inst = instanceKlass::cast(receiver_klass());
methodOop m_oop = inst->method_at_itable(m->method_holder(), itable_index, THREAD);
return methodHandle(THREAD, m_oop);
}
}
void MethodHandles::verify_DirectMethodHandle(Handle mh, methodHandle m, TRAPS) {
// Verify type.
Handle mtype(THREAD, java_dyn_MethodHandle::type(mh()));
verify_method_type(m, mtype, false, KlassHandle(), CHECK);
// Verify vmslots.
if (java_dyn_MethodHandle::vmslots(mh()) != m->size_of_parameters()) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in DMH");
}
}
void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_dispatch, TRAPS) {
// Check arguments.
if (mh.is_null() || m.is_null() ||
(!do_dispatch && m->is_abstract())) {
THROW(vmSymbols::java_lang_InternalError());
}
java_dyn_MethodHandle::init_vmslots(mh());
if (VerifyMethodHandles) {
// The privileged code which invokes this routine should not make
// a mistake about types, but it's better to verify.
verify_DirectMethodHandle(mh, m, CHECK);
}
// Finally, after safety checks are done, link to the target method.
// We will follow the same path as the latter part of
// InterpreterRuntime::resolve_invoke(), which first finds the method
// and then decides how to populate the constant pool cache entry
// that links the interpreter calls to the method. We need the same
// bits, and will use the same calling sequence code.
int vmindex = methodOopDesc::garbage_vtable_index;
oop vmtarget = NULL;
instanceKlass::cast(m->method_holder())->link_class(CHECK);
MethodHandleEntry* me = NULL;
if (do_dispatch && Klass::cast(m->method_holder())->is_interface()) {
// We are simulating an invokeinterface instruction.
// (We might also be simulating an invokevirtual on a miranda method,
// but it is safe to treat it as an invokeinterface.)
assert(!m->can_be_statically_bound(), "no final methods on interfaces");
vmindex = klassItable::compute_itable_index(m());
assert(vmindex >= 0, "(>=0) == do_dispatch");
// Set up same bits as ConstantPoolCacheEntry::set_interface_call().
vmtarget = m->method_holder(); // the interface
me = MethodHandles::entry(MethodHandles::_invokeinterface_mh);
} else if (!do_dispatch || m->can_be_statically_bound()) {
// We are simulating an invokestatic or invokespecial instruction.
// Set up the method pointer, just like ConstantPoolCacheEntry::set_method().
vmtarget = m();
// this does not help dispatch, but it will make it possible to parse this MH:
vmindex = methodOopDesc::nonvirtual_vtable_index;
assert(vmindex < 0, "(>=0) == do_dispatch");
if (!m->is_static()) {
me = MethodHandles::entry(MethodHandles::_invokespecial_mh);
} else {
me = MethodHandles::entry(MethodHandles::_invokestatic_mh);
// Part of the semantics of a static call is an initialization barrier.
// For a DMH, it is done now, when the handle is created.
Klass* k = Klass::cast(m->method_holder());
if (k->should_be_initialized()) {
k->initialize(CHECK);
}
}
} else {
// We are simulating an invokevirtual instruction.
// Set up the vtable index, just like ConstantPoolCacheEntry::set_method().
// The key logic is LinkResolver::runtime_resolve_virtual_method.
vmindex = m->vtable_index();
vmtarget = m->method_holder();
me = MethodHandles::entry(MethodHandles::_invokevirtual_mh);
}
if (me == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
sun_dyn_DirectMethodHandle::set_vmtarget(mh(), vmtarget);
sun_dyn_DirectMethodHandle::set_vmindex(mh(), vmindex);
DEBUG_ONLY(int flags; klassOop rlimit);
assert(MethodHandles::decode_method(mh(), rlimit, flags) == m(),
"properly stored for later decoding");
DEBUG_ONLY(bool actual_do_dispatch = ((flags & _dmf_does_dispatch) != 0));
assert(!(actual_do_dispatch && !do_dispatch),
"do not perform dispatch if !do_dispatch specified");
assert(actual_do_dispatch == (vmindex >= 0), "proper later decoding of do_dispatch");
assert(decode_MethodHandle_stack_pushes(mh()) == 0, "DMH does not move stack");
// Done!
java_dyn_MethodHandle::set_vmentry(mh(), me);
}
void MethodHandles::verify_BoundMethodHandle_with_receiver(Handle mh,
methodHandle m,
TRAPS) {
// Verify type.
oop receiver = sun_dyn_BoundMethodHandle::argument(mh());
Handle mtype(THREAD, java_dyn_MethodHandle::type(mh()));
KlassHandle bound_recv_type;
if (receiver != NULL) bound_recv_type = KlassHandle(THREAD, receiver->klass());
verify_method_type(m, mtype, true, bound_recv_type, CHECK);
int receiver_pos = m->size_of_parameters() - 1;
// Verify MH.vmargslot, which should point at the bound receiver.
verify_vmargslot(mh, -1, sun_dyn_BoundMethodHandle::vmargslot(mh()), CHECK);
//verify_vmslots(mh, CHECK);
// Verify vmslots.
if (java_dyn_MethodHandle::vmslots(mh()) != receiver_pos) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in BMH (receiver)");
}
}
// Initialize a BMH with a receiver bound directly to a methodOop.
void MethodHandles::init_BoundMethodHandle_with_receiver(Handle mh,
methodHandle original_m,
KlassHandle receiver_limit,
int decode_flags,
TRAPS) {
// Check arguments.
if (mh.is_null() || original_m.is_null()) {
THROW(vmSymbols::java_lang_InternalError());
}
KlassHandle receiver_klass;
{
oop receiver_oop = sun_dyn_BoundMethodHandle::argument(mh());
if (receiver_oop != NULL)
receiver_klass = KlassHandle(THREAD, receiver_oop->klass());
}
methodHandle m = dispatch_decoded_method(original_m,
receiver_limit, decode_flags,
receiver_klass,
CHECK);
if (m.is_null()) { THROW(vmSymbols::java_lang_InternalError()); }
if (m->is_abstract()) { THROW(vmSymbols::java_lang_AbstractMethodError()); }
java_dyn_MethodHandle::init_vmslots(mh());
if (VerifyMethodHandles) {
verify_BoundMethodHandle_with_receiver(mh, m, CHECK);
}
sun_dyn_BoundMethodHandle::set_vmtarget(mh(), m());
DEBUG_ONLY(int junk; klassOop junk2);
assert(MethodHandles::decode_method(mh(), junk2, junk) == m(), "properly stored for later decoding");
assert(decode_MethodHandle_stack_pushes(mh()) == 1, "BMH pushes one stack slot");
// Done!
java_dyn_MethodHandle::set_vmentry(mh(), MethodHandles::entry(MethodHandles::_bound_ref_direct_mh));
}
void MethodHandles::verify_BoundMethodHandle(Handle mh, Handle target, int argnum,
bool direct_to_method, TRAPS) {
Handle ptype_handle(THREAD,
java_dyn_MethodType::ptype(java_dyn_MethodHandle::type(target()), argnum));
KlassHandle ptype_klass;
BasicType ptype = java_lang_Class::as_BasicType(ptype_handle(), &ptype_klass);
int slots_pushed = type2size[ptype];
oop argument = sun_dyn_BoundMethodHandle::argument(mh());
const char* err = NULL;
switch (ptype) {
case T_OBJECT:
if (argument != NULL)
// we must implicitly convert from the arg type to the outgoing ptype
err = check_argument_type_change(T_OBJECT, argument->klass(), ptype, ptype_klass(), argnum);
break;
case T_ARRAY: case T_VOID:
assert(false, "array, void do not appear here");
default:
if (ptype != T_INT && !is_subword_type(ptype)) {
err = "unexpected parameter type";
break;
}
// check subrange of Integer.value, if necessary
if (argument == NULL || argument->klass() != SystemDictionary::int_klass()) {
err = "bound integer argument must be of type java.lang.Integer";
break;
}
if (ptype != T_INT) {
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
jint value = argument->int_field(value_offset);
int vminfo = adapter_subword_vminfo(ptype);
jint subword = truncate_subword_from_vminfo(value, vminfo);
if (value != subword) {
err = "bound subword value does not fit into the subword type";
break;
}
}
break;
case T_FLOAT:
case T_DOUBLE:
case T_LONG:
{
// we must implicitly convert from the unboxed arg type to the outgoing ptype
BasicType argbox = java_lang_boxing_object::basic_type(argument);
if (argbox != ptype) {
err = check_argument_type_change(T_OBJECT, (argument == NULL
? SystemDictionary::object_klass()
: argument->klass()),
ptype, ptype_klass(), argnum);
assert(err != NULL, "this must be an error");
}
break;
}
}
if (err == NULL) {
DEBUG_ONLY(int this_pushes = decode_MethodHandle_stack_pushes(mh()));
if (direct_to_method) {
assert(this_pushes == slots_pushed, "BMH pushes one or two stack slots");
assert(slots_pushed <= MethodHandlePushLimit, "");
} else {
int prev_pushes = decode_MethodHandle_stack_pushes(target());
assert(this_pushes == slots_pushed + prev_pushes, "BMH stack motion must be correct");
// do not blow the stack; use a Java-based adapter if this limit is exceeded
if (slots_pushed + prev_pushes > MethodHandlePushLimit)
err = "too many bound parameters";
}
}
if (err == NULL) {
// Verify the rest of the method type.
err = check_method_type_insertion(java_dyn_MethodHandle::type(mh()),
argnum, ptype_handle(),
java_dyn_MethodHandle::type(target()));
}
if (err != NULL) {
THROW_MSG(vmSymbols::java_lang_InternalError(), err);
}
}
void MethodHandles::init_BoundMethodHandle(Handle mh, Handle target, int argnum, TRAPS) {
// Check arguments.
if (mh.is_null() || target.is_null() || !java_dyn_MethodHandle::is_instance(target())) {
THROW(vmSymbols::java_lang_InternalError());
}
java_dyn_MethodHandle::init_vmslots(mh());
if (VerifyMethodHandles) {
int insert_after = argnum - 1;
verify_vmargslot(mh, insert_after, sun_dyn_BoundMethodHandle::vmargslot(mh()), CHECK);
verify_vmslots(mh, CHECK);
}
// If (a) the target is a direct non-dispatched method handle,
// or (b) the target is a dispatched direct method handle and we
// are binding the receiver, cut out the middle-man.
// Do this by decoding the DMH and using its methodOop directly as vmtarget.
bool direct_to_method = false;
if (OptimizeMethodHandles &&
target->klass() == SystemDictionary::DirectMethodHandle_klass() &&
(argnum == 0 || sun_dyn_DirectMethodHandle::vmindex(target()) < 0)) {
int decode_flags = 0; klassOop receiver_limit_oop = NULL;
methodHandle m(THREAD, decode_method(target(), receiver_limit_oop, decode_flags));
if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "DMH failed to decode"); }
DEBUG_ONLY(int m_vmslots = m->size_of_parameters() - 1); // pos. of 1st arg.
assert(sun_dyn_BoundMethodHandle::vmslots(mh()) == m_vmslots, "type w/ m sig");
if (argnum == 0 && (decode_flags & _dmf_has_receiver) != 0) {
KlassHandle receiver_limit(THREAD, receiver_limit_oop);
init_BoundMethodHandle_with_receiver(mh, m,
receiver_limit, decode_flags,
CHECK);
return;
}
// Even if it is not a bound receiver, we still might be able
// to bind another argument and still invoke the methodOop directly.
if (!(decode_flags & _dmf_does_dispatch)) {
direct_to_method = true;
sun_dyn_BoundMethodHandle::set_vmtarget(mh(), m());
}
}
if (!direct_to_method)
sun_dyn_BoundMethodHandle::set_vmtarget(mh(), target());
if (VerifyMethodHandles) {
verify_BoundMethodHandle(mh, target, argnum, direct_to_method, CHECK);
}
// Next question: Is this a ref, int, or long bound value?
oop ptype_oop = java_dyn_MethodType::ptype(java_dyn_MethodHandle::type(target()), argnum);
BasicType ptype = java_lang_Class::as_BasicType(ptype_oop);
int slots_pushed = type2size[ptype];
MethodHandleEntry* me = NULL;
if (ptype == T_OBJECT) {
if (direct_to_method) me = MethodHandles::entry(_bound_ref_direct_mh);
else me = MethodHandles::entry(_bound_ref_mh);
} else if (slots_pushed == 2) {
if (direct_to_method) me = MethodHandles::entry(_bound_long_direct_mh);
else me = MethodHandles::entry(_bound_long_mh);
} else if (slots_pushed == 1) {
if (direct_to_method) me = MethodHandles::entry(_bound_int_direct_mh);
else me = MethodHandles::entry(_bound_int_mh);
} else {
assert(false, "");
}
// Done!
java_dyn_MethodHandle::set_vmentry(mh(), me);
}
static void throw_InternalError_for_bad_conversion(int conversion, const char* err, TRAPS) {
char msg[200];
jio_snprintf(msg, sizeof(msg), "bad adapter (conversion=0x%08x): %s", conversion, err);
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), msg);
}
void MethodHandles::verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS) {
jint conversion = sun_dyn_AdapterMethodHandle::conversion(mh());
int argslot = sun_dyn_AdapterMethodHandle::vmargslot(mh());
verify_vmargslot(mh, argnum, argslot, CHECK);
verify_vmslots(mh, CHECK);
jint conv_op = adapter_conversion_op(conversion);
if (!conv_op_valid(conv_op)) {
throw_InternalError_for_bad_conversion(conversion, "unknown conversion op", THREAD);
return;
}
EntryKind ek = adapter_entry_kind(conv_op);
int stack_move = adapter_conversion_stack_move(conversion);
BasicType src = adapter_conversion_src_type(conversion);
BasicType dest = adapter_conversion_dest_type(conversion);
int vminfo = adapter_conversion_vminfo(conversion); // should be zero
Handle argument(THREAD, sun_dyn_AdapterMethodHandle::argument(mh()));
Handle target(THREAD, sun_dyn_AdapterMethodHandle::vmtarget(mh()));
Handle src_mtype(THREAD, java_dyn_MethodHandle::type(mh()));
Handle dst_mtype(THREAD, java_dyn_MethodHandle::type(target()));
const char* err = NULL;
if (err == NULL) {
// Check that the correct argument is supplied, but only if it is required.
switch (ek) {
case _adapter_check_cast: // target type of cast
case _adapter_ref_to_prim: // wrapper type from which to unbox
case _adapter_prim_to_ref: // wrapper type to box into
case _adapter_collect_args: // array type to collect into
case _adapter_spread_args: // array type to spread from
if (!java_lang_Class::is_instance(argument())
|| java_lang_Class::is_primitive(argument()))
{ err = "adapter requires argument of type java.lang.Class"; break; }
if (ek == _adapter_collect_args ||
ek == _adapter_spread_args) {
// Make sure it is a suitable collection type. (Array, for now.)
Klass* ak = Klass::cast(java_lang_Class::as_klassOop(argument()));
if (!ak->oop_is_objArray()) {
{ err = "adapter requires argument of type java.lang.Class<Object[]>"; break; }
}
}
break;
case _adapter_flyby:
case _adapter_ricochet:
if (!java_dyn_MethodHandle::is_instance(argument()))
{ err = "MethodHandle adapter argument required"; break; }
break;
default:
if (argument.not_null())
{ err = "adapter has spurious argument"; break; }
break;
}
}
if (err == NULL) {
// Check that the src/dest types are supplied if needed.
switch (ek) {
case _adapter_prim_to_prim:
if (!is_java_primitive(src) || !is_java_primitive(dest) || src == dest) {
err = "adapter requires primitive src/dest conversion subfields"; break;
}
if ( (src == T_FLOAT || src == T_DOUBLE) && !(dest == T_FLOAT || dest == T_DOUBLE) ||
!(src == T_FLOAT || src == T_DOUBLE) && (dest == T_FLOAT || dest == T_DOUBLE)) {
err = "adapter cannot convert beween floating and fixed-point"; break;
}
break;
case _adapter_ref_to_prim:
if (src != T_OBJECT || !is_java_primitive(dest)
|| argument() != Klass::cast(SystemDictionary::box_klass(dest))->java_mirror()) {
err = "adapter requires primitive dest conversion subfield"; break;
}
break;
case _adapter_prim_to_ref:
if (!is_java_primitive(src) || dest != T_OBJECT
|| argument() != Klass::cast(SystemDictionary::box_klass(src))->java_mirror()) {
err = "adapter requires primitive src conversion subfield"; break;
}
break;
case _adapter_swap_args:
case _adapter_rot_args:
{
if (!src || src != dest) {
err = "adapter requires src/dest conversion subfields for swap"; break;
}
int swap_size = type2size[src];
oop src_mtype = sun_dyn_AdapterMethodHandle::type(target());
oop dest_mtype = sun_dyn_AdapterMethodHandle::type(mh());
int slot_limit = sun_dyn_AdapterMethodHandle::vmslots(src_mtype);
int src_slot = argslot;
int dest_slot = vminfo;
bool rotate_up = (src_slot > dest_slot); // upward rotation
int src_arg = argnum;
int dest_arg = argument_slot_to_argnum(dest_mtype, dest_slot);
verify_vmargslot(mh, dest_arg, dest_slot, CHECK);
if (!(dest_slot >= src_slot + swap_size) &&
!(src_slot >= dest_slot + swap_size)) {
err = "source, destination slots must be distinct";
} else if (ek == _adapter_swap_args && !(src_slot > dest_slot)) {
err = "source of swap must be deeper in stack";
} else if (ek == _adapter_swap_args) {
err = check_argument_type_change(java_dyn_MethodType::ptype(src_mtype, dest_arg),
java_dyn_MethodType::ptype(dest_mtype, src_arg),
dest_arg);
} else if (ek == _adapter_rot_args) {
if (rotate_up) {
assert((src_slot > dest_slot) && (src_arg < dest_arg), "");
// rotate up: [dest_slot..src_slot-ss] --> [dest_slot+ss..src_slot]
// that is: [src_arg+1..dest_arg] --> [src_arg..dest_arg-1]
for (int i = src_arg+1; i <= dest_arg && err == NULL; i++) {
err = check_argument_type_change(java_dyn_MethodType::ptype(src_mtype, i),
java_dyn_MethodType::ptype(dest_mtype, i-1),
i);
}
} else { // rotate down
assert((src_slot < dest_slot) && (src_arg > dest_arg), "");
// rotate down: [src_slot+ss..dest_slot] --> [src_slot..dest_slot-ss]
// that is: [dest_arg..src_arg-1] --> [dst_arg+1..src_arg]
for (int i = dest_arg; i <= src_arg-1 && err == NULL; i++) {
err = check_argument_type_change(java_dyn_MethodType::ptype(src_mtype, i),
java_dyn_MethodType::ptype(dest_mtype, i+1),
i);
}
}
}
if (err == NULL)
err = check_argument_type_change(java_dyn_MethodType::ptype(src_mtype, src_arg),
java_dyn_MethodType::ptype(dest_mtype, dest_arg),
src_arg);
}
break;
case _adapter_collect_args:
case _adapter_spread_args:
{
BasicType coll_type = (ek == _adapter_collect_args) ? dest : src;
BasicType elem_type = (ek == _adapter_collect_args) ? src : dest;
if (coll_type != T_OBJECT || elem_type != T_OBJECT) {
err = "adapter requires src/dest subfields"; break;
// later:
// - consider making coll be a primitive array
// - consider making coll be a heterogeneous collection
}
}
break;
default:
if (src != 0 || dest != 0) {
err = "adapter has spurious src/dest conversion subfields"; break;
}
break;
}
}
if (err == NULL) {
// Check the stack_move subfield.
// It must always report the net change in stack size, positive or negative.
int slots_pushed = stack_move / stack_move_unit();
switch (ek) {
case _adapter_prim_to_prim:
case _adapter_ref_to_prim:
case _adapter_prim_to_ref:
if (slots_pushed != type2size[dest] - type2size[src]) {
err = "wrong stack motion for primitive conversion";
}
break;
case _adapter_dup_args:
if (slots_pushed <= 0) {
err = "adapter requires conversion subfield slots_pushed > 0";
}
break;
case _adapter_drop_args:
if (slots_pushed >= 0) {
err = "adapter requires conversion subfield slots_pushed < 0";
}
break;
case _adapter_collect_args:
if (slots_pushed > 1) {
err = "adapter requires conversion subfield slots_pushed <= 1";
}
break;
case _adapter_spread_args:
if (slots_pushed < -1) {
err = "adapter requires conversion subfield slots_pushed >= -1";
}
break;
default:
if (stack_move != 0) {
err = "adapter has spurious stack_move conversion subfield";
}
break;
}
if (err == NULL && stack_move != slots_pushed * stack_move_unit()) {
err = "stack_move conversion subfield must be multiple of stack_move_unit";
}
}
if (err == NULL) {
// Make sure this adapter does not push too deeply.
int slots_pushed = stack_move / stack_move_unit();
int this_vmslots = java_dyn_MethodHandle::vmslots(mh());
int prev_vmslots = java_dyn_MethodHandle::vmslots(target());
if (slots_pushed != (this_vmslots - prev_vmslots)) {
err = "stack_move inconsistent with previous and current MethodType vmslots";
} else if (slots_pushed > 0) {
// verify stack_move against MethodHandlePushLimit
int prev_pushes = decode_MethodHandle_stack_pushes(target());
// do not blow the stack; use a Java-based adapter if this limit is exceeded
if (slots_pushed + prev_pushes > MethodHandlePushLimit) {
err = "adapter pushes too many parameters";
}
}
// While we're at it, check that the stack motion decoder works:
DEBUG_ONLY(int prev_pushes = decode_MethodHandle_stack_pushes(target()));
DEBUG_ONLY(int this_pushes = decode_MethodHandle_stack_pushes(mh()));
assert(this_pushes == slots_pushed + prev_pushes, "AMH stack motion must be correct");
}
if (err == NULL && vminfo != 0) {
switch (ek) {
case _adapter_swap_args:
case _adapter_rot_args:
break; // OK
default:
err = "vminfo subfield is reserved to the JVM";
}
}
// Do additional ad hoc checks.
if (err == NULL) {
switch (ek) {
case _adapter_retype_only:
err = check_method_type_passthrough(src_mtype(), dst_mtype());
break;
case _adapter_check_cast:
{
// The actual value being checked must be a reference:
err = check_argument_type_change(java_dyn_MethodType::ptype(src_mtype(), argnum),
object_java_mirror(), argnum);
if (err != NULL) break;
// The output of the cast must fit with the destination argument:
Handle cast_class = argument;
err = check_method_type_conversion(src_mtype(),
argnum, cast_class(),
dst_mtype());
}
break;
// %%% TO DO: continue in remaining cases to verify src/dst_mtype if VerifyMethodHandles
}
}
if (err != NULL) {
throw_InternalError_for_bad_conversion(conversion, err, THREAD);
return;
}
}
void MethodHandles::init_AdapterMethodHandle(Handle mh, Handle target, int argnum, TRAPS) {
oop argument = sun_dyn_AdapterMethodHandle::argument(mh());
int argslot = sun_dyn_AdapterMethodHandle::vmargslot(mh());
jint conversion = sun_dyn_AdapterMethodHandle::conversion(mh());
jint conv_op = adapter_conversion_op(conversion);
// adjust the adapter code to the internal EntryKind enumeration:
EntryKind ek_orig = adapter_entry_kind(conv_op);
EntryKind ek_opt = ek_orig; // may be optimized
// Finalize the vmtarget field (Java initialized it to null).
if (!java_dyn_MethodHandle::is_instance(target())) {
throw_InternalError_for_bad_conversion(conversion, "bad target", THREAD);
return;
}
sun_dyn_AdapterMethodHandle::set_vmtarget(mh(), target());
if (VerifyMethodHandles) {
verify_AdapterMethodHandle(mh, argnum, CHECK);
}
int stack_move = adapter_conversion_stack_move(conversion);
BasicType src = adapter_conversion_src_type(conversion);
BasicType dest = adapter_conversion_dest_type(conversion);
int vminfo = adapter_conversion_vminfo(conversion); // should be zero
const char* err = NULL;
// Now it's time to finish the case analysis and pick a MethodHandleEntry.
switch (ek_orig) {
case _adapter_retype_only:
case _adapter_check_cast:
case _adapter_dup_args:
case _adapter_drop_args:
// these work fine via general case code
break;
case _adapter_prim_to_prim:
{
// Non-subword cases are {int,float,long,double} -> {int,float,long,double}.
// And, the {float,double} -> {int,long} cases must be handled by Java.
switch (type2size[src] *4+ type2size[dest]) {
case 1 *4+ 1:
assert(src == T_INT || is_subword_type(src), "source is not float");
// Subword-related cases are int -> {boolean,byte,char,short}.
ek_opt = _adapter_opt_i2i;
vminfo = adapter_subword_vminfo(dest);
break;
case 2 *4+ 1:
if (src == T_LONG && (dest == T_INT || is_subword_type(dest))) {
ek_opt = _adapter_opt_l2i;
vminfo = adapter_subword_vminfo(dest);
} else if (src == T_DOUBLE && dest == T_FLOAT) {
ek_opt = _adapter_opt_d2f;
} else {
assert(false, "");
}
break;
case 1 *4+ 2:
if (src == T_INT && dest == T_LONG) {
ek_opt = _adapter_opt_i2l;
} else if (src == T_FLOAT && dest == T_DOUBLE) {
ek_opt = _adapter_opt_f2d;
} else {
assert(false, "");
}
break;
default:
assert(false, "");
break;
}
}
break;
case _adapter_ref_to_prim:
{
switch (type2size[dest]) {
case 1:
ek_opt = _adapter_opt_unboxi;
vminfo = adapter_subword_vminfo(dest);
break;
case 2:
ek_opt = _adapter_opt_unboxl;
break;
default:
assert(false, "");
break;
}
}
break;
case _adapter_prim_to_ref:
goto throw_not_impl; // allocates, hence could block
case _adapter_swap_args:
case _adapter_rot_args:
{
int swap_slots = type2size[src];
oop mtype = sun_dyn_AdapterMethodHandle::type(mh());
int slot_limit = sun_dyn_AdapterMethodHandle::vmslots(mtype);
int src_slot = argslot;
int dest_slot = vminfo;
int rotate = (ek_orig == _adapter_swap_args) ? 0 : (src_slot > dest_slot) ? 1 : -1;
switch (swap_slots) {
case 1:
ek_opt = (!rotate ? _adapter_opt_swap_1 :
rotate > 0 ? _adapter_opt_rot_1_up : _adapter_opt_rot_1_down);
break;
case 2:
ek_opt = (!rotate ? _adapter_opt_swap_2 :
rotate > 0 ? _adapter_opt_rot_2_up : _adapter_opt_rot_2_down);
break;
default:
assert(false, "");
break;
}
}
break;
case _adapter_collect_args:
goto throw_not_impl; // allocates, hence could block
case _adapter_spread_args:
{
// vminfo will be the required length of the array
int slots_pushed = stack_move / stack_move_unit();
int array_size = slots_pushed + 1;
assert(array_size >= 0, "");
vminfo = array_size;
switch (array_size) {
case 0: ek_opt = _adapter_opt_spread_0; break;
case 1: ek_opt = _adapter_opt_spread_1; break;
default: ek_opt = _adapter_opt_spread_more; break;
}
if ((vminfo & CONV_VMINFO_MASK) != vminfo)
goto throw_not_impl; // overflow
}
break;
case _adapter_flyby:
case _adapter_ricochet:
goto throw_not_impl; // runs Java code, hence could block
default:
// should have failed much earlier; must be a missing case here
assert(false, "incomplete switch");
// and fall through:
throw_not_impl:
// FIXME: these adapters are NYI
err = "adapter not yet implemented in the JVM";
break;
}
if (err != NULL) {
throw_InternalError_for_bad_conversion(conversion, err, THREAD);
return;
}
// Rebuild the conversion value; maybe parts of it were changed.
jint new_conversion = adapter_conversion(conv_op, src, dest, stack_move, vminfo);
// Finalize the conversion field. (Note that it is final to Java code.)
sun_dyn_AdapterMethodHandle::set_conversion(mh(), new_conversion);
// Done!
java_dyn_MethodHandle::set_vmentry(mh(), entry(ek_opt));
// There should be enough memory barriers on exit from native methods
// to ensure that the MH is fully initialized to all threads before
// Java code can publish it in global data structures.
}
//
// Here are the native methods on sun.dyn.MethodHandleImpl.
// They are the private interface between this JVM and the HotSpot-specific
// Java code that implements JSR 292 method handles.
//
// Note: We use a JVM_ENTRY macro to define each of these, for this is the way
// that intrinsic (non-JNI) native methods are defined in HotSpot.
//
// direct method handles for invokestatic or invokespecial
// void init(DirectMethodHandle self, MemberName ref, boolean doDispatch, Class<?> caller);
JVM_ENTRY(void, MHI_init_DMH(JNIEnv *env, jobject igcls, jobject mh_jh,
jobject target_jh, jboolean do_dispatch, jobject caller_jh)) {
ResourceMark rm; // for error messages
// This is the guy we are initializing:
if (mh_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh));
// Early returns out of this method leave the DMH in an unfinished state.
assert(java_dyn_MethodHandle::vmentry(mh()) == NULL, "must be safely null");
// which method are we really talking about?
if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
oop target_oop = JNIHandles::resolve_non_null(target_jh);
if (sun_dyn_MemberName::is_instance(target_oop) &&
sun_dyn_MemberName::vmindex(target_oop) == VM_INDEX_UNINITIALIZED) {
Handle mname(THREAD, target_oop);
MethodHandles::resolve_MemberName(mname, CHECK);
target_oop = mname(); // in case of GC
}
int decode_flags = 0; klassOop receiver_limit = NULL;
methodHandle m(THREAD,
MethodHandles::decode_method(target_oop,
receiver_limit, decode_flags));
if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "no such method"); }
// The trusted Java code that calls this method should already have performed
// access checks on behalf of the given caller. But, we can verify this.
if (VerifyMethodHandles && caller_jh != NULL) {
KlassHandle caller(THREAD, java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(caller_jh)));
// If this were a bytecode, the first access check would be against
// the "reference class" mentioned in the CONSTANT_Methodref.
// For that class, we use the defining class of m,
// or a more specific receiver limit if available.
klassOop reference_klass = m->method_holder(); // OK approximation
if (receiver_limit != NULL && receiver_limit != reference_klass) {
if (!Klass::cast(receiver_limit)->is_subtype_of(reference_klass))
THROW_MSG(vmSymbols::java_lang_InternalError(), "receiver limit out of bounds"); // Java code bug
reference_klass = receiver_limit;
}
// Emulate LinkResolver::check_klass_accessability.
if (!Reflection::verify_class_access(caller->as_klassOop(),
reference_klass,
true)) {
THROW_MSG(vmSymbols::java_lang_InternalError(), Klass::cast(m->method_holder())->external_name());
}
// If there were a bytecode, the next step would be to lookup the method
// in the reference class, then then check the method's access bits.
// Emulate LinkResolver::check_method_accessability.
klassOop resolved_klass = m->method_holder();
if (!Reflection::verify_field_access(caller->as_klassOop(),
resolved_klass, reference_klass,
m->access_flags(),
true)) {
// %%% following cutout belongs in Reflection::verify_field_access?
bool same_pm = Reflection::is_same_package_member(caller->as_klassOop(),
reference_klass, THREAD);
if (!same_pm) {
THROW_MSG(vmSymbols::java_lang_InternalError(), m->name_and_sig_as_C_string());
}
}
}
MethodHandles::init_DirectMethodHandle(mh, m, (do_dispatch != JNI_FALSE), CHECK);
}
JVM_END
// bound method handles
JVM_ENTRY(void, MHI_init_BMH(JNIEnv *env, jobject igcls, jobject mh_jh,
jobject target_jh, int argnum)) {
ResourceMark rm; // for error messages
// This is the guy we are initializing:
if (mh_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh));
// Early returns out of this method leave the BMH in an unfinished state.
assert(java_dyn_MethodHandle::vmentry(mh()) == NULL, "must be safely null");
if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
Handle target(THREAD, JNIHandles::resolve_non_null(target_jh));
if (!java_dyn_MethodHandle::is_instance(target())) {
// Target object is a reflective method. (%%% Do we need this alternate path?)
Untested("init_BMH of non-MH");
if (argnum != 0) { THROW(vmSymbols::java_lang_InternalError()); }
int decode_flags = 0; klassOop receiver_limit_oop = NULL;
methodHandle m(THREAD,
MethodHandles::decode_method(target(),
receiver_limit_oop,
decode_flags));
KlassHandle receiver_limit(THREAD, receiver_limit_oop);
MethodHandles::init_BoundMethodHandle_with_receiver(mh, m,
receiver_limit,
decode_flags,
CHECK);
return;
}
// Build a BMH on top of a DMH or another BMH:
MethodHandles::init_BoundMethodHandle(mh, target, argnum, CHECK);
}
JVM_END
// adapter method handles
JVM_ENTRY(void, MHI_init_AMH(JNIEnv *env, jobject igcls, jobject mh_jh,
jobject target_jh, int argnum)) {
// This is the guy we are initializing:
if (mh_jh == NULL || target_jh == NULL) {
THROW(vmSymbols::java_lang_InternalError());
}
Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh));
Handle target(THREAD, JNIHandles::resolve_non_null(target_jh));
// Early returns out of this method leave the AMH in an unfinished state.
assert(java_dyn_MethodHandle::vmentry(mh()) == NULL, "must be safely null");
MethodHandles::init_AdapterMethodHandle(mh, target, argnum, CHECK);
}
JVM_END
// method type forms
JVM_ENTRY(void, MHI_init_MT(JNIEnv *env, jobject igcls, jobject erased_jh)) {
if (erased_jh == NULL) return;
if (TraceMethodHandles) {
tty->print("creating MethodType form ");
if (WizardMode || Verbose) { // Warning: this calls Java code on the MH!
// call Object.toString()
symbolOop name = vmSymbols::toString_name(), sig = vmSymbols::void_string_signature();
JavaCallArguments args(Handle(THREAD, JNIHandles::resolve_non_null(erased_jh)));
JavaValue result(T_OBJECT);
JavaCalls::call_virtual(&result, SystemDictionary::object_klass(), name, sig,
&args, CHECK);
Handle str(THREAD, (oop)result.get_jobject());
java_lang_String::print(str, tty);
}
tty->cr();
}
}
JVM_END
// debugging and reflection
JVM_ENTRY(jobject, MHI_getTarget(JNIEnv *env, jobject igcls, jobject mh_jh, jint format)) {
Handle mh(THREAD, JNIHandles::resolve(mh_jh));
if (!java_dyn_MethodHandle::is_instance(mh())) {
THROW_NULL(vmSymbols::java_lang_IllegalArgumentException());
}
oop target = MethodHandles::encode_target(mh, format, CHECK_NULL);
return JNIHandles::make_local(THREAD, target);
}
JVM_END
JVM_ENTRY(jint, MHI_getConstant(JNIEnv *env, jobject igcls, jint which)) {
switch (which) {
case MethodHandles::GC_JVM_PUSH_LIMIT:
guarantee(MethodHandlePushLimit >= 2 && MethodHandlePushLimit <= 0xFF,
"MethodHandlePushLimit parameter must be in valid range");
return MethodHandlePushLimit;
case MethodHandles::GC_JVM_STACK_MOVE_LIMIT:
// return number of words per slot, signed according to stack direction
return MethodHandles::stack_move_unit();
}
return 0;
}
JVM_END
#ifndef PRODUCT
#define EACH_NAMED_CON(template) \
template(MethodHandles,GC_JVM_PUSH_LIMIT) \
template(MethodHandles,GC_JVM_STACK_MOVE_LIMIT) \
template(MethodHandles,ETF_HANDLE_OR_METHOD_NAME) \
template(MethodHandles,ETF_DIRECT_HANDLE) \
template(MethodHandles,ETF_METHOD_NAME) \
template(MethodHandles,ETF_REFLECT_METHOD) \
template(sun_dyn_MemberName,MN_IS_METHOD) \
template(sun_dyn_MemberName,MN_IS_CONSTRUCTOR) \
template(sun_dyn_MemberName,MN_IS_FIELD) \
template(sun_dyn_MemberName,MN_IS_TYPE) \
template(sun_dyn_MemberName,MN_SEARCH_SUPERCLASSES) \
template(sun_dyn_MemberName,MN_SEARCH_INTERFACES) \
template(sun_dyn_MemberName,VM_INDEX_UNINITIALIZED) \
template(sun_dyn_AdapterMethodHandle,OP_RETYPE_ONLY) \
template(sun_dyn_AdapterMethodHandle,OP_CHECK_CAST) \
template(sun_dyn_AdapterMethodHandle,OP_PRIM_TO_PRIM) \
template(sun_dyn_AdapterMethodHandle,OP_REF_TO_PRIM) \
template(sun_dyn_AdapterMethodHandle,OP_PRIM_TO_REF) \
template(sun_dyn_AdapterMethodHandle,OP_SWAP_ARGS) \
template(sun_dyn_AdapterMethodHandle,OP_ROT_ARGS) \
template(sun_dyn_AdapterMethodHandle,OP_DUP_ARGS) \
template(sun_dyn_AdapterMethodHandle,OP_DROP_ARGS) \
template(sun_dyn_AdapterMethodHandle,OP_COLLECT_ARGS) \
template(sun_dyn_AdapterMethodHandle,OP_SPREAD_ARGS) \
template(sun_dyn_AdapterMethodHandle,OP_FLYBY) \
template(sun_dyn_AdapterMethodHandle,OP_RICOCHET) \
template(sun_dyn_AdapterMethodHandle,CONV_OP_LIMIT) \
template(sun_dyn_AdapterMethodHandle,CONV_OP_MASK) \
template(sun_dyn_AdapterMethodHandle,CONV_VMINFO_MASK) \
template(sun_dyn_AdapterMethodHandle,CONV_VMINFO_SHIFT) \
template(sun_dyn_AdapterMethodHandle,CONV_OP_SHIFT) \
template(sun_dyn_AdapterMethodHandle,CONV_DEST_TYPE_SHIFT) \
template(sun_dyn_AdapterMethodHandle,CONV_SRC_TYPE_SHIFT) \
template(sun_dyn_AdapterMethodHandle,CONV_STACK_MOVE_SHIFT) \
template(sun_dyn_AdapterMethodHandle,CONV_STACK_MOVE_MASK) \
/*end*/
#define ONE_PLUS(scope,value) 1+
static const int con_value_count = EACH_NAMED_CON(ONE_PLUS) 0;
#define VALUE_COMMA(scope,value) scope::value,
static const int con_values[con_value_count+1] = { EACH_NAMED_CON(VALUE_COMMA) 0 };
#define STRING_NULL(scope,value) #value "\0"
static const char con_names[] = { EACH_NAMED_CON(STRING_NULL) };
#undef ONE_PLUS
#undef VALUE_COMMA
#undef STRING_NULL
#undef EACH_NAMED_CON
#endif
JVM_ENTRY(jint, MHI_getNamedCon(JNIEnv *env, jobject igcls, jint which, jobjectArray box_jh)) {
#ifndef PRODUCT
if (which >= 0 && which < con_value_count) {
int con = con_values[which];
objArrayOop box = (objArrayOop) JNIHandles::resolve(box_jh);
if (box != NULL && box->klass() == Universe::objectArrayKlassObj() && box->length() > 0) {
const char* str = &con_names[0];
for (int i = 0; i < which; i++)
str += strlen(str) + 1; // skip name and null
oop name = java_lang_String::create_oop_from_str(str, CHECK_0);
box->obj_at_put(0, name);
}
return con;
}
#endif
return 0;
}
JVM_END
// void init(MemberName self, AccessibleObject ref)
JVM_ENTRY(void, MHI_init_Mem(JNIEnv *env, jobject igcls, jobject mname_jh, jobject target_jh)) {
if (mname_jh == NULL || target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh));
oop target_oop = JNIHandles::resolve_non_null(target_jh);
MethodHandles::init_MemberName(mname(), target_oop);
}
JVM_END
// void expand(MemberName self)
JVM_ENTRY(void, MHI_expand_Mem(JNIEnv *env, jobject igcls, jobject mname_jh)) {
if (mname_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh));
MethodHandles::expand_MemberName(mname, 0, CHECK);
}
JVM_END
// void resolve(MemberName self, Class<?> caller)
JVM_ENTRY(void, MHI_resolve_Mem(JNIEnv *env, jobject igcls, jobject mname_jh, jclass caller_jh)) {
if (mname_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh));
// %%% take caller into account!
MethodHandles::resolve_MemberName(mname, CHECK);
}
JVM_END
// static native int getMembers(Class<?> defc, String matchName, String matchSig,
// int matchFlags, Class<?> caller, int skip, MemberName[] results);
JVM_ENTRY(jint, MHI_getMembers(JNIEnv *env, jobject igcls,
jclass clazz_jh, jstring name_jh, jstring sig_jh,
int mflags, jclass caller_jh, jint skip, jobjectArray results_jh)) {
if (clazz_jh == NULL || results_jh == NULL) return -1;
klassOop k_oop = java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(clazz_jh));
objArrayOop results = (objArrayOop) JNIHandles::resolve(results_jh);
if (results == NULL || !results->is_objArray()) return -1;
symbolOop name = NULL, sig = NULL;
if (name_jh != NULL) {
name = java_lang_String::as_symbol_or_null(JNIHandles::resolve_non_null(name_jh));
if (name == NULL) return 0; // a match is not possible
}
if (sig_jh != NULL) {
sig = java_lang_String::as_symbol_or_null(JNIHandles::resolve_non_null(sig_jh));
if (sig == NULL) return 0; // a match is not possible
}
klassOop caller = NULL;
if (caller_jh != NULL) {
oop caller_oop = JNIHandles::resolve_non_null(caller_jh);
if (!java_lang_Class::is_instance(caller_oop)) return -1;
caller = java_lang_Class::as_klassOop(caller_oop);
}
if (name != NULL && sig != NULL && results != NULL) {
// try a direct resolve
// %%% TO DO
}
int res = MethodHandles::find_MemberNames(k_oop, name, sig, mflags,
caller, skip, results);
// TO DO: expand at least some of the MemberNames, to avoid massive callbacks
return res;
}
JVM_END
JVM_ENTRY(void, MH_linkCallSite(JNIEnv *env, jobject igcls, jobject site_jh, jobject target_jh)) {
// No special action required, yet.
oop site_oop = JNIHandles::resolve(site_jh);
if (site_oop == NULL || site_oop->klass() != SystemDictionary::CallSiteImpl_klass())
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "call site");
sun_dyn_CallSiteImpl::set_target(site_oop, JNIHandles::resolve(target_jh));
}
JVM_END
/// JVM_RegisterMethodHandleMethods
#define ADR "J"
#define LANG "Ljava/lang/"
#define JDYN "Ljava/dyn/"
#define IDYN "Lsun/dyn/"
#define OBJ LANG"Object;"
#define CLS LANG"Class;"
#define STRG LANG"String;"
#define MT JDYN"MethodType;"
#define MH JDYN"MethodHandle;"
#define MHI IDYN"MethodHandleImpl;"
#define MEM IDYN"MemberName;"
#define AMH IDYN"AdapterMethodHandle;"
#define BMH IDYN"BoundMethodHandle;"
#define DMH IDYN"DirectMethodHandle;"
#define CSTI IDYN"CallSiteImpl;"
#define CC (char*) /*cast a literal from (const char*)*/
#define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)
// These are the native methods on sun.dyn.MethodHandleNatives.
static JNINativeMethod methods[] = {
// void init(MemberName self, AccessibleObject ref)
{CC"init", CC"("AMH""MH"I)V", FN_PTR(MHI_init_AMH)},
{CC"init", CC"("BMH""OBJ"I)V", FN_PTR(MHI_init_BMH)},
{CC"init", CC"("DMH""OBJ"Z"CLS")V", FN_PTR(MHI_init_DMH)},
{CC"init", CC"("MT")V", FN_PTR(MHI_init_MT)},
{CC"init", CC"("MEM""OBJ")V", FN_PTR(MHI_init_Mem)},
{CC"expand", CC"("MEM")V", FN_PTR(MHI_expand_Mem)},
{CC"resolve", CC"("MEM""CLS")V", FN_PTR(MHI_resolve_Mem)},
{CC"getTarget", CC"("MH"I)"OBJ, FN_PTR(MHI_getTarget)},
{CC"getConstant", CC"(I)I", FN_PTR(MHI_getConstant)},
// static native int getNamedCon(int which, Object[] name)
{CC"getNamedCon", CC"(I["OBJ")I", FN_PTR(MHI_getNamedCon)},
// static native int getMembers(Class<?> defc, String matchName, String matchSig,
// int matchFlags, Class<?> caller, int skip, MemberName[] results);
{CC"getMembers", CC"("CLS""STRG""STRG"I"CLS"I["MEM")I", FN_PTR(MHI_getMembers)}
};
// More entry points specifically for EnableInvokeDynamic.
static JNINativeMethod methods2[] = {
{CC"linkCallSite", CC"("CSTI MH")V", FN_PTR(MH_linkCallSite)}
};
// This one function is exported, used by NativeLookup.
JVM_ENTRY(void, JVM_RegisterMethodHandleMethods(JNIEnv *env, jclass MHN_class)) {
assert(MethodHandles::spot_check_entry_names(), "entry enum is OK");
// note: this explicit warning-producing stuff will be replaced by auto-detection of the JSR 292 classes
if (!EnableMethodHandles) {
warning("JSR 292 method handles are disabled in this JVM. Use -XX:+EnableMethodHandles to enable.");
return; // bind nothing
}
{
ThreadToNativeFromVM ttnfv(thread);
int status = env->RegisterNatives(MHN_class, methods, sizeof(methods)/sizeof(JNINativeMethod));
if (env->ExceptionOccurred()) {
MethodHandles::set_enabled(false);
warning("JSR 292 method handle code is mismatched to this JVM. Disabling support.");
env->ExceptionClear();
} else {
MethodHandles::set_enabled(true);
}
}
if (!EnableInvokeDynamic) {
warning("JSR 292 invokedynamic is disabled in this JVM. Use -XX:+EnableInvokeDynamic to enable.");
return; // bind nothing
}
{
ThreadToNativeFromVM ttnfv(thread);
int status = env->RegisterNatives(MHN_class, methods2, sizeof(methods2)/sizeof(JNINativeMethod));
if (env->ExceptionOccurred()) {
MethodHandles::set_enabled(false);
warning("JSR 292 method handle code is mismatched to this JVM. Disabling support.");
env->ExceptionClear();
} else {
MethodHandles::set_enabled(true);
}
}
}
JVM_END