blob: a0a3bc7a7a53d1db4c2638327c9e4c185d465b3f [file] [log] [blame]
/*
* Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.vm.ci.hotspot;
import static java.util.Objects.requireNonNull;
import static jdk.vm.ci.hotspot.CompilerToVM.compilerToVM;
import static jdk.vm.ci.hotspot.HotSpotConstantPool.isSignaturePolymorphicHolder;
import static jdk.vm.ci.hotspot.HotSpotJVMCIRuntime.runtime;
import static jdk.vm.ci.hotspot.HotSpotModifiers.jvmClassModifiers;
import static jdk.vm.ci.hotspot.HotSpotVMConfig.config;
import static jdk.vm.ci.hotspot.UnsafeAccess.UNSAFE;
import java.lang.annotation.Annotation;
import java.lang.reflect.Array;
import java.lang.reflect.Constructor;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.nio.ByteOrder;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import jdk.vm.ci.common.JVMCIError;
import jdk.vm.ci.meta.Assumptions.AssumptionResult;
import jdk.vm.ci.meta.Assumptions.ConcreteMethod;
import jdk.vm.ci.meta.Assumptions.ConcreteSubtype;
import jdk.vm.ci.meta.Assumptions.LeafType;
import jdk.vm.ci.meta.Assumptions.NoFinalizableSubclass;
import jdk.vm.ci.meta.Constant;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.JavaKind;
import jdk.vm.ci.meta.JavaType;
import jdk.vm.ci.meta.ResolvedJavaField;
import jdk.vm.ci.meta.ResolvedJavaMethod;
import jdk.vm.ci.meta.ResolvedJavaType;
/**
* Implementation of {@link JavaType} for resolved non-primitive HotSpot classes.
*/
final class HotSpotResolvedObjectTypeImpl extends HotSpotResolvedJavaType implements HotSpotResolvedObjectType, MetaspaceWrapperObject {
/**
* The Java class this type represents.
*/
private final Class<?> javaClass;
private HashMap<Long, HotSpotResolvedJavaField> fieldCache;
private HashMap<Long, HotSpotResolvedJavaMethodImpl> methodCache;
private HotSpotResolvedJavaField[] instanceFields;
private HotSpotResolvedObjectTypeImpl[] interfaces;
private HotSpotConstantPool constantPool;
final HotSpotJVMCIMetaAccessContext context;
private HotSpotResolvedObjectType arrayOfType;
/**
* Gets the JVMCI mirror for a {@link Class} object.
*
* @return the {@link HotSpotResolvedJavaType} corresponding to {@code javaClass}
*/
static HotSpotResolvedObjectTypeImpl fromObjectClass(Class<?> javaClass) {
return (HotSpotResolvedObjectTypeImpl) runtime().fromClass(javaClass);
}
/**
* Gets the JVMCI mirror from a HotSpot type. Since {@link Class} is already a proxy for the
* underlying Klass*, it is used instead of the raw Klass*.
*
* Called from the VM.
*
* @param javaClass a {@link Class} object
* @return the {@link ResolvedJavaType} corresponding to {@code javaClass}
*/
@SuppressWarnings("unused")
private static HotSpotResolvedObjectTypeImpl fromMetaspace(Class<?> javaClass) {
return fromObjectClass(javaClass);
}
/**
* Creates the JVMCI mirror for a {@link Class} object.
*
* <p>
* <b>NOTE</b>: Creating an instance of this class does not install the mirror for the
* {@link Class} type. Use {@link #fromObjectClass(Class)} or {@link #fromMetaspace(Class)}
* instead.
* </p>
*
* @param javaClass the Class to create the mirror for
* @param context
*/
HotSpotResolvedObjectTypeImpl(Class<?> javaClass, HotSpotJVMCIMetaAccessContext context) {
super(getSignatureName(javaClass));
this.javaClass = javaClass;
this.context = context;
assert getName().charAt(0) != '[' || isArray() : getName();
}
/**
* Returns the name of this type as it would appear in a signature.
*/
private static String getSignatureName(Class<?> javaClass) {
if (javaClass.isArray()) {
return javaClass.getName().replace('.', '/');
}
return "L" + javaClass.getName().replace('.', '/') + ";";
}
/**
* Gets the metaspace Klass for this type.
*/
long getMetaspaceKlass() {
if (HotSpotJVMCIRuntime.getHostWordKind() == JavaKind.Long) {
return UNSAFE.getLong(javaClass, config().klassOffset);
}
return UNSAFE.getInt(javaClass, config().klassOffset) & 0xFFFFFFFFL;
}
@Override
public long getMetaspacePointer() {
return getMetaspaceKlass();
}
/**
* The Klass* for this object is kept alive by the direct reference to {@link #javaClass} so no
* extra work is required.
*/
@Override
public boolean isRegistered() {
return true;
}
@Override
public int getModifiers() {
if (isArray()) {
return (getElementalType().getModifiers() & (Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED)) | Modifier.FINAL | Modifier.ABSTRACT;
} else {
return getAccessFlags() & jvmClassModifiers();
}
}
public int getAccessFlags() {
HotSpotVMConfig config = config();
return UNSAFE.getInt(getMetaspaceKlass() + config.klassAccessFlagsOffset);
}
@Override
public HotSpotResolvedObjectType getArrayClass() {
if (arrayOfType == null) {
arrayOfType = fromObjectClass(Array.newInstance(mirror(), 0).getClass());
}
return arrayOfType;
}
@Override
public ResolvedJavaType getComponentType() {
Class<?> javaComponentType = mirror().getComponentType();
return javaComponentType == null ? null : runtime().fromClass(javaComponentType);
}
@Override
public AssumptionResult<ResolvedJavaType> findLeafConcreteSubtype() {
if (isLeaf()) {
// No assumptions are required.
return new AssumptionResult<>(this);
}
HotSpotVMConfig config = config();
if (isArray()) {
ResolvedJavaType elementalType = getElementalType();
AssumptionResult<ResolvedJavaType> elementType = elementalType.findLeafConcreteSubtype();
if (elementType != null && elementType.getResult().equals(elementalType)) {
/*
* If the elementType is leaf then the array is leaf under the same assumptions but
* only if the element type is exactly the leaf type. The element type can be
* abstract even if there is only one implementor of the abstract type.
*/
AssumptionResult<ResolvedJavaType> result = new AssumptionResult<>(this);
result.add(elementType);
return result;
}
return null;
} else if (isInterface()) {
HotSpotResolvedObjectTypeImpl implementor = getSingleImplementor();
/*
* If the implementor field contains itself that indicates that the interface has more
* than one implementors (see: InstanceKlass::add_implementor).
*/
if (implementor == null || implementor.equals(this)) {
return null;
}
assert !implementor.isInterface();
if (implementor.isAbstract() || !implementor.isLeafClass()) {
AssumptionResult<ResolvedJavaType> leafConcreteSubtype = implementor.findLeafConcreteSubtype();
if (leafConcreteSubtype != null) {
assert !leafConcreteSubtype.getResult().equals(implementor);
AssumptionResult<ResolvedJavaType> newResult = new AssumptionResult<>(leafConcreteSubtype.getResult(), new ConcreteSubtype(this, implementor));
// Accumulate leaf assumptions and return the combined result.
newResult.add(leafConcreteSubtype);
return newResult;
}
return null;
}
return concreteSubtype(implementor);
} else {
HotSpotResolvedObjectTypeImpl type = this;
while (type.isAbstract()) {
HotSpotResolvedObjectTypeImpl subklass = type.getSubklass();
if (subklass == null || UNSAFE.getAddress(subklass.getMetaspaceKlass() + config.nextSiblingOffset) != 0) {
return null;
}
type = subklass;
}
if (type.isAbstract() || type.isInterface() || !type.isLeafClass()) {
return null;
}
if (this.isAbstract()) {
return concreteSubtype(type);
} else {
assert this.equals(type);
return new AssumptionResult<>(type, new LeafType(type));
}
}
}
private AssumptionResult<ResolvedJavaType> concreteSubtype(HotSpotResolvedObjectTypeImpl type) {
if (type.isLeaf()) {
return new AssumptionResult<>(type, new ConcreteSubtype(this, type));
} else {
return new AssumptionResult<>(type, new LeafType(type), new ConcreteSubtype(this, type));
}
}
/**
* Returns if type {@code type} is a leaf class. This is the case if the
* {@code Klass::_subklass} field of the underlying class is zero.
*
* @return true if the type is a leaf class
*/
private boolean isLeafClass() {
return getSubklass() == null;
}
/**
* Returns the {@code Klass::_subklass} field of the underlying metaspace klass for the given
* type {@code type}.
*
* @return value of the subklass field as metaspace klass pointer
*/
private HotSpotResolvedObjectTypeImpl getSubklass() {
return compilerToVM().getResolvedJavaType(this, config().subklassOffset, false);
}
@Override
public HotSpotResolvedObjectTypeImpl getSuperclass() {
Class<?> javaSuperclass = mirror().getSuperclass();
return javaSuperclass == null ? null : fromObjectClass(javaSuperclass);
}
@Override
public HotSpotResolvedObjectTypeImpl[] getInterfaces() {
if (interfaces == null) {
Class<?>[] javaInterfaces = mirror().getInterfaces();
HotSpotResolvedObjectTypeImpl[] result = new HotSpotResolvedObjectTypeImpl[javaInterfaces.length];
for (int i = 0; i < javaInterfaces.length; i++) {
result[i] = fromObjectClass(javaInterfaces[i]);
}
interfaces = result;
}
return interfaces;
}
@Override
public HotSpotResolvedObjectTypeImpl getSingleImplementor() {
if (!isInterface()) {
throw new JVMCIError("Cannot call getSingleImplementor() on a non-interface type: %s", this);
}
return compilerToVM().getImplementor(this);
}
public HotSpotResolvedObjectTypeImpl getSupertype() {
if (isArray()) {
ResolvedJavaType componentType = getComponentType();
if (mirror() == Object[].class || componentType.isPrimitive()) {
return fromObjectClass(Object.class);
}
return (HotSpotResolvedObjectTypeImpl) ((HotSpotResolvedObjectTypeImpl) componentType).getSupertype().getArrayClass();
}
if (isInterface()) {
return fromObjectClass(Object.class);
}
return getSuperclass();
}
@Override
public HotSpotResolvedObjectType findLeastCommonAncestor(ResolvedJavaType otherType) {
if (otherType.isPrimitive()) {
return null;
} else {
HotSpotResolvedObjectTypeImpl t1 = this;
HotSpotResolvedObjectTypeImpl t2 = (HotSpotResolvedObjectTypeImpl) otherType;
while (true) {
if (t1.isAssignableFrom(t2)) {
return t1;
}
if (t2.isAssignableFrom(t1)) {
return t2;
}
t1 = t1.getSupertype();
t2 = t2.getSupertype();
}
}
}
@Override
public AssumptionResult<Boolean> hasFinalizableSubclass() {
assert !isArray();
if (!compilerToVM().hasFinalizableSubclass(this)) {
return new AssumptionResult<>(false, new NoFinalizableSubclass(this));
}
return new AssumptionResult<>(true);
}
@Override
public boolean hasFinalizer() {
return (getAccessFlags() & config().jvmAccHasFinalizer) != 0;
}
@Override
public boolean isPrimitive() {
return false;
}
@Override
public boolean isArray() {
return mirror().isArray();
}
@Override
public boolean isInitialized() {
return isArray() ? true : getInitState() == config().instanceKlassStateFullyInitialized;
}
@Override
public boolean isLinked() {
return isArray() ? true : getInitState() >= config().instanceKlassStateLinked;
}
/**
* Returns the value of the state field {@code InstanceKlass::_init_state} of the metaspace
* klass.
*
* @return state field value of this type
*/
private int getInitState() {
assert !isArray() : "_init_state only exists in InstanceKlass";
return UNSAFE.getByte(getMetaspaceKlass() + config().instanceKlassInitStateOffset) & 0xFF;
}
@Override
public void initialize() {
if (!isInitialized()) {
UNSAFE.ensureClassInitialized(mirror());
assert isInitialized();
}
}
@Override
public boolean isInstance(JavaConstant obj) {
if (obj.getJavaKind() == JavaKind.Object && !obj.isNull()) {
return mirror().isInstance(((HotSpotObjectConstantImpl) obj).object());
}
return false;
}
@Override
public boolean isInstanceClass() {
return !isArray() && !isInterface();
}
@Override
public boolean isInterface() {
return mirror().isInterface();
}
@Override
public boolean isAssignableFrom(ResolvedJavaType other) {
assert other != null;
if (other instanceof HotSpotResolvedObjectTypeImpl) {
HotSpotResolvedObjectTypeImpl otherType = (HotSpotResolvedObjectTypeImpl) other;
return mirror().isAssignableFrom(otherType.mirror());
}
return false;
}
@Override
public boolean isJavaLangObject() {
return javaClass.equals(Object.class);
}
@Override
public JavaKind getJavaKind() {
return JavaKind.Object;
}
@Override
public ResolvedJavaMethod resolveMethod(ResolvedJavaMethod method, ResolvedJavaType callerType) {
assert !callerType.isArray();
if (isInterface()) {
// Methods can only be resolved against concrete types
return null;
}
if (method.isConcrete() && method.getDeclaringClass().equals(this) && method.isPublic() && !isSignaturePolymorphicHolder(method.getDeclaringClass())) {
return method;
}
if (!method.getDeclaringClass().isAssignableFrom(this)) {
return null;
}
HotSpotResolvedJavaMethodImpl hotSpotMethod = (HotSpotResolvedJavaMethodImpl) method;
HotSpotResolvedObjectTypeImpl hotSpotCallerType = (HotSpotResolvedObjectTypeImpl) callerType;
return compilerToVM().resolveMethod(this, hotSpotMethod, hotSpotCallerType);
}
public HotSpotConstantPool getConstantPool() {
if (constantPool == null || !isArray() && UNSAFE.getAddress(getMetaspaceKlass() + config().instanceKlassConstantsOffset) != constantPool.getMetaspaceConstantPool()) {
/*
* If the pointer to the ConstantPool has changed since this was last read refresh the
* HotSpotConstantPool wrapper object. This ensures that uses of the constant pool are
* operating on the latest one and that HotSpotResolvedJavaMethodImpls will be able to
* use the shared copy instead of creating their own instance.
*/
constantPool = compilerToVM().getConstantPool(this);
}
return constantPool;
}
/**
* Gets the instance size of this type. If an instance of this type cannot be fast path
* allocated, then the returned value is negative (its absolute value gives the size). Must not
* be called if this is an array or interface type.
*/
public int instanceSize() {
assert !isArray();
assert !isInterface();
HotSpotVMConfig config = config();
final int layoutHelper = layoutHelper();
assert layoutHelper > config.klassLayoutHelperNeutralValue : "must be instance";
// See: Klass::layout_helper_size_in_bytes
int size = layoutHelper & ~config.klassLayoutHelperInstanceSlowPathBit;
// See: Klass::layout_helper_needs_slow_path
boolean needsSlowPath = (layoutHelper & config.klassLayoutHelperInstanceSlowPathBit) != 0;
return needsSlowPath ? -size : size;
}
public int layoutHelper() {
HotSpotVMConfig config = config();
return UNSAFE.getInt(getMetaspaceKlass() + config.klassLayoutHelperOffset);
}
@Override
public long getFingerprint() {
return compilerToVM().getFingerprint(getMetaspaceKlass());
}
synchronized HotSpotResolvedJavaMethod createMethod(long metaspaceMethod) {
HotSpotResolvedJavaMethodImpl method = null;
if (methodCache == null) {
methodCache = new HashMap<>(8);
} else {
method = methodCache.get(metaspaceMethod);
}
if (method == null) {
method = new HotSpotResolvedJavaMethodImpl(this, metaspaceMethod);
methodCache.put(metaspaceMethod, method);
context.add(method);
}
return method;
}
public int getVtableLength() {
HotSpotVMConfig config = config();
if (isInterface() || isArray()) {
/* Everything has the core vtable of java.lang.Object */
return config.baseVtableLength();
}
int result = UNSAFE.getInt(getMetaspaceKlass() + config.klassVtableLengthOffset) / (config.vtableEntrySize / config.heapWordSize);
assert result >= config.baseVtableLength() : UNSAFE.getInt(getMetaspaceKlass() + config.klassVtableLengthOffset) + " " + config.vtableEntrySize;
return result;
}
synchronized HotSpotResolvedJavaField createField(String fieldName, JavaType type, long offset, int rawFlags) {
HotSpotResolvedJavaField result = null;
final int flags = rawFlags & HotSpotModifiers.jvmFieldModifiers();
final long id = offset + ((long) flags << 32);
// Must cache the fields, because the local load elimination only works if the
// objects from two field lookups are identical.
if (fieldCache == null) {
fieldCache = new HashMap<>(8);
} else {
result = fieldCache.get(id);
}
if (result == null) {
result = new HotSpotResolvedJavaFieldImpl(this, fieldName, type, offset, rawFlags);
fieldCache.put(id, result);
} else {
assert result.getName().equals(fieldName);
/*
* Comparing the types directly is too strict, because the type in the cache could be
* resolved while the incoming type is unresolved. The name comparison is sufficient
* because the type will always be resolved in the context of the holder.
*/
assert result.getType().getName().equals(type.getName());
assert result.offset() == offset;
assert result.getModifiers() == flags;
}
return result;
}
@Override
public AssumptionResult<ResolvedJavaMethod> findUniqueConcreteMethod(ResolvedJavaMethod method) {
HotSpotResolvedJavaMethod hmethod = (HotSpotResolvedJavaMethod) method;
HotSpotResolvedObjectType declaredHolder = hmethod.getDeclaringClass();
/*
* Sometimes the receiver type in the graph hasn't stabilized to a subtype of declared
* holder, usually because of phis, so make sure that the type is related to the declared
* type before using it for lookup. Unlinked types should also be ignored because we can't
* resolve the proper method to invoke. Generally unlinked types in invokes should result in
* a deopt instead since they can't really be used if they aren't linked yet.
*/
if (!declaredHolder.isAssignableFrom(this) || this.isArray() || this.equals(declaredHolder) || !isLinked() || isInterface()) {
ResolvedJavaMethod result = hmethod.uniqueConcreteMethod(declaredHolder);
if (result != null) {
return new AssumptionResult<>(result, new ConcreteMethod(method, declaredHolder, result));
}
return null;
}
/*
* The holder may be a subtype of the declaredHolder so make sure to resolve the method to
* the correct method for the subtype.
*/
HotSpotResolvedJavaMethod resolvedMethod = (HotSpotResolvedJavaMethod) resolveMethod(hmethod, this);
if (resolvedMethod == null) {
// The type isn't known to implement the method.
return null;
}
ResolvedJavaMethod result = resolvedMethod.uniqueConcreteMethod(this);
if (result != null) {
return new AssumptionResult<>(result, new ConcreteMethod(method, this, result));
}
return null;
}
/**
* This class represents the field information for one field contained in the fields array of an
* {@code InstanceKlass}. The implementation is similar to the native {@code FieldInfo} class.
*/
private class FieldInfo {
/**
* Native pointer into the array of Java shorts.
*/
private final long metaspaceData;
/**
* Creates a field info for the field in the fields array at index {@code index}.
*
* @param index index to the fields array
*/
FieldInfo(int index) {
HotSpotVMConfig config = config();
// Get Klass::_fields
final long metaspaceFields = UNSAFE.getAddress(getMetaspaceKlass() + config.instanceKlassFieldsOffset);
assert config.fieldInfoFieldSlots == 6 : "revisit the field parsing code";
int offset = config.fieldInfoFieldSlots * Short.BYTES * index;
metaspaceData = metaspaceFields + config.arrayU2DataOffset + offset;
}
private int getAccessFlags() {
return readFieldSlot(config().fieldInfoAccessFlagsOffset);
}
private int getNameIndex() {
return readFieldSlot(config().fieldInfoNameIndexOffset);
}
private int getSignatureIndex() {
return readFieldSlot(config().fieldInfoSignatureIndexOffset);
}
public int getOffset() {
HotSpotVMConfig config = config();
final int lowPacked = readFieldSlot(config.fieldInfoLowPackedOffset);
final int highPacked = readFieldSlot(config.fieldInfoHighPackedOffset);
final int offset = ((highPacked << Short.SIZE) | lowPacked) >> config.fieldInfoTagSize;
return offset;
}
/**
* Helper method to read an entry (slot) from the field array. Currently field info is laid
* on top an array of Java shorts.
*/
private int readFieldSlot(int index) {
int offset = Short.BYTES * index;
return UNSAFE.getChar(metaspaceData + offset);
}
/**
* Returns the name of this field as a {@link String}. If the field is an internal field the
* name index is pointing into the vmSymbols table.
*/
public String getName() {
final int nameIndex = getNameIndex();
return isInternal() ? config().symbolAt(nameIndex) : getConstantPool().lookupUtf8(nameIndex);
}
/**
* Returns the signature of this field as {@link String}. If the field is an internal field
* the signature index is pointing into the vmSymbols table.
*/
public String getSignature() {
final int signatureIndex = getSignatureIndex();
return isInternal() ? config().symbolAt(signatureIndex) : getConstantPool().lookupUtf8(signatureIndex);
}
public JavaType getType() {
String signature = getSignature();
return runtime().lookupType(signature, HotSpotResolvedObjectTypeImpl.this, false);
}
private boolean isInternal() {
return (getAccessFlags() & config().jvmAccFieldInternal) != 0;
}
public boolean isStatic() {
return Modifier.isStatic(getAccessFlags());
}
public boolean hasGenericSignature() {
return (getAccessFlags() & config().jvmAccFieldHasGenericSignature) != 0;
}
}
@SuppressFBWarnings(value = "SE_COMPARATOR_SHOULD_BE_SERIALIZABLE", justification = "comparator is only used transiently")
private static class OffsetComparator implements java.util.Comparator<HotSpotResolvedJavaField> {
@Override
public int compare(HotSpotResolvedJavaField o1, HotSpotResolvedJavaField o2) {
return o1.offset() - o2.offset();
}
}
@Override
public ResolvedJavaField[] getInstanceFields(boolean includeSuperclasses) {
if (instanceFields == null) {
if (isArray() || isInterface()) {
instanceFields = new HotSpotResolvedJavaField[0];
} else {
final int fieldCount = getFieldCount();
ArrayList<HotSpotResolvedJavaField> fieldsArray = new ArrayList<>(fieldCount);
for (int i = 0; i < fieldCount; i++) {
FieldInfo field = new FieldInfo(i);
// We are only interested in instance fields.
if (!field.isStatic()) {
HotSpotResolvedJavaField resolvedJavaField = createField(field.getName(), field.getType(), field.getOffset(), field.getAccessFlags());
fieldsArray.add(resolvedJavaField);
}
}
fieldsArray.sort(new OffsetComparator());
HotSpotResolvedJavaField[] myFields = fieldsArray.toArray(new HotSpotResolvedJavaField[0]);
if (mirror() != Object.class) {
HotSpotResolvedJavaField[] superFields = (HotSpotResolvedJavaField[]) getSuperclass().getInstanceFields(true);
HotSpotResolvedJavaField[] fields = Arrays.copyOf(superFields, superFields.length + myFields.length);
System.arraycopy(myFields, 0, fields, superFields.length, myFields.length);
instanceFields = fields;
} else {
assert myFields.length == 0 : "java.lang.Object has fields!";
instanceFields = myFields;
}
}
}
if (!includeSuperclasses) {
int myFieldsStart = 0;
while (myFieldsStart < instanceFields.length && !instanceFields[myFieldsStart].getDeclaringClass().equals(this)) {
myFieldsStart++;
}
if (myFieldsStart == 0) {
return instanceFields;
}
if (myFieldsStart == instanceFields.length) {
return new HotSpotResolvedJavaField[0];
}
return Arrays.copyOfRange(instanceFields, myFieldsStart, instanceFields.length);
}
return instanceFields;
}
@Override
public ResolvedJavaField[] getStaticFields() {
if (isArray()) {
return new HotSpotResolvedJavaField[0];
} else {
final int fieldCount = getFieldCount();
ArrayList<HotSpotResolvedJavaField> fieldsArray = new ArrayList<>(fieldCount);
for (int i = 0; i < fieldCount; i++) {
FieldInfo field = new FieldInfo(i);
// We are only interested in static fields.
if (field.isStatic()) {
HotSpotResolvedJavaField resolvedJavaField = createField(field.getName(), field.getType(), field.getOffset(), field.getAccessFlags());
fieldsArray.add(resolvedJavaField);
}
}
fieldsArray.sort(new OffsetComparator());
return fieldsArray.toArray(new HotSpotResolvedJavaField[fieldsArray.size()]);
}
}
/**
* Returns the actual field count of this class's internal {@code InstanceKlass::_fields} array
* by walking the array and discounting the generic signature slots at the end of the array.
*
* <p>
* See {@code FieldStreamBase::init_generic_signature_start_slot}
*/
private int getFieldCount() {
HotSpotVMConfig config = config();
final long metaspaceFields = UNSAFE.getAddress(getMetaspaceKlass() + config.instanceKlassFieldsOffset);
int metaspaceFieldsLength = UNSAFE.getInt(metaspaceFields + config.arrayU1LengthOffset);
int fieldCount = 0;
for (int i = 0, index = 0; i < metaspaceFieldsLength; i += config.fieldInfoFieldSlots, index++) {
FieldInfo field = new FieldInfo(index);
if (field.hasGenericSignature()) {
metaspaceFieldsLength--;
}
fieldCount++;
}
return fieldCount;
}
@Override
public Class<?> mirror() {
return javaClass;
}
@Override
public String getSourceFileName() {
HotSpotVMConfig config = config();
final int sourceFileNameIndex = UNSAFE.getChar(getMetaspaceKlass() + config.instanceKlassSourceFileNameIndexOffset);
if (sourceFileNameIndex == 0) {
return null;
}
return getConstantPool().lookupUtf8(sourceFileNameIndex);
}
@Override
public Annotation[] getAnnotations() {
return mirror().getAnnotations();
}
@Override
public Annotation[] getDeclaredAnnotations() {
return mirror().getDeclaredAnnotations();
}
@Override
public <T extends Annotation> T getAnnotation(Class<T> annotationClass) {
return mirror().getAnnotation(annotationClass);
}
/**
* Performs a fast-path check that this type is resolved in the context of a given accessing
* class. A negative result does not mean this type is not resolved with respect to
* {@code accessingClass}. That can only be determined by
* {@linkplain HotSpotJVMCIRuntime#lookupType(String, HotSpotResolvedObjectType, boolean)
* re-resolving} the type.
*/
public boolean isDefinitelyResolvedWithRespectTo(ResolvedJavaType accessingClass) {
assert accessingClass != null;
ResolvedJavaType elementType = getElementalType();
if (elementType.isPrimitive()) {
// Primitive type resolution is context free.
return true;
}
if (elementType.getName().startsWith("Ljava/")) {
// Classes in a java.* package can only be defined by the
// boot class loader. This is enforced by ClassLoader.preDefineClass()
assert mirror().getClassLoader() == null;
return true;
}
ClassLoader thisCl = mirror().getClassLoader();
ClassLoader accessingClassCl = ((HotSpotResolvedObjectTypeImpl) accessingClass).mirror().getClassLoader();
return thisCl == accessingClassCl;
}
@Override
public ResolvedJavaType resolve(ResolvedJavaType accessingClass) {
if (isDefinitelyResolvedWithRespectTo(requireNonNull(accessingClass))) {
return this;
}
HotSpotResolvedObjectTypeImpl accessingType = (HotSpotResolvedObjectTypeImpl) accessingClass;
return (ResolvedJavaType) runtime().lookupType(getName(), accessingType, true);
}
/**
* Gets the metaspace Klass boxed in a {@link JavaConstant}.
*/
public Constant klass() {
return HotSpotMetaspaceConstantImpl.forMetaspaceObject(this, false);
}
public boolean isPrimaryType() {
return config().secondarySuperCacheOffset != superCheckOffset();
}
public int superCheckOffset() {
HotSpotVMConfig config = config();
return UNSAFE.getInt(getMetaspaceKlass() + config.superCheckOffsetOffset);
}
public long prototypeMarkWord() {
HotSpotVMConfig config = config();
if (isArray()) {
return config.arrayPrototypeMarkWord();
} else {
return UNSAFE.getAddress(getMetaspaceKlass() + config.prototypeMarkWordOffset);
}
}
@Override
public ResolvedJavaField findInstanceFieldWithOffset(long offset, JavaKind expectedEntryKind) {
ResolvedJavaField[] declaredFields = getInstanceFields(true);
for (ResolvedJavaField field : declaredFields) {
HotSpotResolvedJavaField resolvedField = (HotSpotResolvedJavaField) field;
long resolvedFieldOffset = resolvedField.offset();
// @formatter:off
if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN &&
expectedEntryKind.isPrimitive() &&
!expectedEntryKind.equals(JavaKind.Void) &&
resolvedField.getJavaKind().isPrimitive()) {
resolvedFieldOffset +=
resolvedField.getJavaKind().getByteCount() -
Math.min(resolvedField.getJavaKind().getByteCount(), 4 + expectedEntryKind.getByteCount());
}
if (resolvedFieldOffset == offset) {
return field;
}
// @formatter:on
}
return null;
}
@Override
public boolean isLocal() {
return mirror().isLocalClass();
}
@Override
public boolean isMember() {
return mirror().isMemberClass();
}
@Override
public HotSpotResolvedObjectTypeImpl getEnclosingType() {
final Class<?> encl = mirror().getEnclosingClass();
return encl == null ? null : fromObjectClass(encl);
}
@Override
public ResolvedJavaMethod[] getDeclaredConstructors() {
Constructor<?>[] constructors = mirror().getDeclaredConstructors();
ResolvedJavaMethod[] result = new ResolvedJavaMethod[constructors.length];
for (int i = 0; i < constructors.length; i++) {
result[i] = runtime().getHostJVMCIBackend().getMetaAccess().lookupJavaMethod(constructors[i]);
assert result[i].isConstructor();
}
return result;
}
@Override
public ResolvedJavaMethod[] getDeclaredMethods() {
Method[] methods = mirror().getDeclaredMethods();
ResolvedJavaMethod[] result = new ResolvedJavaMethod[methods.length];
for (int i = 0; i < methods.length; i++) {
result[i] = runtime().getHostJVMCIBackend().getMetaAccess().lookupJavaMethod(methods[i]);
assert !result[i].isConstructor();
}
return result;
}
public ResolvedJavaMethod getClassInitializer() {
return compilerToVM().getClassInitializer(this);
}
@Override
public String toString() {
return "HotSpotType<" + getName() + ", resolved>";
}
@Override
public boolean isCloneableWithAllocation() {
return (getAccessFlags() & config().jvmAccIsCloneableFast) != 0;
}
}