blob: a7823bb46bad3f74b7e4142f882b9840e63c1f5d [file] [log] [blame]
/*
* Copyright (c) 2013, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.lir.sparc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BPCC;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CBCOND;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.FBPCC;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.INSTRUCTION_SIZE;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm10;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm11;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm13;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm5;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Annul.ANNUL;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Annul.NOT_ANNUL;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict.PREDICT_NOT_TAKEN;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict.PREDICT_TAKEN;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Fcc0;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Icc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Xcc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Always;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Equal;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_Equal;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_Greater;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_GreaterOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_Less;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_LessOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedGreaterOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrGreater;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrLess;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrLessOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Greater;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.GreaterEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.GreaterEqualUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.GreaterUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Less;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.LessEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.LessEqualUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.LessUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.NotEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Op3s.Subcc;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.CONST;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.HINT;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.ILLEGAL;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.REG;
import static org.graalvm.compiler.lir.LIRValueUtil.asJavaConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.isConstantValue;
import static org.graalvm.compiler.lir.LIRValueUtil.isJavaConstant;
import static org.graalvm.compiler.lir.sparc.SPARCMove.const2reg;
import static org.graalvm.compiler.lir.sparc.SPARCOP3Op.emitOp3;
import static jdk.vm.ci.code.ValueUtil.asRegister;
import static jdk.vm.ci.sparc.SPARC.CPU;
import static jdk.vm.ci.sparc.SPARC.g0;
import static jdk.vm.ci.sparc.SPARCKind.WORD;
import static jdk.vm.ci.sparc.SPARCKind.XWORD;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.graalvm.compiler.asm.Assembler;
import org.graalvm.compiler.asm.Assembler.LabelHint;
import org.graalvm.compiler.asm.Label;
import org.graalvm.compiler.asm.NumUtil;
import org.graalvm.compiler.asm.sparc.SPARCAssembler;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.CC;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.CMOV;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag;
import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler;
import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler.ScratchRegister;
import org.graalvm.compiler.core.common.calc.Condition;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.lir.LIRInstructionClass;
import org.graalvm.compiler.lir.LabelRef;
import org.graalvm.compiler.lir.Opcode;
import org.graalvm.compiler.lir.StandardOp;
import org.graalvm.compiler.lir.SwitchStrategy;
import org.graalvm.compiler.lir.SwitchStrategy.BaseSwitchClosure;
import org.graalvm.compiler.lir.Variable;
import org.graalvm.compiler.lir.asm.CompilationResultBuilder;
import jdk.vm.ci.code.Register;
import jdk.vm.ci.meta.AllocatableValue;
import jdk.vm.ci.meta.Constant;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.PlatformKind;
import jdk.vm.ci.meta.Value;
import jdk.vm.ci.sparc.SPARC.CPUFeature;
import jdk.vm.ci.sparc.SPARCKind;
public class SPARCControlFlow {
// This describes the maximum offset between the first emitted (load constant in to scratch,
// if does not fit into simm5 of cbcond) instruction and the final branch instruction
private static final int maximumSelfOffsetInstructions = 2;
public static final class ReturnOp extends SPARCBlockEndOp {
public static final LIRInstructionClass<ReturnOp> TYPE = LIRInstructionClass.create(ReturnOp.class);
public static final SizeEstimate SIZE = SizeEstimate.create(2);
@Use({REG, ILLEGAL}) protected Value x;
public ReturnOp(Value x) {
super(TYPE, SIZE);
this.x = x;
}
@Override
public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
emitCodeHelper(crb, masm);
}
public static void emitCodeHelper(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
masm.ret();
// On SPARC we always leave the frame (in the delay slot).
crb.frameContext.leave(crb);
}
}
public static final class CompareBranchOp extends SPARCBlockEndOp implements SPARCDelayedControlTransfer {
public static final LIRInstructionClass<CompareBranchOp> TYPE = LIRInstructionClass.create(CompareBranchOp.class);
public static final SizeEstimate SIZE = SizeEstimate.create(3);
static final EnumSet<SPARCKind> SUPPORTED_KINDS = EnumSet.of(XWORD, WORD);
@Use({REG}) protected Value x;
@Use({REG, CONST}) protected Value y;
private ConditionFlag conditionFlag;
protected final LabelRef trueDestination;
protected LabelHint trueDestinationHint;
protected final LabelRef falseDestination;
protected LabelHint falseDestinationHint;
protected final SPARCKind kind;
protected final boolean unorderedIsTrue;
private boolean emitted = false;
private int delaySlotPosition = -1;
private double trueDestinationProbability;
public CompareBranchOp(Value x, Value y, Condition condition, LabelRef trueDestination, LabelRef falseDestination, SPARCKind kind, boolean unorderedIsTrue, double trueDestinationProbability) {
super(TYPE, SIZE);
this.x = x;
this.y = y;
this.trueDestination = trueDestination;
this.falseDestination = falseDestination;
this.kind = kind;
this.unorderedIsTrue = unorderedIsTrue;
this.trueDestinationProbability = trueDestinationProbability;
conditionFlag = fromCondition(kind.isInteger(), condition, unorderedIsTrue);
}
@Override
public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
if (emitted) { // Only if delayed control transfer is used we must check this
assert masm.position() - delaySlotPosition == 4 : "Only one instruction can be stuffed into the delay slot";
}
if (!emitted) {
requestHints(masm);
int targetPosition = getTargetPosition(masm);
if (canUseShortBranch(crb, masm, targetPosition)) {
emitted = emitShortCompareBranch(crb, masm);
}
if (!emitted) { // No short compare/branch was used, so we go into fallback
emitted = emitLongCompareBranch(crb, masm, true);
emitted = true;
}
}
assert emitted;
}
private boolean emitLongCompareBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm, boolean withDelayedNop) {
emitOp3(masm, Subcc, x, y);
return emitBranch(crb, masm, kind, conditionFlag, trueDestination, falseDestination, withDelayedNop, trueDestinationProbability);
}
private static int getTargetPosition(Assembler asm) {
return asm.position() + maximumSelfOffsetInstructions * asm.target.wordSize;
}
@Override
public void emitControlTransfer(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
requestHints(masm);
// When we use short branches, no delay slot is available
int targetPosition = getTargetPosition(masm);
if (!canUseShortBranch(crb, masm, targetPosition)) {
emitted = emitLongCompareBranch(crb, masm, false);
if (emitted) {
delaySlotPosition = masm.position();
}
}
}
private void requestHints(SPARCMacroAssembler masm) {
if (trueDestinationHint == null) {
this.trueDestinationHint = masm.requestLabelHint(trueDestination.label());
}
if (falseDestinationHint == null) {
this.falseDestinationHint = masm.requestLabelHint(falseDestination.label());
}
}
/**
* Tries to use the emit the compare/branch instruction.
* <p>
* CBcond has follwing limitations
* <ul>
* <li>Immediate field is only 5 bit and is on the right
* <li>Jump offset is maximum of -+512 instruction
*
* <p>
* We get from outside
* <ul>
* <li>at least one of trueDestination falseDestination is within reach of +-512
* instructions
* <li>two registers OR one register and a constant which fits simm13
*
* <p>
* We do:
* <ul>
* <li>find out which target needs to be branched conditionally
* <li>find out if fall-through is possible, if not, a unconditional branch is needed after
* cbcond (needJump=true)
* <li>if no fall through: we need to put the closer jump into the cbcond branch and the
* farther into the jmp (unconditional branch)
* <li>if constant on the left side, mirror to be on the right
* <li>if constant on right does not fit into simm5, put it into a scratch register
*
* @param crb
* @param masm
* @return true if the branch could be emitted
*/
private boolean emitShortCompareBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
ConditionFlag actualConditionFlag = conditionFlag;
Label actualTrueTarget = trueDestination.label();
Label actualFalseTarget = falseDestination.label();
Label tmpTarget;
boolean needJump;
if (crb.isSuccessorEdge(trueDestination)) {
actualConditionFlag = conditionFlag.negate();
tmpTarget = actualTrueTarget;
actualTrueTarget = actualFalseTarget;
actualFalseTarget = tmpTarget;
needJump = false;
} else {
needJump = !crb.isSuccessorEdge(falseDestination);
int targetPosition = getTargetPosition(masm);
if (needJump && !isShortBranch(masm, targetPosition, trueDestinationHint, actualTrueTarget)) {
// we have to jump in either way, so we must put the shorter
// branch into the actualTarget as only one of the two jump targets
// is guaranteed to be simm10
actualConditionFlag = actualConditionFlag.negate();
tmpTarget = actualTrueTarget;
actualTrueTarget = actualFalseTarget;
actualFalseTarget = tmpTarget;
}
}
emitCBCond(masm, x, y, actualTrueTarget, actualConditionFlag);
if (needJump) {
masm.jmp(actualFalseTarget);
masm.nop();
}
return true;
}
private void emitCBCond(SPARCMacroAssembler masm, Value actualX, Value actualY, Label actualTrueTarget, ConditionFlag cFlag) {
PlatformKind xKind = actualX.getPlatformKind();
boolean isLong = kind == SPARCKind.XWORD;
if (isJavaConstant(actualY)) {
JavaConstant c = asJavaConstant(actualY);
long constantY = c.isNull() ? 0 : c.asLong();
assert NumUtil.isInt(constantY);
CBCOND.emit(masm, cFlag, isLong, asRegister(actualX, xKind), (int) constantY, actualTrueTarget);
} else {
CBCOND.emit(masm, cFlag, isLong, asRegister(actualX, xKind), asRegister(actualY, xKind), actualTrueTarget);
}
}
private boolean canUseShortBranch(CompilationResultBuilder crb, SPARCAssembler asm, int position) {
if (!asm.hasFeature(CPUFeature.CBCOND)) {
return false;
}
if (!((SPARCKind) x.getPlatformKind()).isInteger()) {
return false;
}
// Do not use short branch, if the y value is a constant and does not fit into simm5 but
// fits into simm13; this means the code with CBcond would be longer as the code without
// CBcond.
if (isJavaConstant(y) && !isSimm5(asJavaConstant(y)) && isSimm13(asJavaConstant(y))) {
return false;
}
boolean hasShortJumpTarget = false;
if (!crb.isSuccessorEdge(trueDestination)) {
hasShortJumpTarget |= isShortBranch(asm, position, trueDestinationHint, trueDestination.label());
}
if (!crb.isSuccessorEdge(falseDestination)) {
hasShortJumpTarget |= isShortBranch(asm, position, falseDestinationHint, falseDestination.label());
}
return hasShortJumpTarget;
}
@Override
public void resetState() {
emitted = false;
delaySlotPosition = -1;
}
@Override
public void verify() {
super.verify();
assert SUPPORTED_KINDS.contains(kind) : kind;
assert !isConstantValue(x);
assert x.getPlatformKind().equals(kind) && (isConstantValue(y) || y.getPlatformKind().equals(kind)) : x + " " + y;
}
}
public static boolean isShortBranch(SPARCAssembler asm, int position, LabelHint hint, Label label) {
int disp = 0;
boolean dispValid = true;
if (label.isBound()) {
disp = label.position() - position;
} else if (hint != null && hint.isValid()) {
disp = hint.getTarget() - hint.getPosition();
} else {
dispValid = false;
}
if (dispValid) {
if (disp < 0) {
disp -= maximumSelfOffsetInstructions * asm.target.wordSize;
} else {
disp += maximumSelfOffsetInstructions * asm.target.wordSize;
}
return isSimm10(disp >> 2);
} else if (hint == null) {
asm.requestLabelHint(label);
}
return false;
}
public static final class BranchOp extends SPARCBlockEndOp implements StandardOp.BranchOp {
public static final LIRInstructionClass<BranchOp> TYPE = LIRInstructionClass.create(BranchOp.class);
public static final SizeEstimate SIZE = SizeEstimate.create(2);
protected final ConditionFlag conditionFlag;
protected final LabelRef trueDestination;
protected final LabelRef falseDestination;
protected final SPARCKind kind;
protected final double trueDestinationProbability;
public BranchOp(ConditionFlag conditionFlag, LabelRef trueDestination, LabelRef falseDestination, SPARCKind kind, double trueDestinationProbability) {
super(TYPE, SIZE);
this.trueDestination = trueDestination;
this.falseDestination = falseDestination;
this.kind = kind;
this.conditionFlag = conditionFlag;
this.trueDestinationProbability = trueDestinationProbability;
}
@Override
public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
emitBranch(crb, masm, kind, conditionFlag, trueDestination, falseDestination, true, trueDestinationProbability);
}
}
private static boolean emitBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm, SPARCKind kind, ConditionFlag conditionFlag, LabelRef trueDestination, LabelRef falseDestination,
boolean withDelayedNop, double trueDestinationProbability) {
Label actualTarget;
ConditionFlag actualConditionFlag;
boolean needJump;
BranchPredict predictTaken;
if (falseDestination != null && crb.isSuccessorEdge(trueDestination)) {
actualConditionFlag = conditionFlag != null ? conditionFlag.negate() : null;
actualTarget = falseDestination.label();
needJump = false;
predictTaken = trueDestinationProbability < .5d ? PREDICT_TAKEN : PREDICT_NOT_TAKEN;
} else {
actualConditionFlag = conditionFlag;
actualTarget = trueDestination.label();
needJump = falseDestination != null && !crb.isSuccessorEdge(falseDestination);
predictTaken = trueDestinationProbability > .5d ? PREDICT_TAKEN : PREDICT_NOT_TAKEN;
}
if (!withDelayedNop && needJump) {
// We cannot make use of the delay slot when we jump in true-case and false-case
return false;
}
if (kind.isFloat()) {
FBPCC.emit(masm, Fcc0, actualConditionFlag, NOT_ANNUL, predictTaken, actualTarget);
} else {
assert kind.isInteger();
CC cc = kind.equals(WORD) ? Icc : Xcc;
BPCC.emit(masm, cc, actualConditionFlag, NOT_ANNUL, predictTaken, actualTarget);
}
if (withDelayedNop) {
masm.nop(); // delay slot
}
if (needJump) {
masm.jmp(falseDestination.label());
}
return true;
}
public static class StrategySwitchOp extends SPARCBlockEndOp {
public static final LIRInstructionClass<StrategySwitchOp> TYPE = LIRInstructionClass.create(StrategySwitchOp.class);
protected Constant[] keyConstants;
private final LabelRef[] keyTargets;
private LabelRef defaultTarget;
@Alive({REG}) protected Value key;
@Alive({REG, ILLEGAL}) protected Value constantTableBase;
@Temp({REG}) protected Value scratch;
protected final SwitchStrategy strategy;
private final Map<Label, LabelHint> labelHints;
private final List<Label> conditionalLabels = new ArrayList<>();
public StrategySwitchOp(Value constantTableBase, SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Value key, Value scratch) {
this(TYPE, constantTableBase, strategy, keyTargets, defaultTarget, key, scratch);
}
protected StrategySwitchOp(LIRInstructionClass<? extends StrategySwitchOp> c, Value constantTableBase, SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Value key,
Value scratch) {
super(c);
this.strategy = strategy;
this.keyConstants = strategy.getKeyConstants();
this.keyTargets = keyTargets;
this.defaultTarget = defaultTarget;
this.constantTableBase = constantTableBase;
this.key = key;
this.scratch = scratch;
this.labelHints = new HashMap<>();
assert keyConstants.length == keyTargets.length;
assert keyConstants.length == strategy.keyProbabilities.length;
}
@Override
public void emitCode(final CompilationResultBuilder crb, final SPARCMacroAssembler masm) {
final Register keyRegister = asRegister(key);
final Register constantBaseRegister = AllocatableValue.ILLEGAL.equals(constantTableBase) ? g0 : asRegister(constantTableBase);
strategy.run(new SwitchClosure(keyRegister, constantBaseRegister, crb, masm));
}
public class SwitchClosure extends BaseSwitchClosure {
private int conditionalLabelPointer = 0;
protected final Register keyRegister;
protected final Register constantBaseRegister;
protected final CompilationResultBuilder crb;
protected final SPARCMacroAssembler masm;
protected SwitchClosure(Register keyRegister, Register constantBaseRegister, CompilationResultBuilder crb, SPARCMacroAssembler masm) {
super(crb, masm, keyTargets, defaultTarget);
this.keyRegister = keyRegister;
this.constantBaseRegister = constantBaseRegister;
this.crb = crb;
this.masm = masm;
}
/**
* This method caches the generated labels over two assembly passes to get information
* about branch lengths.
*/
@Override
public Label conditionalJump(int index, Condition condition) {
Label label;
if (conditionalLabelPointer <= conditionalLabels.size()) {
label = new Label();
conditionalLabels.add(label);
conditionalLabelPointer = conditionalLabels.size();
} else {
// TODO: (sa) We rely here on the order how the labels are generated during
// code generation; if the order is not stable ower two assembly passes, the
// result can be wrong
label = conditionalLabels.get(conditionalLabelPointer++);
}
conditionalJump(index, condition, label);
return label;
}
@Override
protected void conditionalJump(int index, Condition condition, Label target) {
JavaConstant constant = (JavaConstant) keyConstants[index];
CC conditionCode;
Long bits = constant.asLong();
switch (constant.getJavaKind()) {
case Char:
case Byte:
case Short:
case Int:
conditionCode = CC.Icc;
break;
case Long:
conditionCode = CC.Xcc;
break;
default:
throw new GraalError("switch only supported for int, long and object");
}
ConditionFlag conditionFlag = fromCondition(keyRegister.getRegisterCategory().equals(CPU), condition, false);
LabelHint hint = requestHint(masm, target);
boolean isShortConstant = isSimm5(constant);
int cbCondPosition = masm.position();
if (!isShortConstant) { // Load constant takes one instruction
cbCondPosition += INSTRUCTION_SIZE;
}
boolean canUseShortBranch = masm.hasFeature(CPUFeature.CBCOND) && isShortBranch(masm, cbCondPosition, hint, target);
if (bits != null && canUseShortBranch) {
if (isShortConstant) {
CBCOND.emit(masm, conditionFlag, conditionCode == Xcc, keyRegister, (int) (long) bits, target);
} else {
Register scratchRegister = asRegister(scratch);
const2reg(crb, masm, scratch, constantBaseRegister, (JavaConstant) keyConstants[index], SPARCDelayedControlTransfer.DUMMY);
CBCOND.emit(masm, conditionFlag, conditionCode == Xcc, keyRegister, scratchRegister, target);
}
} else {
if (bits != null && isSimm13(constant)) {
masm.cmp(keyRegister, (int) (long) bits); // Cast is safe
} else {
Register scratchRegister = asRegister(scratch);
const2reg(crb, masm, scratch, constantBaseRegister, (JavaConstant) keyConstants[index], SPARCDelayedControlTransfer.DUMMY);
masm.cmp(keyRegister, scratchRegister);
}
BPCC.emit(masm, conditionCode, conditionFlag, ANNUL, PREDICT_TAKEN, target);
masm.nop(); // delay slot
}
}
}
protected LabelHint requestHint(SPARCMacroAssembler masm, Label label) {
LabelHint hint = labelHints.get(label);
if (hint == null) {
hint = masm.requestLabelHint(label);
labelHints.put(label, hint);
}
return hint;
}
protected int estimateEmbeddedSize(Constant c) {
JavaConstant v = (JavaConstant) c;
if (!SPARCAssembler.isSimm13(v)) {
return v.getJavaKind().getByteCount();
} else {
return 0;
}
}
@Override
public SizeEstimate estimateSize() {
int constantBytes = 0;
for (Constant c : keyConstants) {
constantBytes += estimateEmbeddedSize(c);
}
return new SizeEstimate(4 * keyTargets.length, constantBytes);
}
}
public static final class TableSwitchOp extends SPARCBlockEndOp {
public static final LIRInstructionClass<TableSwitchOp> TYPE = LIRInstructionClass.create(TableSwitchOp.class);
private final int lowKey;
private final LabelRef defaultTarget;
private final LabelRef[] targets;
@Alive protected Value index;
@Temp protected Value scratch;
public TableSwitchOp(final int lowKey, final LabelRef defaultTarget, final LabelRef[] targets, Variable index, Variable scratch) {
super(TYPE);
this.lowKey = lowKey;
this.defaultTarget = defaultTarget;
this.targets = targets;
this.index = index;
this.scratch = scratch;
}
@Override
public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
Register value = asRegister(index, SPARCKind.WORD);
Register scratchReg = asRegister(scratch, SPARCKind.XWORD);
// Compare index against jump table bounds
int highKey = lowKey + targets.length - 1;
// subtract the low value from the switch value
if (isSimm13(lowKey)) {
masm.sub(value, lowKey, scratchReg);
} else {
try (ScratchRegister sc = masm.getScratchRegister()) {
Register scratch2 = sc.getRegister();
masm.setx(lowKey, scratch2, false);
masm.sub(value, scratch2, scratchReg);
}
}
int upperLimit = highKey - lowKey;
try (ScratchRegister sc = masm.getScratchRegister()) {
Register scratch2 = sc.getRegister();
if (isSimm13(upperLimit)) {
masm.cmp(scratchReg, upperLimit);
} else {
masm.setx(upperLimit, scratch2, false);
masm.cmp(scratchReg, upperLimit);
}
// Jump to default target if index is not within the jump table
if (defaultTarget != null) {
BPCC.emit(masm, Icc, GreaterUnsigned, NOT_ANNUL, PREDICT_TAKEN, defaultTarget.label());
masm.nop(); // delay slot
}
// Load jump table entry into scratch and jump to it
masm.sll(scratchReg, 3, scratchReg); // Multiply by 8
// Zero the left bits sll with shcnt>0 does not mask upper 32 bits
masm.srl(scratchReg, 0, scratchReg);
masm.rdpc(scratch2);
// The jump table follows four instructions after rdpc
masm.add(scratchReg, 4 * 4, scratchReg);
masm.jmpl(scratch2, scratchReg, g0);
}
masm.nop();
// Emit jump table entries
for (LabelRef target : targets) {
BPCC.emit(masm, Xcc, Always, NOT_ANNUL, PREDICT_TAKEN, target.label());
masm.nop(); // delay slot
}
}
@Override
public SizeEstimate estimateSize() {
return SizeEstimate.create(17 + targets.length * 2);
}
}
@Opcode("CMOVE")
public static final class CondMoveOp extends SPARCLIRInstruction {
public static final LIRInstructionClass<CondMoveOp> TYPE = LIRInstructionClass.create(CondMoveOp.class);
@Def({REG, HINT}) protected Value result;
@Use({REG, CONST}) protected Value trueValue;
@Use({REG, CONST}) protected Value falseValue;
private final ConditionFlag condition;
private final CC cc;
private final CMOV cmove;
public CondMoveOp(CMOV cmove, CC cc, ConditionFlag condition, Value trueValue, Value falseValue, Value result) {
super(TYPE);
this.result = result;
this.condition = condition;
this.trueValue = trueValue;
this.falseValue = falseValue;
this.cc = cc;
this.cmove = cmove;
}
@Override
public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
if (result.equals(trueValue)) { // We have the true value in place, do he opposite
cmove(masm, condition.negate(), falseValue);
} else if (result.equals(falseValue)) {
cmove(masm, condition, trueValue);
} else { // We have to move one of the input values to the result
ConditionFlag actualCondition = condition;
Value actualTrueValue = trueValue;
Value actualFalseValue = falseValue;
if (isJavaConstant(falseValue) && isSimm11(asJavaConstant(falseValue))) {
actualCondition = condition.negate();
actualTrueValue = falseValue;
actualFalseValue = trueValue;
}
SPARCMove.move(crb, masm, result, actualFalseValue, SPARCDelayedControlTransfer.DUMMY);
cmove(masm, actualCondition, actualTrueValue);
}
}
private void cmove(SPARCMacroAssembler masm, ConditionFlag localCondition, Value value) {
if (isConstantValue(value)) {
cmove.emit(masm, localCondition, cc, asImmediate(asJavaConstant(value)), asRegister(result));
} else {
cmove.emit(masm, localCondition, cc, asRegister(value), asRegister(result));
}
}
@Override
public SizeEstimate estimateSize() {
int constantSize = 0;
if (isJavaConstant(trueValue) && !SPARCAssembler.isSimm13(asJavaConstant(trueValue))) {
constantSize += trueValue.getPlatformKind().getSizeInBytes();
}
if (isJavaConstant(falseValue) && !SPARCAssembler.isSimm13(asJavaConstant(falseValue))) {
constantSize += trueValue.getPlatformKind().getSizeInBytes();
}
return SizeEstimate.create(3, constantSize);
}
}
public static ConditionFlag fromCondition(boolean integer, Condition cond, boolean unorderedIsTrue) {
if (integer) {
switch (cond) {
case EQ:
return Equal;
case NE:
return NotEqual;
case BT:
return LessUnsigned;
case LT:
return Less;
case BE:
return LessEqualUnsigned;
case LE:
return LessEqual;
case AE:
return GreaterEqualUnsigned;
case GE:
return GreaterEqual;
case AT:
return GreaterUnsigned;
case GT:
return Greater;
}
throw GraalError.shouldNotReachHere("Unimplemented for: " + cond);
} else {
switch (cond) {
case EQ:
return unorderedIsTrue ? F_UnorderedOrEqual : F_Equal;
case NE:
return ConditionFlag.F_NotEqual;
case LT:
return unorderedIsTrue ? F_UnorderedOrLess : F_Less;
case LE:
return unorderedIsTrue ? F_UnorderedOrLessOrEqual : F_LessOrEqual;
case GE:
return unorderedIsTrue ? F_UnorderedGreaterOrEqual : F_GreaterOrEqual;
case GT:
return unorderedIsTrue ? F_UnorderedOrGreater : F_Greater;
}
throw GraalError.shouldNotReachHere("Unkown condition: " + cond);
}
}
}