blob: 37e63dc9aba0c099435af18c675f46dd1c861aa0 [file] [log] [blame]
//
// Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
// Copyright (c) 2014, Red Hat Inc. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// AArch64 Architecture Description File
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name ( register save type, C convention save type,
// ideal register type, encoding );
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call
// sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// We must define the 64 bit int registers in two 32 bit halves, the
// real lower register and a virtual upper half register. upper halves
// are used by the register allocator but are not actually supplied as
// operands to memory ops.
//
// follow the C1 compiler in making registers
//
// r0-r7,r10-r26 volatile (caller save)
// r27-r32 system (no save, no allocate)
// r8-r9 invisible to the allocator (so we can use them as scratch regs)
//
// as regards Java usage. we don't use any callee save registers
// because this makes it difficult to de-optimise a frame (see comment
// in x86 implementation of Deoptimization::unwind_callee_save_values)
//
// General Registers
reg_def R0 ( SOC, SOC, Op_RegI, 0, r0->as_VMReg() );
reg_def R0_H ( SOC, SOC, Op_RegI, 0, r0->as_VMReg()->next() );
reg_def R1 ( SOC, SOC, Op_RegI, 1, r1->as_VMReg() );
reg_def R1_H ( SOC, SOC, Op_RegI, 1, r1->as_VMReg()->next() );
reg_def R2 ( SOC, SOC, Op_RegI, 2, r2->as_VMReg() );
reg_def R2_H ( SOC, SOC, Op_RegI, 2, r2->as_VMReg()->next() );
reg_def R3 ( SOC, SOC, Op_RegI, 3, r3->as_VMReg() );
reg_def R3_H ( SOC, SOC, Op_RegI, 3, r3->as_VMReg()->next() );
reg_def R4 ( SOC, SOC, Op_RegI, 4, r4->as_VMReg() );
reg_def R4_H ( SOC, SOC, Op_RegI, 4, r4->as_VMReg()->next() );
reg_def R5 ( SOC, SOC, Op_RegI, 5, r5->as_VMReg() );
reg_def R5_H ( SOC, SOC, Op_RegI, 5, r5->as_VMReg()->next() );
reg_def R6 ( SOC, SOC, Op_RegI, 6, r6->as_VMReg() );
reg_def R6_H ( SOC, SOC, Op_RegI, 6, r6->as_VMReg()->next() );
reg_def R7 ( SOC, SOC, Op_RegI, 7, r7->as_VMReg() );
reg_def R7_H ( SOC, SOC, Op_RegI, 7, r7->as_VMReg()->next() );
reg_def R10 ( SOC, SOC, Op_RegI, 10, r10->as_VMReg() );
reg_def R10_H ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
reg_def R11 ( SOC, SOC, Op_RegI, 11, r11->as_VMReg() );
reg_def R11_H ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
reg_def R12 ( SOC, SOC, Op_RegI, 12, r12->as_VMReg() );
reg_def R12_H ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()->next());
reg_def R13 ( SOC, SOC, Op_RegI, 13, r13->as_VMReg() );
reg_def R13_H ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()->next());
reg_def R14 ( SOC, SOC, Op_RegI, 14, r14->as_VMReg() );
reg_def R14_H ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()->next());
reg_def R15 ( SOC, SOC, Op_RegI, 15, r15->as_VMReg() );
reg_def R15_H ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()->next());
reg_def R16 ( SOC, SOC, Op_RegI, 16, r16->as_VMReg() );
reg_def R16_H ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next());
reg_def R17 ( SOC, SOC, Op_RegI, 17, r17->as_VMReg() );
reg_def R17_H ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next());
reg_def R18 ( SOC, SOC, Op_RegI, 18, r18->as_VMReg() );
reg_def R18_H ( SOC, SOC, Op_RegI, 18, r18->as_VMReg()->next());
reg_def R19 ( SOC, SOE, Op_RegI, 19, r19->as_VMReg() );
reg_def R19_H ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()->next());
reg_def R20 ( SOC, SOE, Op_RegI, 20, r20->as_VMReg() ); // caller esp
reg_def R20_H ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()->next());
reg_def R21 ( SOC, SOE, Op_RegI, 21, r21->as_VMReg() );
reg_def R21_H ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()->next());
reg_def R22 ( SOC, SOE, Op_RegI, 22, r22->as_VMReg() );
reg_def R22_H ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()->next());
reg_def R23 ( SOC, SOE, Op_RegI, 23, r23->as_VMReg() );
reg_def R23_H ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()->next());
reg_def R24 ( SOC, SOE, Op_RegI, 24, r24->as_VMReg() );
reg_def R24_H ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()->next());
reg_def R25 ( SOC, SOE, Op_RegI, 25, r25->as_VMReg() );
reg_def R25_H ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()->next());
reg_def R26 ( SOC, SOE, Op_RegI, 26, r26->as_VMReg() );
reg_def R26_H ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()->next());
reg_def R27 ( NS, SOE, Op_RegI, 27, r27->as_VMReg() ); // heapbase
reg_def R27_H ( NS, SOE, Op_RegI, 27, r27->as_VMReg()->next());
reg_def R28 ( NS, SOE, Op_RegI, 28, r28->as_VMReg() ); // thread
reg_def R28_H ( NS, SOE, Op_RegI, 28, r28->as_VMReg()->next());
reg_def R29 ( NS, NS, Op_RegI, 29, r29->as_VMReg() ); // fp
reg_def R29_H ( NS, NS, Op_RegI, 29, r29->as_VMReg()->next());
reg_def R30 ( NS, NS, Op_RegI, 30, r30->as_VMReg() ); // lr
reg_def R30_H ( NS, NS, Op_RegI, 30, r30->as_VMReg()->next());
reg_def R31 ( NS, NS, Op_RegI, 31, r31_sp->as_VMReg() ); // sp
reg_def R31_H ( NS, NS, Op_RegI, 31, r31_sp->as_VMReg()->next());
// ----------------------------
// Float/Double Registers
// ----------------------------
// Double Registers
// The rules of ADL require that double registers be defined in pairs.
// Each pair must be two 32-bit values, but not necessarily a pair of
// single float registers. In each pair, ADLC-assigned register numbers
// must be adjacent, with the lower number even. Finally, when the
// CPU stores such a register pair to memory, the word associated with
// the lower ADLC-assigned number must be stored to the lower address.
// AArch64 has 32 floating-point registers. Each can store a vector of
// single or double precision floating-point values up to 8 * 32
// floats, 4 * 64 bit floats or 2 * 128 bit floats. We currently only
// use the first float or double element of the vector.
// for Java use float registers v0-v15 are always save on call whereas
// the platform ABI treats v8-v15 as callee save). float registers
// v16-v31 are SOC as per the platform spec
reg_def V0 ( SOC, SOC, Op_RegF, 0, v0->as_VMReg() );
reg_def V0_H ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next() );
reg_def V0_J ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(2) );
reg_def V0_K ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(3) );
reg_def V1 ( SOC, SOC, Op_RegF, 1, v1->as_VMReg() );
reg_def V1_H ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next() );
reg_def V1_J ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(2) );
reg_def V1_K ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(3) );
reg_def V2 ( SOC, SOC, Op_RegF, 2, v2->as_VMReg() );
reg_def V2_H ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next() );
reg_def V2_J ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(2) );
reg_def V2_K ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(3) );
reg_def V3 ( SOC, SOC, Op_RegF, 3, v3->as_VMReg() );
reg_def V3_H ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next() );
reg_def V3_J ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(2) );
reg_def V3_K ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(3) );
reg_def V4 ( SOC, SOC, Op_RegF, 4, v4->as_VMReg() );
reg_def V4_H ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next() );
reg_def V4_J ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(2) );
reg_def V4_K ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(3) );
reg_def V5 ( SOC, SOC, Op_RegF, 5, v5->as_VMReg() );
reg_def V5_H ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next() );
reg_def V5_J ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(2) );
reg_def V5_K ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(3) );
reg_def V6 ( SOC, SOC, Op_RegF, 6, v6->as_VMReg() );
reg_def V6_H ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next() );
reg_def V6_J ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(2) );
reg_def V6_K ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(3) );
reg_def V7 ( SOC, SOC, Op_RegF, 7, v7->as_VMReg() );
reg_def V7_H ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next() );
reg_def V7_J ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(2) );
reg_def V7_K ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(3) );
reg_def V8 ( SOC, SOC, Op_RegF, 8, v8->as_VMReg() );
reg_def V8_H ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next() );
reg_def V8_J ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(2) );
reg_def V8_K ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(3) );
reg_def V9 ( SOC, SOC, Op_RegF, 9, v9->as_VMReg() );
reg_def V9_H ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next() );
reg_def V9_J ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(2) );
reg_def V9_K ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(3) );
reg_def V10 ( SOC, SOC, Op_RegF, 10, v10->as_VMReg() );
reg_def V10_H( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next() );
reg_def V10_J( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(2));
reg_def V10_K( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(3));
reg_def V11 ( SOC, SOC, Op_RegF, 11, v11->as_VMReg() );
reg_def V11_H( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next() );
reg_def V11_J( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(2));
reg_def V11_K( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(3));
reg_def V12 ( SOC, SOC, Op_RegF, 12, v12->as_VMReg() );
reg_def V12_H( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next() );
reg_def V12_J( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(2));
reg_def V12_K( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(3));
reg_def V13 ( SOC, SOC, Op_RegF, 13, v13->as_VMReg() );
reg_def V13_H( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next() );
reg_def V13_J( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(2));
reg_def V13_K( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(3));
reg_def V14 ( SOC, SOC, Op_RegF, 14, v14->as_VMReg() );
reg_def V14_H( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next() );
reg_def V14_J( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(2));
reg_def V14_K( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(3));
reg_def V15 ( SOC, SOC, Op_RegF, 15, v15->as_VMReg() );
reg_def V15_H( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next() );
reg_def V15_J( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(2));
reg_def V15_K( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(3));
reg_def V16 ( SOC, SOC, Op_RegF, 16, v16->as_VMReg() );
reg_def V16_H( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next() );
reg_def V16_J( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(2));
reg_def V16_K( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(3));
reg_def V17 ( SOC, SOC, Op_RegF, 17, v17->as_VMReg() );
reg_def V17_H( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next() );
reg_def V17_J( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(2));
reg_def V17_K( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(3));
reg_def V18 ( SOC, SOC, Op_RegF, 18, v18->as_VMReg() );
reg_def V18_H( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next() );
reg_def V18_J( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(2));
reg_def V18_K( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(3));
reg_def V19 ( SOC, SOC, Op_RegF, 19, v19->as_VMReg() );
reg_def V19_H( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next() );
reg_def V19_J( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(2));
reg_def V19_K( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(3));
reg_def V20 ( SOC, SOC, Op_RegF, 20, v20->as_VMReg() );
reg_def V20_H( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next() );
reg_def V20_J( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(2));
reg_def V20_K( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(3));
reg_def V21 ( SOC, SOC, Op_RegF, 21, v21->as_VMReg() );
reg_def V21_H( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next() );
reg_def V21_J( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(2));
reg_def V21_K( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(3));
reg_def V22 ( SOC, SOC, Op_RegF, 22, v22->as_VMReg() );
reg_def V22_H( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next() );
reg_def V22_J( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(2));
reg_def V22_K( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(3));
reg_def V23 ( SOC, SOC, Op_RegF, 23, v23->as_VMReg() );
reg_def V23_H( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next() );
reg_def V23_J( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(2));
reg_def V23_K( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(3));
reg_def V24 ( SOC, SOC, Op_RegF, 24, v24->as_VMReg() );
reg_def V24_H( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next() );
reg_def V24_J( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(2));
reg_def V24_K( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(3));
reg_def V25 ( SOC, SOC, Op_RegF, 25, v25->as_VMReg() );
reg_def V25_H( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next() );
reg_def V25_J( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(2));
reg_def V25_K( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(3));
reg_def V26 ( SOC, SOC, Op_RegF, 26, v26->as_VMReg() );
reg_def V26_H( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next() );
reg_def V26_J( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(2));
reg_def V26_K( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(3));
reg_def V27 ( SOC, SOC, Op_RegF, 27, v27->as_VMReg() );
reg_def V27_H( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next() );
reg_def V27_J( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(2));
reg_def V27_K( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(3));
reg_def V28 ( SOC, SOC, Op_RegF, 28, v28->as_VMReg() );
reg_def V28_H( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next() );
reg_def V28_J( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(2));
reg_def V28_K( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(3));
reg_def V29 ( SOC, SOC, Op_RegF, 29, v29->as_VMReg() );
reg_def V29_H( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next() );
reg_def V29_J( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(2));
reg_def V29_K( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(3));
reg_def V30 ( SOC, SOC, Op_RegF, 30, v30->as_VMReg() );
reg_def V30_H( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next() );
reg_def V30_J( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(2));
reg_def V30_K( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(3));
reg_def V31 ( SOC, SOC, Op_RegF, 31, v31->as_VMReg() );
reg_def V31_H( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next() );
reg_def V31_J( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(2));
reg_def V31_K( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(3));
// ----------------------------
// Special Registers
// ----------------------------
// the AArch64 CSPR status flag register is not directly acessible as
// instruction operand. the FPSR status flag register is a system
// register which can be written/read using MSR/MRS but again does not
// appear as an operand (a code identifying the FSPR occurs as an
// immediate value in the instruction).
reg_def RFLAGS(SOC, SOC, 0, 32, VMRegImpl::Bad());
// Specify priority of register selection within phases of register
// allocation. Highest priority is first. A useful heuristic is to
// give registers a low priority when they are required by machine
// instructions, like EAX and EDX on I486, and choose no-save registers
// before save-on-call, & save-on-call before save-on-entry. Registers
// which participate in fixed calling sequences should come last.
// Registers which are used as pairs must fall on an even boundary.
alloc_class chunk0(
// volatiles
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H,
R15, R15_H,
R16, R16_H,
R17, R17_H,
R18, R18_H,
// arg registers
R0, R0_H,
R1, R1_H,
R2, R2_H,
R3, R3_H,
R4, R4_H,
R5, R5_H,
R6, R6_H,
R7, R7_H,
// non-volatiles
R19, R19_H,
R20, R20_H,
R21, R21_H,
R22, R22_H,
R23, R23_H,
R24, R24_H,
R25, R25_H,
R26, R26_H,
// non-allocatable registers
R27, R27_H, // heapbase
R28, R28_H, // thread
R29, R29_H, // fp
R30, R30_H, // lr
R31, R31_H, // sp
);
alloc_class chunk1(
// no save
V16, V16_H, V16_J, V16_K,
V17, V17_H, V17_J, V17_K,
V18, V18_H, V18_J, V18_K,
V19, V19_H, V19_J, V19_K,
V20, V20_H, V20_J, V20_K,
V21, V21_H, V21_J, V21_K,
V22, V22_H, V22_J, V22_K,
V23, V23_H, V23_J, V23_K,
V24, V24_H, V24_J, V24_K,
V25, V25_H, V25_J, V25_K,
V26, V26_H, V26_J, V26_K,
V27, V27_H, V27_J, V27_K,
V28, V28_H, V28_J, V28_K,
V29, V29_H, V29_J, V29_K,
V30, V30_H, V30_J, V30_K,
V31, V31_H, V31_J, V31_K,
// arg registers
V0, V0_H, V0_J, V0_K,
V1, V1_H, V1_J, V1_K,
V2, V2_H, V2_J, V2_K,
V3, V3_H, V3_J, V3_K,
V4, V4_H, V4_J, V4_K,
V5, V5_H, V5_J, V5_K,
V6, V6_H, V6_J, V6_K,
V7, V7_H, V7_J, V7_K,
// non-volatiles
V8, V8_H, V8_J, V8_K,
V9, V9_H, V9_J, V9_K,
V10, V10_H, V10_J, V10_K,
V11, V11_H, V11_J, V11_K,
V12, V12_H, V12_J, V12_K,
V13, V13_H, V13_J, V13_K,
V14, V14_H, V14_J, V14_K,
V15, V15_H, V15_J, V15_K,
);
alloc_class chunk2(RFLAGS);
//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg ( /* as def'd in frame section */ )
// 2) reg_class compiler_method_oop_reg ( /* as def'd in frame section */ )
// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// Class for all 32 bit integer registers -- excludes SP which will
// never be used as an integer register
reg_class any_reg32(
R0,
R1,
R2,
R3,
R4,
R5,
R6,
R7,
R10,
R11,
R12,
R13,
R14,
R15,
R16,
R17,
R18,
R19,
R20,
R21,
R22,
R23,
R24,
R25,
R26,
R27,
R28,
R29,
R30
);
// Singleton class for R0 int register
reg_class int_r0_reg(R0);
// Singleton class for R2 int register
reg_class int_r2_reg(R2);
// Singleton class for R3 int register
reg_class int_r3_reg(R3);
// Singleton class for R4 int register
reg_class int_r4_reg(R4);
// Class for all long integer registers (including RSP)
reg_class any_reg(
R0, R0_H,
R1, R1_H,
R2, R2_H,
R3, R3_H,
R4, R4_H,
R5, R5_H,
R6, R6_H,
R7, R7_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H,
R15, R15_H,
R16, R16_H,
R17, R17_H,
R18, R18_H,
R19, R19_H,
R20, R20_H,
R21, R21_H,
R22, R22_H,
R23, R23_H,
R24, R24_H,
R25, R25_H,
R26, R26_H,
R27, R27_H,
R28, R28_H,
R29, R29_H,
R30, R30_H,
R31, R31_H
);
// Class for all non-special integer registers
reg_class no_special_reg32_no_fp(
R0,
R1,
R2,
R3,
R4,
R5,
R6,
R7,
R10,
R11,
R12, // rmethod
R13,
R14,
R15,
R16,
R17,
R18,
R19,
R20,
R21,
R22,
R23,
R24,
R25,
R26
/* R27, */ // heapbase
/* R28, */ // thread
/* R29, */ // fp
/* R30, */ // lr
/* R31 */ // sp
);
reg_class no_special_reg32_with_fp(
R0,
R1,
R2,
R3,
R4,
R5,
R6,
R7,
R10,
R11,
R12, // rmethod
R13,
R14,
R15,
R16,
R17,
R18,
R19,
R20,
R21,
R22,
R23,
R24,
R25,
R26
/* R27, */ // heapbase
/* R28, */ // thread
/* R29, */ // fp
/* R30, */ // lr
/* R31 */ // sp
);
reg_class_dynamic no_special_reg32(no_special_reg32_no_fp, no_special_reg32_with_fp, %{ PreserveFramePointer %});
// Class for all non-special long integer registers
reg_class no_special_reg_no_fp(
R0, R0_H,
R1, R1_H,
R2, R2_H,
R3, R3_H,
R4, R4_H,
R5, R5_H,
R6, R6_H,
R7, R7_H,
R10, R10_H,
R11, R11_H,
R12, R12_H, // rmethod
R13, R13_H,
R14, R14_H,
R15, R15_H,
R16, R16_H,
R17, R17_H,
R18, R18_H,
R19, R19_H,
R20, R20_H,
R21, R21_H,
R22, R22_H,
R23, R23_H,
R24, R24_H,
R25, R25_H,
R26, R26_H,
/* R27, R27_H, */ // heapbase
/* R28, R28_H, */ // thread
/* R29, R29_H, */ // fp
/* R30, R30_H, */ // lr
/* R31, R31_H */ // sp
);
reg_class no_special_reg_with_fp(
R0, R0_H,
R1, R1_H,
R2, R2_H,
R3, R3_H,
R4, R4_H,
R5, R5_H,
R6, R6_H,
R7, R7_H,
R10, R10_H,
R11, R11_H,
R12, R12_H, // rmethod
R13, R13_H,
R14, R14_H,
R15, R15_H,
R16, R16_H,
R17, R17_H,
R18, R18_H,
R19, R19_H,
R20, R20_H,
R21, R21_H,
R22, R22_H,
R23, R23_H,
R24, R24_H,
R25, R25_H,
R26, R26_H,
/* R27, R27_H, */ // heapbase
/* R28, R28_H, */ // thread
/* R29, R29_H, */ // fp
/* R30, R30_H, */ // lr
/* R31, R31_H */ // sp
);
reg_class_dynamic no_special_reg(no_special_reg_no_fp, no_special_reg_with_fp, %{ PreserveFramePointer %});
// Class for 64 bit register r0
reg_class r0_reg(
R0, R0_H
);
// Class for 64 bit register r1
reg_class r1_reg(
R1, R1_H
);
// Class for 64 bit register r2
reg_class r2_reg(
R2, R2_H
);
// Class for 64 bit register r3
reg_class r3_reg(
R3, R3_H
);
// Class for 64 bit register r4
reg_class r4_reg(
R4, R4_H
);
// Class for 64 bit register r5
reg_class r5_reg(
R5, R5_H
);
// Class for 64 bit register r10
reg_class r10_reg(
R10, R10_H
);
// Class for 64 bit register r11
reg_class r11_reg(
R11, R11_H
);
// Class for method register
reg_class method_reg(
R12, R12_H
);
// Class for heapbase register
reg_class heapbase_reg(
R27, R27_H
);
// Class for thread register
reg_class thread_reg(
R28, R28_H
);
// Class for frame pointer register
reg_class fp_reg(
R29, R29_H
);
// Class for link register
reg_class lr_reg(
R30, R30_H
);
// Class for long sp register
reg_class sp_reg(
R31, R31_H
);
// Class for all pointer registers
reg_class ptr_reg(
R0, R0_H,
R1, R1_H,
R2, R2_H,
R3, R3_H,
R4, R4_H,
R5, R5_H,
R6, R6_H,
R7, R7_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H,
R15, R15_H,
R16, R16_H,
R17, R17_H,
R18, R18_H,
R19, R19_H,
R20, R20_H,
R21, R21_H,
R22, R22_H,
R23, R23_H,
R24, R24_H,
R25, R25_H,
R26, R26_H,
R27, R27_H,
R28, R28_H,
R29, R29_H,
R30, R30_H,
R31, R31_H
);
// Class for all non_special pointer registers
reg_class no_special_ptr_reg(
R0, R0_H,
R1, R1_H,
R2, R2_H,
R3, R3_H,
R4, R4_H,
R5, R5_H,
R6, R6_H,
R7, R7_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H,
R15, R15_H,
R16, R16_H,
R17, R17_H,
R18, R18_H,
R19, R19_H,
R20, R20_H,
R21, R21_H,
R22, R22_H,
R23, R23_H,
R24, R24_H,
R25, R25_H,
R26, R26_H,
/* R27, R27_H, */ // heapbase
/* R28, R28_H, */ // thread
/* R29, R29_H, */ // fp
/* R30, R30_H, */ // lr
/* R31, R31_H */ // sp
);
// Class for all float registers
reg_class float_reg(
V0,
V1,
V2,
V3,
V4,
V5,
V6,
V7,
V8,
V9,
V10,
V11,
V12,
V13,
V14,
V15,
V16,
V17,
V18,
V19,
V20,
V21,
V22,
V23,
V24,
V25,
V26,
V27,
V28,
V29,
V30,
V31
);
// Double precision float registers have virtual `high halves' that
// are needed by the allocator.
// Class for all double registers
reg_class double_reg(
V0, V0_H,
V1, V1_H,
V2, V2_H,
V3, V3_H,
V4, V4_H,
V5, V5_H,
V6, V6_H,
V7, V7_H,
V8, V8_H,
V9, V9_H,
V10, V10_H,
V11, V11_H,
V12, V12_H,
V13, V13_H,
V14, V14_H,
V15, V15_H,
V16, V16_H,
V17, V17_H,
V18, V18_H,
V19, V19_H,
V20, V20_H,
V21, V21_H,
V22, V22_H,
V23, V23_H,
V24, V24_H,
V25, V25_H,
V26, V26_H,
V27, V27_H,
V28, V28_H,
V29, V29_H,
V30, V30_H,
V31, V31_H
);
// Class for all 64bit vector registers
reg_class vectord_reg(
V0, V0_H,
V1, V1_H,
V2, V2_H,
V3, V3_H,
V4, V4_H,
V5, V5_H,
V6, V6_H,
V7, V7_H,
V8, V8_H,
V9, V9_H,
V10, V10_H,
V11, V11_H,
V12, V12_H,
V13, V13_H,
V14, V14_H,
V15, V15_H,
V16, V16_H,
V17, V17_H,
V18, V18_H,
V19, V19_H,
V20, V20_H,
V21, V21_H,
V22, V22_H,
V23, V23_H,
V24, V24_H,
V25, V25_H,
V26, V26_H,
V27, V27_H,
V28, V28_H,
V29, V29_H,
V30, V30_H,
V31, V31_H
);
// Class for all 128bit vector registers
reg_class vectorx_reg(
V0, V0_H, V0_J, V0_K,
V1, V1_H, V1_J, V1_K,
V2, V2_H, V2_J, V2_K,
V3, V3_H, V3_J, V3_K,
V4, V4_H, V4_J, V4_K,
V5, V5_H, V5_J, V5_K,
V6, V6_H, V6_J, V6_K,
V7, V7_H, V7_J, V7_K,
V8, V8_H, V8_J, V8_K,
V9, V9_H, V9_J, V9_K,
V10, V10_H, V10_J, V10_K,
V11, V11_H, V11_J, V11_K,
V12, V12_H, V12_J, V12_K,
V13, V13_H, V13_J, V13_K,
V14, V14_H, V14_J, V14_K,
V15, V15_H, V15_J, V15_K,
V16, V16_H, V16_J, V16_K,
V17, V17_H, V17_J, V17_K,
V18, V18_H, V18_J, V18_K,
V19, V19_H, V19_J, V19_K,
V20, V20_H, V20_J, V20_K,
V21, V21_H, V21_J, V21_K,
V22, V22_H, V22_J, V22_K,
V23, V23_H, V23_J, V23_K,
V24, V24_H, V24_J, V24_K,
V25, V25_H, V25_J, V25_K,
V26, V26_H, V26_J, V26_K,
V27, V27_H, V27_J, V27_K,
V28, V28_H, V28_J, V28_K,
V29, V29_H, V29_J, V29_K,
V30, V30_H, V30_J, V30_K,
V31, V31_H, V31_J, V31_K
);
// Class for 128 bit register v0
reg_class v0_reg(
V0, V0_H
);
// Class for 128 bit register v1
reg_class v1_reg(
V1, V1_H
);
// Class for 128 bit register v2
reg_class v2_reg(
V2, V2_H
);
// Class for 128 bit register v3
reg_class v3_reg(
V3, V3_H
);
// Singleton class for condition codes
reg_class int_flags(RFLAGS);
%}
//----------DEFINITION BLOCK---------------------------------------------------
// Define name --> value mappings to inform the ADLC of an integer valued name
// Current support includes integer values in the range [0, 0x7FFFFFFF]
// Format:
// int_def <name> ( <int_value>, <expression>);
// Generated Code in ad_<arch>.hpp
// #define <name> (<expression>)
// // value == <int_value>
// Generated code in ad_<arch>.cpp adlc_verification()
// assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
//
// we follow the ppc-aix port in using a simple cost model which ranks
// register operations as cheap, memory ops as more expensive and
// branches as most expensive. the first two have a low as well as a
// normal cost. huge cost appears to be a way of saying don't do
// something
definitions %{
// The default cost (of a register move instruction).
int_def INSN_COST ( 100, 100);
int_def BRANCH_COST ( 200, 2 * INSN_COST);
int_def CALL_COST ( 200, 2 * INSN_COST);
int_def VOLATILE_REF_COST ( 1000, 10 * INSN_COST);
%}
//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source_hpp %{
#include "gc/shared/cardTableModRefBS.hpp"
#include "opto/addnode.hpp"
class CallStubImpl {
//--------------------------------------------------------------
//---< Used for optimization in Compile::shorten_branches >---
//--------------------------------------------------------------
public:
// Size of call trampoline stub.
static uint size_call_trampoline() {
return 0; // no call trampolines on this platform
}
// number of relocations needed by a call trampoline stub
static uint reloc_call_trampoline() {
return 0; // no call trampolines on this platform
}
};
class HandlerImpl {
public:
static int emit_exception_handler(CodeBuffer &cbuf);
static int emit_deopt_handler(CodeBuffer& cbuf);
static uint size_exception_handler() {
return MacroAssembler::far_branch_size();
}
static uint size_deopt_handler() {
// count one adr and one far branch instruction
return 4 * NativeInstruction::instruction_size;
}
};
// graph traversal helpers
MemBarNode *parent_membar(const Node *n);
MemBarNode *child_membar(const MemBarNode *n);
bool leading_membar(const MemBarNode *barrier);
bool is_card_mark_membar(const MemBarNode *barrier);
bool is_CAS(int opcode);
MemBarNode *leading_to_normal(MemBarNode *leading);
MemBarNode *normal_to_leading(const MemBarNode *barrier);
MemBarNode *card_mark_to_trailing(const MemBarNode *barrier);
MemBarNode *trailing_to_card_mark(const MemBarNode *trailing);
MemBarNode *trailing_to_leading(const MemBarNode *trailing);
// predicates controlling emit of ldr<x>/ldar<x> and associated dmb
bool unnecessary_acquire(const Node *barrier);
bool needs_acquiring_load(const Node *load);
// predicates controlling emit of str<x>/stlr<x> and associated dmbs
bool unnecessary_release(const Node *barrier);
bool unnecessary_volatile(const Node *barrier);
bool needs_releasing_store(const Node *store);
// predicate controlling translation of CompareAndSwapX
bool needs_acquiring_load_exclusive(const Node *load);
// predicate controlling translation of StoreCM
bool unnecessary_storestore(const Node *storecm);
// predicate controlling addressing modes
bool size_fits_all_mem_uses(AddPNode* addp, int shift);
%}
source %{
// Optimizaton of volatile gets and puts
// -------------------------------------
//
// AArch64 has ldar<x> and stlr<x> instructions which we can safely
// use to implement volatile reads and writes. For a volatile read
// we simply need
//
// ldar<x>
//
// and for a volatile write we need
//
// stlr<x>
//
// Alternatively, we can implement them by pairing a normal
// load/store with a memory barrier. For a volatile read we need
//
// ldr<x>
// dmb ishld
//
// for a volatile write
//
// dmb ish
// str<x>
// dmb ish
//
// We can also use ldaxr and stlxr to implement compare and swap CAS
// sequences. These are normally translated to an instruction
// sequence like the following
//
// dmb ish
// retry:
// ldxr<x> rval raddr
// cmp rval rold
// b.ne done
// stlxr<x> rval, rnew, rold
// cbnz rval retry
// done:
// cset r0, eq
// dmb ishld
//
// Note that the exclusive store is already using an stlxr
// instruction. That is required to ensure visibility to other
// threads of the exclusive write (assuming it succeeds) before that
// of any subsequent writes.
//
// The following instruction sequence is an improvement on the above
//
// retry:
// ldaxr<x> rval raddr
// cmp rval rold
// b.ne done
// stlxr<x> rval, rnew, rold
// cbnz rval retry
// done:
// cset r0, eq
//
// We don't need the leading dmb ish since the stlxr guarantees
// visibility of prior writes in the case that the swap is
// successful. Crucially we don't have to worry about the case where
// the swap is not successful since no valid program should be
// relying on visibility of prior changes by the attempting thread
// in the case where the CAS fails.
//
// Similarly, we don't need the trailing dmb ishld if we substitute
// an ldaxr instruction since that will provide all the guarantees we
// require regarding observation of changes made by other threads
// before any change to the CAS address observed by the load.
//
// In order to generate the desired instruction sequence we need to
// be able to identify specific 'signature' ideal graph node
// sequences which i) occur as a translation of a volatile reads or
// writes or CAS operations and ii) do not occur through any other
// translation or graph transformation. We can then provide
// alternative aldc matching rules which translate these node
// sequences to the desired machine code sequences. Selection of the
// alternative rules can be implemented by predicates which identify
// the relevant node sequences.
//
// The ideal graph generator translates a volatile read to the node
// sequence
//
// LoadX[mo_acquire]
// MemBarAcquire
//
// As a special case when using the compressed oops optimization we
// may also see this variant
//
// LoadN[mo_acquire]
// DecodeN
// MemBarAcquire
//
// A volatile write is translated to the node sequence
//
// MemBarRelease
// StoreX[mo_release] {CardMark}-optional
// MemBarVolatile
//
// n.b. the above node patterns are generated with a strict
// 'signature' configuration of input and output dependencies (see
// the predicates below for exact details). The card mark may be as
// simple as a few extra nodes or, in a few GC configurations, may
// include more complex control flow between the leading and
// trailing memory barriers. However, whatever the card mark
// configuration these signatures are unique to translated volatile
// reads/stores -- they will not appear as a result of any other
// bytecode translation or inlining nor as a consequence of
// optimizing transforms.
//
// We also want to catch inlined unsafe volatile gets and puts and
// be able to implement them using either ldar<x>/stlr<x> or some
// combination of ldr<x>/stlr<x> and dmb instructions.
//
// Inlined unsafe volatiles puts manifest as a minor variant of the
// normal volatile put node sequence containing an extra cpuorder
// membar
//
// MemBarRelease
// MemBarCPUOrder
// StoreX[mo_release] {CardMark}-optional
// MemBarVolatile
//
// n.b. as an aside, the cpuorder membar is not itself subject to
// matching and translation by adlc rules. However, the rule
// predicates need to detect its presence in order to correctly
// select the desired adlc rules.
//
// Inlined unsafe volatile gets manifest as a somewhat different
// node sequence to a normal volatile get
//
// MemBarCPUOrder
// || \\
// MemBarAcquire LoadX[mo_acquire]
// ||
// MemBarCPUOrder
//
// In this case the acquire membar does not directly depend on the
// load. However, we can be sure that the load is generated from an
// inlined unsafe volatile get if we see it dependent on this unique
// sequence of membar nodes. Similarly, given an acquire membar we
// can know that it was added because of an inlined unsafe volatile
// get if it is fed and feeds a cpuorder membar and if its feed
// membar also feeds an acquiring load.
//
// Finally an inlined (Unsafe) CAS operation is translated to the
// following ideal graph
//
// MemBarRelease
// MemBarCPUOrder
// CompareAndSwapX {CardMark}-optional
// MemBarCPUOrder
// MemBarAcquire
//
// So, where we can identify these volatile read and write
// signatures we can choose to plant either of the above two code
// sequences. For a volatile read we can simply plant a normal
// ldr<x> and translate the MemBarAcquire to a dmb. However, we can
// also choose to inhibit translation of the MemBarAcquire and
// inhibit planting of the ldr<x>, instead planting an ldar<x>.
//
// When we recognise a volatile store signature we can choose to
// plant at a dmb ish as a translation for the MemBarRelease, a
// normal str<x> and then a dmb ish for the MemBarVolatile.
// Alternatively, we can inhibit translation of the MemBarRelease
// and MemBarVolatile and instead plant a simple stlr<x>
// instruction.
//
// when we recognise a CAS signature we can choose to plant a dmb
// ish as a translation for the MemBarRelease, the conventional
// macro-instruction sequence for the CompareAndSwap node (which
// uses ldxr<x>) and then a dmb ishld for the MemBarAcquire.
// Alternatively, we can elide generation of the dmb instructions
// and plant the alternative CompareAndSwap macro-instruction
// sequence (which uses ldaxr<x>).
//
// Of course, the above only applies when we see these signature
// configurations. We still want to plant dmb instructions in any
// other cases where we may see a MemBarAcquire, MemBarRelease or
// MemBarVolatile. For example, at the end of a constructor which
// writes final/volatile fields we will see a MemBarRelease
// instruction and this needs a 'dmb ish' lest we risk the
// constructed object being visible without making the
// final/volatile field writes visible.
//
// n.b. the translation rules below which rely on detection of the
// volatile signatures and insert ldar<x> or stlr<x> are failsafe.
// If we see anything other than the signature configurations we
// always just translate the loads and stores to ldr<x> and str<x>
// and translate acquire, release and volatile membars to the
// relevant dmb instructions.
//
// graph traversal helpers used for volatile put/get and CAS
// optimization
// 1) general purpose helpers
// if node n is linked to a parent MemBarNode by an intervening
// Control and Memory ProjNode return the MemBarNode otherwise return
// NULL.
//
// n may only be a Load or a MemBar.
MemBarNode *parent_membar(const Node *n)
{
Node *ctl = NULL;
Node *mem = NULL;
Node *membar = NULL;
if (n->is_Load()) {
ctl = n->lookup(LoadNode::Control);
mem = n->lookup(LoadNode::Memory);
} else if (n->is_MemBar()) {
ctl = n->lookup(TypeFunc::Control);
mem = n->lookup(TypeFunc::Memory);
} else {
return NULL;
}
if (!ctl || !mem || !ctl->is_Proj() || !mem->is_Proj()) {
return NULL;
}
membar = ctl->lookup(0);
if (!membar || !membar->is_MemBar()) {
return NULL;
}
if (mem->lookup(0) != membar) {
return NULL;
}
return membar->as_MemBar();
}
// if n is linked to a child MemBarNode by intervening Control and
// Memory ProjNodes return the MemBarNode otherwise return NULL.
MemBarNode *child_membar(const MemBarNode *n)
{
ProjNode *ctl = n->proj_out(TypeFunc::Control);
ProjNode *mem = n->proj_out(TypeFunc::Memory);
// MemBar needs to have both a Ctl and Mem projection
if (! ctl || ! mem)
return NULL;
MemBarNode *child = NULL;
Node *x;
for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
x = ctl->fast_out(i);
// if we see a membar we keep hold of it. we may also see a new
// arena copy of the original but it will appear later
if (x->is_MemBar()) {
child = x->as_MemBar();
break;
}
}
if (child == NULL) {
return NULL;
}
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
x = mem->fast_out(i);
// if we see a membar we keep hold of it. we may also see a new
// arena copy of the original but it will appear later
if (x == child) {
return child;
}
}
return NULL;
}
// helper predicate use to filter candidates for a leading memory
// barrier
//
// returns true if barrier is a MemBarRelease or a MemBarCPUOrder
// whose Ctl and Mem feeds come from a MemBarRelease otherwise false
bool leading_membar(const MemBarNode *barrier)
{
int opcode = barrier->Opcode();
// if this is a release membar we are ok
if (opcode == Op_MemBarRelease) {
return true;
}
// if its a cpuorder membar . . .
if (opcode != Op_MemBarCPUOrder) {
return false;
}
// then the parent has to be a release membar
MemBarNode *parent = parent_membar(barrier);
if (!parent) {
return false;
}
opcode = parent->Opcode();
return opcode == Op_MemBarRelease;
}
// 2) card mark detection helper
// helper predicate which can be used to detect a volatile membar
// introduced as part of a conditional card mark sequence either by
// G1 or by CMS when UseCondCardMark is true.
//
// membar can be definitively determined to be part of a card mark
// sequence if and only if all the following hold
//
// i) it is a MemBarVolatile
//
// ii) either UseG1GC or (UseConcMarkSweepGC && UseCondCardMark) is
// true
//
// iii) the node's Mem projection feeds a StoreCM node.
bool is_card_mark_membar(const MemBarNode *barrier)
{
if (!UseG1GC && !(UseConcMarkSweepGC && UseCondCardMark)) {
return false;
}
if (barrier->Opcode() != Op_MemBarVolatile) {
return false;
}
ProjNode *mem = barrier->proj_out(TypeFunc::Memory);
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax ; i++) {
Node *y = mem->fast_out(i);
if (y->Opcode() == Op_StoreCM) {
return true;
}
}
return false;
}
// 3) helper predicates to traverse volatile put or CAS graphs which
// may contain GC barrier subgraphs
// Preamble
// --------
//
// for volatile writes we can omit generating barriers and employ a
// releasing store when we see a node sequence sequence with a
// leading MemBarRelease and a trailing MemBarVolatile as follows
//
// MemBarRelease
// { || } -- optional
// {MemBarCPUOrder}
// || \\
// || StoreX[mo_release]
// | \ /
// | MergeMem
// | /
// MemBarVolatile
//
// where
// || and \\ represent Ctl and Mem feeds via Proj nodes
// | \ and / indicate further routing of the Ctl and Mem feeds
//
// this is the graph we see for non-object stores. however, for a
// volatile Object store (StoreN/P) we may see other nodes below the
// leading membar because of the need for a GC pre- or post-write
// barrier.
//
// with most GC configurations we with see this simple variant which
// includes a post-write barrier card mark.
//
// MemBarRelease______________________________
// || \\ Ctl \ \\
// || StoreN/P[mo_release] CastP2X StoreB/CM
// | \ / . . . /
// | MergeMem
// | /
// || /
// MemBarVolatile
//
// i.e. the leading membar feeds Ctl to a CastP2X (which converts
// the object address to an int used to compute the card offset) and
// Ctl+Mem to a StoreB node (which does the actual card mark).
//
// n.b. a StoreCM node will only appear in this configuration when
// using CMS. StoreCM differs from a normal card mark write (StoreB)
// because it implies a requirement to order visibility of the card
// mark (StoreCM) relative to the object put (StoreP/N) using a
// StoreStore memory barrier (arguably this ought to be represented
// explicitly in the ideal graph but that is not how it works). This
// ordering is required for both non-volatile and volatile
// puts. Normally that means we need to translate a StoreCM using
// the sequence
//
// dmb ishst
// stlrb
//
// However, in the case of a volatile put if we can recognise this
// configuration and plant an stlr for the object write then we can
// omit the dmb and just plant an strb since visibility of the stlr
// is ordered before visibility of subsequent stores. StoreCM nodes
// also arise when using G1 or using CMS with conditional card
// marking. In these cases (as we shall see) we don't need to insert
// the dmb when translating StoreCM because there is already an
// intervening StoreLoad barrier between it and the StoreP/N.
//
// It is also possible to perform the card mark conditionally on it
// currently being unmarked in which case the volatile put graph
// will look slightly different
//
// MemBarRelease____________________________________________
// || \\ Ctl \ Ctl \ \\ Mem \
// || StoreN/P[mo_release] CastP2X If LoadB |
// | \ / \ |
// | MergeMem . . . StoreB
// | / /
// || /
// MemBarVolatile
//
// It is worth noting at this stage that both the above
// configurations can be uniquely identified by checking that the
// memory flow includes the following subgraph:
//
// MemBarRelease
// {MemBarCPUOrder}
// | \ . . .
// | StoreX[mo_release] . . .
// | /
// MergeMem
// |
// MemBarVolatile
//
// This is referred to as a *normal* subgraph. It can easily be
// detected starting from any candidate MemBarRelease,
// StoreX[mo_release] or MemBarVolatile.
//
// A simple variation on this normal case occurs for an unsafe CAS
// operation. The basic graph for a non-object CAS is
//
// MemBarRelease
// ||
// MemBarCPUOrder
// || \\ . . .
// || CompareAndSwapX
// || |
// || SCMemProj
// | \ /
// | MergeMem
// | /
// MemBarCPUOrder
// ||
// MemBarAcquire
//
// The same basic variations on this arrangement (mutatis mutandis)
// occur when a card mark is introduced. i.e. we se the same basic
// shape but the StoreP/N is replaced with CompareAndSawpP/N and the
// tail of the graph is a pair comprising a MemBarCPUOrder +
// MemBarAcquire.
//
// So, in the case of a CAS the normal graph has the variant form
//
// MemBarRelease
// MemBarCPUOrder
// | \ . . .
// | CompareAndSwapX . . .
// | |
// | SCMemProj
// | / . . .
// MergeMem
// |
// MemBarCPUOrder
// MemBarAcquire
//
// This graph can also easily be detected starting from any
// candidate MemBarRelease, CompareAndSwapX or MemBarAcquire.
//
// the code below uses two helper predicates, leading_to_normal and
// normal_to_leading to identify these normal graphs, one validating
// the layout starting from the top membar and searching down and
// the other validating the layout starting from the lower membar
// and searching up.
//
// There are two special case GC configurations when a normal graph
// may not be generated: when using G1 (which always employs a
// conditional card mark); and when using CMS with conditional card
// marking configured. These GCs are both concurrent rather than
// stop-the world GCs. So they introduce extra Ctl+Mem flow into the
// graph between the leading and trailing membar nodes, in
// particular enforcing stronger memory serialisation beween the
// object put and the corresponding conditional card mark. CMS
// employs a post-write GC barrier while G1 employs both a pre- and
// post-write GC barrier. Of course the extra nodes may be absent --
// they are only inserted for object puts. This significantly
// complicates the task of identifying whether a MemBarRelease,
// StoreX[mo_release] or MemBarVolatile forms part of a volatile put
// when using these GC configurations (see below). It adds similar
// complexity to the task of identifying whether a MemBarRelease,
// CompareAndSwapX or MemBarAcquire forms part of a CAS.
//
// In both cases the post-write subtree includes an auxiliary
// MemBarVolatile (StoreLoad barrier) separating the object put and
// the read of the corresponding card. This poses two additional
// problems.
//
// Firstly, a card mark MemBarVolatile needs to be distinguished
// from a normal trailing MemBarVolatile. Resolving this first
// problem is straightforward: a card mark MemBarVolatile always
// projects a Mem feed to a StoreCM node and that is a unique marker
//
// MemBarVolatile (card mark)
// C | \ . . .
// | StoreCM . . .
// . . .
//
// The second problem is how the code generator is to translate the
// card mark barrier? It always needs to be translated to a "dmb
// ish" instruction whether or not it occurs as part of a volatile
// put. A StoreLoad barrier is needed after the object put to ensure
// i) visibility to GC threads of the object put and ii) visibility
// to the mutator thread of any card clearing write by a GC
// thread. Clearly a normal store (str) will not guarantee this
// ordering but neither will a releasing store (stlr). The latter
// guarantees that the object put is visible but does not guarantee
// that writes by other threads have also been observed.
//
// So, returning to the task of translating the object put and the
// leading/trailing membar nodes: what do the non-normal node graph
// look like for these 2 special cases? and how can we determine the
// status of a MemBarRelease, StoreX[mo_release] or MemBarVolatile
// in both normal and non-normal cases?
//
// A CMS GC post-barrier wraps its card write (StoreCM) inside an If
// which selects conditonal execution based on the value loaded
// (LoadB) from the card. Ctl and Mem are fed to the If via an
// intervening StoreLoad barrier (MemBarVolatile).
//
// So, with CMS we may see a node graph for a volatile object store
// which looks like this
//
// MemBarRelease
// MemBarCPUOrder_(leading)__________________
// C | M \ \\ C \
// | \ StoreN/P[mo_release] CastP2X
// | Bot \ /
// | MergeMem
// | /
// MemBarVolatile (card mark)
// C | || M |
// | LoadB |
// | | |
// | Cmp |\
// | / | \
// If | \
// | \ | \
// IfFalse IfTrue | \
// \ / \ | \
// \ / StoreCM |
// \ / | |
// Region . . . |
// | \ /
// | . . . \ / Bot
// | MergeMem
// | |
// MemBarVolatile (trailing)
//
// The first MergeMem merges the AliasIdxBot Mem slice from the
// leading membar and the oopptr Mem slice from the Store into the
// card mark membar. The trailing MergeMem merges the AliasIdxBot
// Mem slice from the card mark membar and the AliasIdxRaw slice
// from the StoreCM into the trailing membar (n.b. the latter
// proceeds via a Phi associated with the If region).
//
// The graph for a CAS varies slightly, the obvious difference being
// that the StoreN/P node is replaced by a CompareAndSwapP/N node
// and the trailing MemBarVolatile by a MemBarCPUOrder +
// MemBarAcquire pair. The other important difference is that the
// CompareAndSwap node's SCMemProj is not merged into the card mark
// membar - it still feeds the trailing MergeMem. This also means
// that the card mark membar receives its Mem feed directly from the
// leading membar rather than via a MergeMem.
//
// MemBarRelease
// MemBarCPUOrder__(leading)_________________________
// || \\ C \
// MemBarVolatile (card mark) CompareAndSwapN/P CastP2X
// C | || M | |
// | LoadB | ______/|
// | | | / |
// | Cmp | / SCMemProj
// | / | / |
// If | / /
// | \ | / /
// IfFalse IfTrue | / /
// \ / \ |/ prec /
// \ / StoreCM /
// \ / | /
// Region . . . /
// | \ /
// | . . . \ / Bot
// | MergeMem
// | |
// MemBarCPUOrder
// MemBarAcquire (trailing)
//
// This has a slightly different memory subgraph to the one seen
// previously but the core of it is the same as for the CAS normal
// sungraph
//
// MemBarRelease
// MemBarCPUOrder____
// || \ . . .
// MemBarVolatile CompareAndSwapX . . .
// | \ |
// . . . SCMemProj
// | / . . .
// MergeMem
// |
// MemBarCPUOrder
// MemBarAcquire
//
//
// G1 is quite a lot more complicated. The nodes inserted on behalf
// of G1 may comprise: a pre-write graph which adds the old value to
// the SATB queue; the releasing store itself; and, finally, a
// post-write graph which performs a card mark.
//
// The pre-write graph may be omitted, but only when the put is
// writing to a newly allocated (young gen) object and then only if
// there is a direct memory chain to the Initialize node for the
// object allocation. This will not happen for a volatile put since
// any memory chain passes through the leading membar.
//
// The pre-write graph includes a series of 3 If tests. The outermost
// If tests whether SATB is enabled (no else case). The next If tests
// whether the old value is non-NULL (no else case). The third tests
// whether the SATB queue index is > 0, if so updating the queue. The
// else case for this third If calls out to the runtime to allocate a
// new queue buffer.
//
// So with G1 the pre-write and releasing store subgraph looks like
// this (the nested Ifs are omitted).
//
// MemBarRelease (leading)____________
// C | || M \ M \ M \ M \ . . .
// | LoadB \ LoadL LoadN \
// | / \ \
// If |\ \
// | \ | \ \
// IfFalse IfTrue | \ \
// | | | \ |
// | If | /\ |
// | | \ |
// | \ |
// | . . . \ |
// | / | / | |
// Region Phi[M] | |
// | \ | | |
// | \_____ | ___ | |
// C | C \ | C \ M | |
// | CastP2X | StoreN/P[mo_release] |
// | | | |
// C | M | M | M |
// \ | | /
// . . .
// (post write subtree elided)
// . . .
// C \ M /
// MemBarVolatile (trailing)
//
// n.b. the LoadB in this subgraph is not the card read -- it's a
// read of the SATB queue active flag.
//
// Once again the CAS graph is a minor variant on the above with the
// expected substitutions of CompareAndSawpX for StoreN/P and
// MemBarCPUOrder + MemBarAcquire for trailing MemBarVolatile.
//
// The G1 post-write subtree is also optional, this time when the
// new value being written is either null or can be identified as a
// newly allocated (young gen) object with no intervening control
// flow. The latter cannot happen but the former may, in which case
// the card mark membar is omitted and the memory feeds form the
// leading membar and the SToreN/P are merged direct into the
// trailing membar as per the normal subgraph. So, the only special
// case which arises is when the post-write subgraph is generated.
//
// The kernel of the post-write G1 subgraph is the card mark itself
// which includes a card mark memory barrier (MemBarVolatile), a
// card test (LoadB), and a conditional update (If feeding a
// StoreCM). These nodes are surrounded by a series of nested Ifs
// which try to avoid doing the card mark. The top level If skips if
// the object reference does not cross regions (i.e. it tests if
// (adr ^ val) >> log2(regsize) != 0) -- intra-region references
// need not be recorded. The next If, which skips on a NULL value,
// may be absent (it is not generated if the type of value is >=
// OopPtr::NotNull). The 3rd If skips writes to young regions (by
// checking if card_val != young). n.b. although this test requires
// a pre-read of the card it can safely be done before the StoreLoad
// barrier. However that does not bypass the need to reread the card
// after the barrier.
//
// (pre-write subtree elided)
// . . . . . . . . . . . .
// C | M | M | M |
// Region Phi[M] StoreN |
// | / \ | |
// / \_______ / \ | |
// C / C \ . . . \ | |
// If CastP2X . . . | | |
// / \ | | |
// / \ | | |
// IfFalse IfTrue | | |
// | | | | /|
// | If | | / |
// | / \ | | / |
// | / \ \ | / |
// | IfFalse IfTrue MergeMem |
// | . . . / \ / |
// | / \ / |
// | IfFalse IfTrue / |
// | . . . | / |
// | If / |
// | / \ / |
// | / \ / |
// | IfFalse IfTrue / |
// | . . . | / |
// | \ / |
// | \ / |
// | MemBarVolatile__(card mark) |
// | || C | M \ M \ |
// | LoadB If | | |
// | / \ | | |
// | . . . | | |
// | \ | | /
// | StoreCM | /
// | . . . | /
// | _________/ /
// | / _____________/
// | . . . . . . | / /
// | | | / _________/
// | | Phi[M] / /
// | | | / /
// | | | / /
// | Region . . . Phi[M] _____/
// | / | /
// | | /
// | . . . . . . | /
// | / | /
// Region | | Phi[M]
// | | | / Bot
// \ MergeMem
// \ /
// MemBarVolatile
//
// As with CMS the initial MergeMem merges the AliasIdxBot Mem slice
// from the leading membar and the oopptr Mem slice from the Store
// into the card mark membar i.e. the memory flow to the card mark
// membar still looks like a normal graph.
//
// The trailing MergeMem merges an AliasIdxBot Mem slice with other
// Mem slices (from the StoreCM and other card mark queue stores).
// However in this case the AliasIdxBot Mem slice does not come
// direct from the card mark membar. It is merged through a series
// of Phi nodes. These are needed to merge the AliasIdxBot Mem flow
// from the leading membar with the Mem feed from the card mark
// membar. Each Phi corresponds to one of the Ifs which may skip
// around the card mark membar. So when the If implementing the NULL
// value check has been elided the total number of Phis is 2
// otherwise it is 3.
//
// The CAS graph when using G1GC also includes a pre-write subgraph
// and an optional post-write subgraph. Teh sam evarioations are
// introduced as for CMS with conditional card marking i.e. the
// StoreP/N is swapped for a CompareAndSwapP/N, the tariling
// MemBarVolatile for a MemBarCPUOrder + MemBarAcquire pair and the
// Mem feed from the CompareAndSwapP/N includes a precedence
// dependency feed to the StoreCM and a feed via an SCMemProj to the
// trailing membar. So, as before the configuration includes the
// normal CAS graph as a subgraph of the memory flow.
//
// So, the upshot is that in all cases the volatile put graph will
// include a *normal* memory subgraph betwen the leading membar and
// its child membar, either a volatile put graph (including a
// releasing StoreX) or a CAS graph (including a CompareAndSwapX).
// When that child is not a card mark membar then it marks the end
// of the volatile put or CAS subgraph. If the child is a card mark
// membar then the normal subgraph will form part of a volatile put
// subgraph if and only if the child feeds an AliasIdxBot Mem feed
// to a trailing barrier via a MergeMem. That feed is either direct
// (for CMS) or via 2 or 3 Phi nodes merging the leading barrier
// memory flow (for G1).
//
// The predicates controlling generation of instructions for store
// and barrier nodes employ a few simple helper functions (described
// below) which identify the presence or absence of all these
// subgraph configurations and provide a means of traversing from
// one node in the subgraph to another.
// is_CAS(int opcode)
//
// return true if opcode is one of the possible CompareAndSwapX
// values otherwise false.
bool is_CAS(int opcode)
{
switch(opcode) {
// We handle these
case Op_CompareAndSwapI:
case Op_CompareAndSwapL:
case Op_CompareAndSwapP:
case Op_CompareAndSwapN:
// case Op_CompareAndSwapB:
// case Op_CompareAndSwapS:
return true;
// These are TBD
case Op_WeakCompareAndSwapB:
case Op_WeakCompareAndSwapS:
case Op_WeakCompareAndSwapI:
case Op_WeakCompareAndSwapL:
case Op_WeakCompareAndSwapP:
case Op_WeakCompareAndSwapN:
case Op_CompareAndExchangeB:
case Op_CompareAndExchangeS:
case Op_CompareAndExchangeI:
case Op_CompareAndExchangeL:
case Op_CompareAndExchangeP:
case Op_CompareAndExchangeN:
return false;
default:
return false;
}
}
// leading_to_normal
//
//graph traversal helper which detects the normal case Mem feed from
// a release membar (or, optionally, its cpuorder child) to a
// dependent volatile membar i.e. it ensures that one or other of
// the following Mem flow subgraph is present.
//
// MemBarRelease
// MemBarCPUOrder {leading}
// | \ . . .
// | StoreN/P[mo_release] . . .
// | /
// MergeMem
// |
// MemBarVolatile {trailing or card mark}
//
// MemBarRelease
// MemBarCPUOrder {leading}
// | \ . . .
// | CompareAndSwapX . . .
// |
// . . . SCMemProj
// \ |
// | MergeMem
// | /
// MemBarCPUOrder
// MemBarAcquire {trailing}
//
// if the correct configuration is present returns the trailing
// membar otherwise NULL.
//
// the input membar is expected to be either a cpuorder membar or a
// release membar. in the latter case it should not have a cpu membar
// child.
//
// the returned value may be a card mark or trailing membar
//
MemBarNode *leading_to_normal(MemBarNode *leading)
{
assert((leading->Opcode() == Op_MemBarRelease ||
leading->Opcode() == Op_MemBarCPUOrder),
"expecting a volatile or cpuroder membar!");
// check the mem flow
ProjNode *mem = leading->proj_out(TypeFunc::Memory);
if (!mem) {
return NULL;
}
Node *x = NULL;
StoreNode * st = NULL;
LoadStoreNode *cas = NULL;
MergeMemNode *mm = NULL;
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
x = mem->fast_out(i);
if (x->is_MergeMem()) {
if (mm != NULL) {
return NULL;
}
// two merge mems is one too many
mm = x->as_MergeMem();
} else if (x->is_Store() && x->as_Store()->is_release() && x->Opcode() != Op_StoreCM) {
// two releasing stores/CAS nodes is one too many
if (st != NULL || cas != NULL) {
return NULL;
}
st = x->as_Store();
} else if (is_CAS(x->Opcode())) {
if (st != NULL || cas != NULL) {
return NULL;
}
cas = x->as_LoadStore();
}
}
// must have a store or a cas
if (!st && !cas) {
return NULL;
}
// must have a merge if we also have st
if (st && !mm) {
return NULL;
}
Node *y = NULL;
if (cas) {
// look for an SCMemProj
for (DUIterator_Fast imax, i = cas->fast_outs(imax); i < imax; i++) {
x = cas->fast_out(i);
if (x->is_Proj()) {
y = x;
break;
}
}
if (y == NULL) {
return NULL;
}
// the proj must feed a MergeMem
for (DUIterator_Fast imax, i = y->fast_outs(imax); i < imax; i++) {
x = y->fast_out(i);
if (x->is_MergeMem()) {
mm = x->as_MergeMem();
break;
}
}
if (mm == NULL)
return NULL;
} else {
// ensure the store feeds the existing mergemem;
for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) {
if (st->fast_out(i) == mm) {
y = st;
break;
}
}
if (y == NULL) {
return NULL;
}
}
MemBarNode *mbar = NULL;
// ensure the merge feeds to the expected type of membar
for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) {
x = mm->fast_out(i);
if (x->is_MemBar()) {
int opcode = x->Opcode();
if (opcode == Op_MemBarVolatile && st) {
mbar = x->as_MemBar();
} else if (cas && opcode == Op_MemBarCPUOrder) {
MemBarNode *y = x->as_MemBar();
y = child_membar(y);
if (y != NULL && y->Opcode() == Op_MemBarAcquire) {
mbar = y;
}
}
break;
}
}
return mbar;
}
// normal_to_leading
//
// graph traversal helper which detects the normal case Mem feed
// from either a card mark or a trailing membar to a preceding
// release membar (optionally its cpuorder child) i.e. it ensures
// that one or other of the following Mem flow subgraphs is present.
//
// MemBarRelease
// MemBarCPUOrder {leading}
// | \ . . .
// | StoreN/P[mo_release] . . .
// | /
// MergeMem
// |
// MemBarVolatile {card mark or trailing}
//
// MemBarRelease
// MemBarCPUOrder {leading}
// | \ . . .
// | CompareAndSwapX . . .
// |
// . . . SCMemProj
// \ |
// | MergeMem
// | /
// MemBarCPUOrder
// MemBarAcquire {trailing}
//
// this predicate checks for the same flow as the previous predicate
// but starting from the bottom rather than the top.
//
// if the configuration is present returns the cpuorder member for
// preference or when absent the release membar otherwise NULL.
//
// n.b. the input membar is expected to be a MemBarVolatile but
// need not be a card mark membar.
MemBarNode *normal_to_leading(const MemBarNode *barrier)
{
// input must be a volatile membar
assert((barrier->Opcode() == Op_MemBarVolatile ||
barrier->Opcode() == Op_MemBarAcquire),
"expecting a volatile or an acquire membar");
Node *x;
bool is_cas = barrier->Opcode() == Op_MemBarAcquire;
// if we have an acquire membar then it must be fed via a CPUOrder
// membar
if (is_cas) {
// skip to parent barrier which must be a cpuorder
x = parent_membar(barrier);
if (x->Opcode() != Op_MemBarCPUOrder)
return NULL;
} else {
// start from the supplied barrier
x = (Node *)barrier;
}
// the Mem feed to the membar should be a merge
x = x ->in(TypeFunc::Memory);
if (!x->is_MergeMem())
return NULL;
MergeMemNode *mm = x->as_MergeMem();
if (is_cas) {
// the merge should be fed from the CAS via an SCMemProj node
x = NULL;
for (uint idx = 1; idx < mm->req(); idx++) {
if (mm->in(idx)->Opcode() == Op_SCMemProj) {
x = mm->in(idx);
break;
}
}
if (x == NULL) {
return NULL;
}
// check for a CAS feeding this proj
x = x->in(0);
int opcode = x->Opcode();
if (!is_CAS(opcode)) {
return NULL;
}
// the CAS should get its mem feed from the leading membar
x = x->in(MemNode::Memory);
} else {
// the merge should get its Bottom mem feed from the leading membar
x = mm->in(Compile::AliasIdxBot);
}
// ensure this is a non control projection
if (!x->is_Proj() || x->is_CFG()) {
return NULL;
}
// if it is fed by a membar that's the one we want
x = x->in(0);
if (!x->is_MemBar()) {
return NULL;
}
MemBarNode *leading = x->as_MemBar();
// reject invalid candidates
if (!leading_membar(leading)) {
return NULL;
}
// ok, we have a leading membar, now for the sanity clauses
// the leading membar must feed Mem to a releasing store or CAS
ProjNode *mem = leading->proj_out(TypeFunc::Memory);
StoreNode *st = NULL;
LoadStoreNode *cas = NULL;
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
x = mem->fast_out(i);
if (x->is_Store() && x->as_Store()->is_release() && x->Opcode() != Op_StoreCM) {
// two stores or CASes is one too many
if (st != NULL || cas != NULL) {
return NULL;
}
st = x->as_Store();
} else if (is_CAS(x->Opcode())) {
if (st != NULL || cas != NULL) {
return NULL;
}
cas = x->as_LoadStore();
}
}
// we should not have both a store and a cas
if (st == NULL & cas == NULL) {
return NULL;
}
if (st == NULL) {
// nothing more to check
return leading;
} else {
// we should not have a store if we started from an acquire
if (is_cas) {
return NULL;
}
// the store should feed the merge we used to get here
for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) {
if (st->fast_out(i) == mm) {
return leading;
}
}
}
return NULL;
}
// card_mark_to_trailing
//
// graph traversal helper which detects extra, non-normal Mem feed
// from a card mark volatile membar to a trailing membar i.e. it
// ensures that one of the following three GC post-write Mem flow
// subgraphs is present.
//
// 1)
// . . .
// |
// MemBarVolatile (card mark)
// | |
// | StoreCM
// | |
// | . . .
// Bot | /
// MergeMem
// |
// |
// MemBarVolatile {trailing}
//
// 2)
// MemBarRelease/CPUOrder (leading)
// |
// |
// |\ . . .
// | \ |
// | \ MemBarVolatile (card mark)
// | \ | |
// \ \ | StoreCM . . .
// \ \ |
// \ Phi
// \ /
// Phi . . .
// Bot | /
// MergeMem
// |
// MemBarVolatile {trailing}
//
//
// 3)
// MemBarRelease/CPUOrder (leading)
// |
// |\
// | \
// | \ . . .
// | \ |
// |\ \ MemBarVolatile (card mark)
// | \ \ | |
// | \ \ | StoreCM . . .
// | \ \ |
// \ \ Phi
// \ \ /
// \ Phi
// \ /
// Phi . . .
// Bot | /
// MergeMem
// |
// |
// MemBarVolatile {trailing}
//
// configuration 1 is only valid if UseConcMarkSweepGC &&
// UseCondCardMark
//
// configurations 2 and 3 are only valid if UseG1GC.
//
// if a valid configuration is present returns the trailing membar
// otherwise NULL.
//
// n.b. the supplied membar is expected to be a card mark
// MemBarVolatile i.e. the caller must ensure the input node has the
// correct operand and feeds Mem to a StoreCM node
MemBarNode *card_mark_to_trailing(const MemBarNode *barrier)
{
// input must be a card mark volatile membar
assert(is_card_mark_membar(barrier), "expecting a card mark membar");
Node *feed = barrier->proj_out(TypeFunc::Memory);
Node *x;
MergeMemNode *mm = NULL;
const int MAX_PHIS = 3; // max phis we will search through
int phicount = 0; // current search count
bool retry_feed = true;
while (retry_feed) {
// see if we have a direct MergeMem feed
for (DUIterator_Fast imax, i = feed->fast_outs(imax); i < imax; i++) {
x = feed->fast_out(i);
// the correct Phi will be merging a Bot memory slice
if (x->is_MergeMem()) {
mm = x->as_MergeMem();
break;
}
}
if (mm) {
retry_feed = false;
} else if (UseG1GC & phicount++ < MAX_PHIS) {
// the barrier may feed indirectly via one or two Phi nodes
PhiNode *phi = NULL;
for (DUIterator_Fast imax, i = feed->fast_outs(imax); i < imax; i++) {
x = feed->fast_out(i);
// the correct Phi will be merging a Bot memory slice
if (x->is_Phi() && x->adr_type() == TypePtr::BOTTOM) {
phi = x->as_Phi();
break;
}
}
if (!phi) {
return NULL;
}
// look for another merge below this phi
feed = phi;
} else {
// couldn't find a merge
return NULL;
}
}
// sanity check this feed turns up as the expected slice
assert(mm->as_MergeMem()->in(Compile::AliasIdxBot) == feed, "expecting membar to feed AliasIdxBot slice to Merge");
MemBarNode *trailing = NULL;
// be sure we have a trailing membar the merge
for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) {
x = mm->fast_out(i);
if (x->is_MemBar() && x->Opcode() == Op_MemBarVolatile) {
trailing = x->as_MemBar();
break;
}
}
return trailing;
}
// trailing_to_card_mark
//
// graph traversal helper which detects extra, non-normal Mem feed
// from a trailing volatile membar to a preceding card mark volatile
// membar i.e. it identifies whether one of the three possible extra
// GC post-write Mem flow subgraphs is present
//
// this predicate checks for the same flow as the previous predicate
// but starting from the bottom rather than the top.
//
// if the configuration is present returns the card mark membar
// otherwise NULL
//
// n.b. the supplied membar is expected to be a trailing
// MemBarVolatile i.e. the caller must ensure the input node has the
// correct opcode
MemBarNode *trailing_to_card_mark(const MemBarNode *trailing)
{
assert(trailing->Opcode() == Op_MemBarVolatile,
"expecting a volatile membar");
assert(!is_card_mark_membar(trailing),
"not expecting a card mark membar");
// the Mem feed to the membar should be a merge
Node *x = trailing->in(TypeFunc::Memory);
if (!x->is_MergeMem()) {
return NULL;
}
MergeMemNode *mm = x->as_MergeMem();
x = mm->in(Compile::AliasIdxBot);
// with G1 we may possibly see a Phi or two before we see a Memory
// Proj from the card mark membar
const int MAX_PHIS = 3; // max phis we will search through
int phicount = 0; // current search count
bool retry_feed = !x->is_Proj();
while (retry_feed) {
if (UseG1GC && x->is_Phi() && phicount++ < MAX_PHIS) {
PhiNode *phi = x->as_Phi();
ProjNode *proj = NULL;
PhiNode *nextphi = NULL;
bool found_leading = false;
for (uint i = 1; i < phi->req(); i++) {
x = phi->in(i);
if (x->is_Phi()) {
nextphi = x->as_Phi();
} else if (x->is_Proj()) {
int opcode = x->in(0)->Opcode();
if (opcode == Op_MemBarVolatile) {
proj = x->as_Proj();
} else if (opcode == Op_MemBarRelease ||
opcode == Op_MemBarCPUOrder) {
// probably a leading membar
found_leading = true;
}
}
}
// if we found a correct looking proj then retry from there
// otherwise we must see a leading and a phi or this the
// wrong config
if (proj != NULL) {
x = proj;
retry_feed = false;
} else if (found_leading && nextphi != NULL) {
// retry from this phi to check phi2
x = nextphi;
} else {
// not what we were looking for
return NULL;
}
} else {
return NULL;
}
}
// the proj has to come from the card mark membar
x = x->in(0);
if (!x->is_MemBar()) {
return NULL;
}
MemBarNode *card_mark_membar = x->as_MemBar();
if (!is_card_mark_membar(card_mark_membar)) {
return NULL;
}
return card_mark_membar;
}
// trailing_to_leading
//
// graph traversal helper which checks the Mem flow up the graph
// from a (non-card mark) trailing membar attempting to locate and
// return an associated leading membar. it first looks for a
// subgraph in the normal configuration (relying on helper
// normal_to_leading). failing that it then looks for one of the
// possible post-write card mark subgraphs linking the trailing node
// to a the card mark membar (relying on helper
// trailing_to_card_mark), and then checks that the card mark membar
// is fed by a leading membar (once again relying on auxiliary
// predicate normal_to_leading).
//
// if the configuration is valid returns the cpuorder member for
// preference or when absent the release membar otherwise NULL.
//
// n.b. the input membar is expected to be either a volatile or
// acquire membar but in the former case must *not* be a card mark
// membar.
MemBarNode *trailing_to_leading(const MemBarNode *trailing)
{
assert((trailing->Opcode() == Op_MemBarAcquire ||
trailing->Opcode() == Op_MemBarVolatile),
"expecting an acquire or volatile membar");
assert((trailing->Opcode() != Op_MemBarVolatile ||
!is_card_mark_membar(trailing)),
"not expecting a card mark membar");
MemBarNode *leading = normal_to_leading(trailing);
if (leading) {
return leading;
}
// nothing more to do if this is an acquire
if (trailing->Opcode() == Op_MemBarAcquire) {
return NULL;
}
MemBarNode *card_mark_membar = trailing_to_card_mark(trailing);
if (!card_mark_membar) {
return NULL;
}
return normal_to_leading(card_mark_membar);
}
// predicates controlling emit of ldr<x>/ldar<x> and associated dmb
bool unnecessary_acquire(const Node *barrier)
{
assert(barrier->is_MemBar(), "expecting a membar");
if (UseBarriersForVolatile) {
// we need to plant a dmb
return false;
}
// a volatile read derived from bytecode (or also from an inlined
// SHA field read via LibraryCallKit::load_field_from_object)
// manifests as a LoadX[mo_acquire] followed by an acquire membar
// with a bogus read dependency on it's preceding load. so in those
// cases we will find the load node at the PARMS offset of the
// acquire membar. n.b. there may be an intervening DecodeN node.
//
// a volatile load derived from an inlined unsafe field access
// manifests as a cpuorder membar with Ctl and Mem projections
// feeding both an acquire membar and a LoadX[mo_acquire]. The
// acquire then feeds another cpuorder membar via Ctl and Mem
// projections. The load has no output dependency on these trailing
// membars because subsequent nodes inserted into the graph take
// their control feed from the final membar cpuorder meaning they
// are all ordered after the load.
Node *x = barrier->lookup(TypeFunc::Parms);
if (x) {
// we are starting from an acquire and it has a fake dependency
//
// need to check for
//
// LoadX[mo_acquire]
// { |1 }
// {DecodeN}
// |Parms
// MemBarAcquire*
//
// where * tags node we were passed
// and |k means input k
if (x->is_DecodeNarrowPtr()) {
x = x->in(1);
}
return (x->is_Load() && x->as_Load()->is_acquire());
}
// now check for an unsafe volatile get
// need to check for
//
// MemBarCPUOrder
// || \\
// MemBarAcquire* LoadX[mo_acquire]
// ||
// MemBarCPUOrder
//
// where * tags node we were passed
// and || or \\ are Ctl+Mem feeds via intermediate Proj Nodes
// check for a parent MemBarCPUOrder
ProjNode *ctl;
ProjNode *mem;
MemBarNode *parent = parent_membar(barrier);
if (!parent || parent->Opcode() != Op_MemBarCPUOrder)
return false;
ctl = parent->proj_out(TypeFunc::Control);
mem = parent->proj_out(TypeFunc::Memory);
if (!ctl || !mem) {
return false;
}
// ensure the proj nodes both feed a LoadX[mo_acquire]
LoadNode *ld = NULL;
for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
x = ctl->fast_out(i);
// if we see a load we keep hold of it and stop searching
if (x->is_Load()) {
ld = x->as_Load();
break;
}
}
// it must be an acquiring load
if (ld && ld->is_acquire()) {
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
x = mem->fast_out(i);
// if we see the same load we drop it and stop searching
if (x == ld) {
ld = NULL;
break;
}
}
// we must have dropped the load
if (ld == NULL) {
// check for a child cpuorder membar
MemBarNode *child = child_membar(barrier->as_MemBar());
if (child && child->Opcode() == Op_MemBarCPUOrder)
return true;
}
}
// final option for unnecessary mebar is that it is a trailing node
// belonging to a CAS
MemBarNode *leading = trailing_to_leading(barrier->as_MemBar());
return leading != NULL;
}
bool needs_acquiring_load(const Node *n)
{
assert(n->is_Load(), "expecting a load");
if (UseBarriersForVolatile) {
// we use a normal load and a dmb
return false;
}
LoadNode *ld = n->as_Load();
if (!ld->is_acquire()) {
return false;
}
// check if this load is feeding an acquire membar
//
// LoadX[mo_acquire]
// { |1 }
// {DecodeN}
// |Parms
// MemBarAcquire*
//
// where * tags node we were passed
// and |k means input k
Node *start = ld;
Node *mbacq = NULL;
// if we hit a DecodeNarrowPtr we reset the start node and restart
// the search through the outputs
restart:
for (DUIterator_Fast imax, i = start->fast_outs(imax); i < imax; i++) {
Node *x = start->fast_out(i);
if (x->is_MemBar() && x->Opcode() == Op_MemBarAcquire) {
mbacq = x;
} else if (!mbacq &&
(x->is_DecodeNarrowPtr() ||
(x->is_Mach() && x->Opcode() == Op_DecodeN))) {
start = x;
goto restart;
}
}
if (mbacq) {
return true;
}
// now check for an unsafe volatile get
// check if Ctl and Proj feed comes from a MemBarCPUOrder
//
// MemBarCPUOrder
// || \\
// MemBarAcquire* LoadX[mo_acquire]
// ||
// MemBarCPUOrder
MemBarNode *membar;
membar = parent_membar(ld);
if (!membar || !membar->Opcode() == Op_MemBarCPUOrder) {
return false;
}
// ensure that there is a CPUOrder->Acquire->CPUOrder membar chain
membar = child_membar(membar);
if (!membar || !membar->Opcode() == Op_MemBarAcquire) {
return false;
}
membar = child_membar(membar);
if (!membar || !membar->Opcode() == Op_MemBarCPUOrder) {
return false;
}
return true;
}
bool unnecessary_release(const Node *n)
{
assert((n->is_MemBar() &&
n->Opcode() == Op_MemBarRelease),
"expecting a release membar");
if (UseBarriersForVolatile) {
// we need to plant a dmb
return false;
}
// if there is a dependent CPUOrder barrier then use that as the
// leading
MemBarNode *barrier = n->as_MemBar();
// check for an intervening cpuorder membar
MemBarNode *b = child_membar(barrier);
if (b && b->Opcode() == Op_MemBarCPUOrder) {
// ok, so start the check from the dependent cpuorder barrier
barrier = b;
}
// must start with a normal feed
MemBarNode *child_barrier = leading_to_normal(barrier);
if (!child_barrier) {
return false;
}
if (!is_card_mark_membar(child_barrier)) {
// this is the trailing membar and we are done
return true;
}
// must be sure this card mark feeds a trailing membar
MemBarNode *trailing = card_mark_to_trailing(child_barrier);
return (trailing != NULL);
}
bool unnecessary_volatile(const Node *n)
{
// assert n->is_MemBar();
if (UseBarriersForVolatile) {
// we need to plant a dmb
return false;
}
MemBarNode *mbvol = n->as_MemBar();
// first we check if this is part of a card mark. if so then we have
// to generate a StoreLoad barrier
if (is_card_mark_membar(mbvol)) {
return false;
}
// ok, if it's not a card mark then we still need to check if it is
// a trailing membar of a volatile put hgraph.
return (trailing_to_leading(mbvol) != NULL);
}
// predicates controlling emit of str<x>/stlr<x> and associated dmbs
bool needs_releasing_store(const Node *n)
{
// assert n->is_Store();
if (UseBarriersForVolatile) {
// we use a normal store and dmb combination
return false;
}
StoreNode *st = n->as_Store();
// the store must be marked as releasing
if (!st->is_release()) {
return false;
}
// the store must be fed by a membar
Node *x = st->lookup(StoreNode::Memory);
if (! x || !x->is_Proj()) {
return false;
}
ProjNode *proj = x->as_Proj();
x = proj->lookup(0);
if (!x || !x->is_MemBar()) {
return false;
}
MemBarNode *barrier = x->as_MemBar();
// if the barrier is a release membar or a cpuorder mmebar fed by a
// release membar then we need to check whether that forms part of a
// volatile put graph.
// reject invalid candidates
if (!leading_membar(barrier)) {
return false;
}
// does this lead a normal subgraph?
MemBarNode *mbvol = leading_to_normal(barrier);
if (!mbvol) {
return false;
}
// all done unless this is a card mark
if (!is_card_mark_membar(mbvol)) {
return true;
}
// we found a card mark -- just make sure we have a trailing barrier
return (card_mark_to_trailing(mbvol) != NULL);
}
// predicate controlling translation of CAS
//
// returns true if CAS needs to use an acquiring load otherwise false
bool needs_acquiring_load_exclusive(const Node *n)
{
assert(is_CAS(n->Opcode()), "expecting a compare and swap");
if (UseBarriersForVolatile) {
return false;
}
// CAS nodes only ought to turn up in inlined unsafe CAS operations
#ifdef ASSERT
LoadStoreNode *st = n->as_LoadStore();
// the store must be fed by a membar
Node *x = st->lookup(StoreNode::Memory);
assert (x && x->is_Proj(), "CAS not fed by memory proj!");
ProjNode *proj = x->as_Proj();
x = proj->lookup(0);
assert (x && x->is_MemBar(), "CAS not fed by membar!");
MemBarNode *barrier = x->as_MemBar();
// the barrier must be a cpuorder mmebar fed by a release membar
assert(barrier->Opcode() == Op_MemBarCPUOrder,
"CAS not fed by cpuorder membar!");
MemBarNode *b = parent_membar(barrier);
assert ((b != NULL && b->Opcode() == Op_MemBarRelease),
"CAS not fed by cpuorder+release membar pair!");
// does this lead a normal subgraph?
MemBarNode *mbar = leading_to_normal(barrier);
assert(mbar != NULL, "CAS not embedded in normal graph!");
assert(mbar->Opcode() == Op_MemBarAcquire, "trailing membar should be an acquire");
#endif // ASSERT
// so we can just return true here
return true;
}
// predicate controlling translation of StoreCM
//
// returns true if a StoreStore must precede the card write otherwise
// false
bool unnecessary_storestore(const Node *storecm)
{
assert(storecm->Opcode() == Op_StoreCM, "expecting a StoreCM");
// we only ever need to generate a dmb ishst between an object put
// and the associated card mark when we are using CMS without
// conditional card marking
if (!UseConcMarkSweepGC || UseCondCardMark) {
return true;
}
// if we are implementing volatile puts using barriers then the
// object put as an str so we must insert the dmb ishst
if (UseBarriersForVolatile) {
return false;
}
// we can omit the dmb ishst if this StoreCM is part of a volatile
// put because in thta case the put will be implemented by stlr
//
// we need to check for a normal subgraph feeding this StoreCM.
// that means the StoreCM must be fed Memory from a leading membar,
// either a MemBarRelease or its dependent MemBarCPUOrder, and the
// leading membar must be part of a normal subgraph
Node *x = storecm->in(StoreNode::Memory);
if (!x->is_Proj()) {
return false;
}
x = x->in(0);
if (!x->is_MemBar()) {
return false;
}
MemBarNode *leading = x->as_MemBar();
// reject invalid candidates
if (!leading_membar(leading)) {
return false;
}
// we can omit the StoreStore if it is the head of a normal subgraph
return (leading_to_normal(leading) != NULL);
}
#define __ _masm.
// advance declarations for helper functions to convert register
// indices to register objects
// the ad file has to provide implementations of certain methods
// expected by the generic code
//
// REQUIRED FUNCTIONALITY
//=============================================================================
// !!!!! Special hack to get all types of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
int MachCallStaticJavaNode::ret_addr_offset()
{
// call should be a simple bl
int off = 4;
return off;
}
int MachCallDynamicJavaNode::ret_addr_offset()
{
return 16; // movz, movk, movk, bl
}
int MachCallRuntimeNode::ret_addr_offset() {
// for generated stubs the call will be
// far_call(addr)
// for real runtime callouts it will be six instructions
// see aarch64_enc_java_to_runtime
// adr(rscratch2, retaddr)
// lea(rscratch1, RuntimeAddress(addr)
// stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize)))
// blrt rscratch1
CodeBlob *cb = CodeCache::find_blob(_entry_point);
if (cb) {
return MacroAssembler::far_branch_size();
} else {
return 6 * NativeInstruction::instruction_size;
}
}
// Indicate if the safepoint node needs the polling page as an input
// the shared code plants the oop data at the start of the generated
// code for the safepoint node and that needs ot be at the load
// instruction itself. so we cannot plant a mov of the safepoint poll
// address followed by a load. setting this to true means the mov is
// scheduled as a prior instruction. that's better for scheduling
// anyway.
bool SafePointNode::needs_polling_address_input()
{
return true;
}
//=============================================================================
#ifndef PRODUCT
void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
st->print("BREAKPOINT");
}
#endif
void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
__ brk(0);
}
uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
//=============================================================================
#ifndef PRODUCT
void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
st->print("nop \t# %d bytes pad for loops and calls", _count);
}
#endif
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const {
MacroAssembler _masm(&cbuf);
for (int i = 0; i < _count; i++) {
__ nop();
}
}
uint MachNopNode::size(PhaseRegAlloc*) const {
return _count * NativeInstruction::instruction_size;
}
//=============================================================================
const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
int Compile::ConstantTable::calculate_table_base_offset() const {
return 0; // absolute addressing, no offset
}
bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
ShouldNotReachHere();
}
void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
// Empty encoding
}
uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
return 0;
}
#ifndef PRODUCT
void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
st->print("-- \t// MachConstantBaseNode (empty encoding)");
}
#endif
#ifndef PRODUCT
void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
Compile* C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
if (C->need_stack_bang(framesize))
st->print("# stack bang size=%d\n\t", framesize);
if (framesize < ((1 << 9) + 2 * wordSize)) {
st->print("sub sp, sp, #%d\n\t", framesize);
st->print("stp rfp, lr, [sp, #%d]", framesize - 2 * wordSize);
if (PreserveFramePointer) st->print("\n\tadd rfp, sp, #%d", framesize - 2 * wordSize);
} else {
st->print("stp lr, rfp, [sp, #%d]!\n\t", -(2 * wordSize));
if (PreserveFramePointer) st->print("mov rfp, sp\n\t");
st->print("mov rscratch1, #%d\n\t", framesize - 2 * wordSize);
st->print("sub sp, sp, rscratch1");
}
}
#endif
void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
Compile* C = ra_->C;
MacroAssembler _masm(&cbuf);
// n.b. frame size includes space for return pc and rfp
const long framesize = C->frame_size_in_bytes();
assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
// insert a nop at the start of the prolog so we can patch in a
// branch if we need to invalidate the method later
__ nop();
int bangsize = C->bang_size_in_bytes();
if (C->need_stack_bang(bangsize) && UseStackBanging)
__ generate_stack_overflow_check(bangsize);
__ build_frame(framesize);
if (NotifySimulator) {
__ notify(Assembler::method_entry);
}
if (VerifyStackAtCalls) {
Unimplemented();
}
C->set_frame_complete(cbuf.insts_size());
if (C->has_mach_constant_base_node()) {
// NOTE: We set the table base offset here because users might be
// emitted before MachConstantBaseNode.
Compile::ConstantTable& constant_table = C->constant_table();
constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
}
}
uint MachPrologNode::size(PhaseRegAlloc* ra_) const
{
return MachNode::size(ra_); // too many variables; just compute it
// the hard way
}
int MachPrologNode::reloc() const
{
return 0;
}
//=============================================================================
#ifndef PRODUCT
void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
Compile* C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
st->print("# pop frame %d\n\t",framesize);
if (framesize == 0) {
st->print("ldp lr, rfp, [sp],#%d\n\t", (2 * wordSize));
} else if (framesize < ((1 << 9) + 2 * wordSize)) {
st->print("ldp lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
st->print("add sp, sp, #%d\n\t", framesize);
} else {
st->print("mov rscratch1, #%d\n\t", framesize - 2 * wordSize);
st->print("add sp, sp, rscratch1\n\t");
st->print("ldp lr, rfp, [sp],#%d\n\t", (2 * wordSize));
}
if (do_polling() && C->is_method_compilation()) {
st->print("# touch polling page\n\t");
st->print("mov rscratch1, #0x%lx\n\t", p2i(os::get_polling_page()));
st->print("ldr zr, [rscratch1]");
}
}
#endif
void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
Compile* C = ra_->C;
MacroAssembler _masm(&cbuf);
int framesize = C->frame_slots() << LogBytesPerInt;
__ remove_frame(framesize);
if (NotifySimulator) {
__ notify(Assembler::method_reentry);
}
if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
__ reserved_stack_check();
}
if (do_polling() && C->is_method_compilation()) {
__ read_polling_page(rscratch1, os::get_polling_page(), relocInfo::poll_return_type);
}
}
uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
// Variable size. Determine dynamically.
return MachNode::size(ra_);
}
int MachEpilogNode::reloc() const {
// Return number of relocatable values contained in this instruction.
return 1; // 1 for polling page.
}
const Pipeline * MachEpilogNode::pipeline() const {
return MachNode::pipeline_class();
}
// This method seems to be obsolete. It is declared in machnode.hpp
// and defined in all *.ad files, but it is never called. Should we
// get rid of it?
int MachEpilogNode::safepoint_offset() const {
assert(do_polling(), "no return for this epilog node");
return 4;
}
//=============================================================================
// Figure out which register class each belongs in: rc_int, rc_float or
// rc_stack.
enum RC { rc_bad, rc_int, rc_float, rc_stack };
static enum RC rc_class(OptoReg::Name reg) {
if (reg == OptoReg::Bad) {
return rc_bad;
}
// we have 30 int registers * 2 halves
// (rscratch1 and rscratch2 are omitted)
if (reg < 60) {
return rc_int;
}
// we have 32 float register * 2 halves
if (reg < 60 + 128) {
return rc_float;
}
// Between float regs & stack is the flags regs.
assert(OptoReg::is_stack(reg), "blow up if spilling flags");
return rc_stack;
}
uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
Compile* C = ra_->C;
// Get registers to move.
OptoReg::Name src_hi = ra_->get_reg_second(in(1));
OptoReg::Name src_lo = ra_->get_reg_first(in(1));
OptoReg::Name dst_hi = ra_->get_reg_second(this);
OptoReg::Name dst_lo = ra_->get_reg_first(this);
enum RC src_hi_rc = rc_class(src_hi);
enum RC src_lo_rc = rc_class(src_lo);
enum RC dst_hi_rc = rc_class(dst_hi);
enum RC dst_lo_rc = rc_class(dst_lo);
assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
if (src_hi != OptoReg::Bad) {
assert((src_lo&1)==0 && src_lo+1==src_hi &&
(dst_lo&1)==0 && dst_lo+1==dst_hi,
"expected aligned-adjacent pairs");
}
if (src_lo == dst_lo && src_hi == dst_hi) {
return 0; // Self copy, no move.
}
bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
int src_offset = ra_->reg2offset(src_lo);
int dst_offset = ra_->reg2offset(dst_lo);
if (bottom_type()->isa_vect() != NULL) {
uint ireg = ideal_reg();
assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector");
if (cbuf) {
MacroAssembler _masm(cbuf);
assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity");
if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
// stack->stack
assert((src_offset & 7) == 0 && (dst_offset & 7) == 0, "unaligned stack offset");
if (ireg == Op_VecD) {
__ unspill(rscratch1, true, src_offset);
__ spill(rscratch1, true, dst_offset);
} else {
__ spill_copy128(src_offset, dst_offset);
}
} else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
__ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]),
ireg == Op_VecD ? __ T8B : __ T16B,
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
__ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
ireg == Op_VecD ? __ D : __ Q,
ra_->reg2offset(dst_lo));
} else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
__ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
ireg == Op_VecD ? __ D : __ Q,
ra_->reg2offset(src_lo));
} else {
ShouldNotReachHere();
}
}
} else if (cbuf) {
MacroAssembler _masm(cbuf);
switch (src_lo_rc) {
case rc_int:
if (dst_lo_rc == rc_int) { // gpr --> gpr copy
if (is64) {
__ mov(as_Register(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else {
MacroAssembler _masm(cbuf);
__ movw(as_Register(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
}
} else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
if (is64) {
__ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else {
__ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
}
} else { // gpr --> stack spill
assert(dst_lo_rc == rc_stack, "spill to bad register class");
__ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
}
break;
case rc_float:
if (dst_lo_rc == rc_int) { // fpr --> gpr copy
if (is64) {
__ fmovd(as_Register(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else {
__ fmovs(as_Register(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
}
} else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
if (cbuf) {
__ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else {
__ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
}
} else { // fpr --> stack spill
assert(dst_lo_rc == rc_stack, "spill to bad register class");
__ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
is64 ? __ D : __ S, dst_offset);
}
break;
case rc_stack:
if (dst_lo_rc == rc_int) { // stack --> gpr load
__ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
} else if (dst_lo_rc == rc_float) { // stack --> fpr load
__ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
is64 ? __ D : __ S, src_offset);
} else { // stack --> stack copy
assert(dst_lo_rc == rc_stack, "spill to bad register class");
__ unspill(rscratch1, is64, src_offset);
__ spill(rscratch1, is64, dst_offset);
}
break;
default:
assert(false, "bad rc_class for spill");
ShouldNotReachHere();
}
}
if (st) {
st->print("spill ");
if (src_lo_rc == rc_stack) {
st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo));
} else {
st->print("%s -> ", Matcher::regName[src_lo]);
}
if (dst_lo_rc == rc_stack) {
st->print("[sp, #%d]", ra_->reg2offset(dst_lo));
} else {
st->print("%s", Matcher::regName[dst_lo]);
}
if (bottom_type()->isa_vect() != NULL) {
st->print("\t# vector spill size = %d", ideal_reg()==Op_VecD ? 64:128);
} else {
st->print("\t# spill size = %d", is64 ? 64:32);
}
}
return 0;
}
#ifndef PRODUCT
void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
if (!ra_)
st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
else
implementation(NULL, ra_, false, st);
}
#endif
void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
implementation(&cbuf, ra_, false, NULL);
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
//=============================================================================
#ifndef PRODUCT
void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_reg_first(this);
st->print("add %s, rsp, #%d]\t# box lock",
Matcher::regName[reg], offset);
}
#endif
void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_encode(this);
if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
__ add(as_Register(reg), sp, offset);
} else {
ShouldNotReachHere();
}
}
uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
// BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
return 4;
}
//=============================================================================
#ifndef PRODUCT
void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
{
st->print_cr("# MachUEPNode");
if (UseCompressedClassPointers) {
st->print_cr("\tldrw rscratch1, j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
if (Universe::narrow_klass_shift() != 0) {
st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
}
} else {
st->print_cr("\tldr rscratch1, j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
}
st->print_cr("\tcmp r0, rscratch1\t # Inline cache check");
st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
}
#endif
void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
{
// This is the unverified entry point.
MacroAssembler _masm(&cbuf);
__ cmp_klass(j_rarg0, rscratch2, rscratch1);
Label skip;
// TODO
// can we avoid this skip and still use a reloc?
__ br(Assembler::EQ, skip);
__ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
__ bind(skip);
}
uint MachUEPNode::size(PhaseRegAlloc* ra_) const
{
return MachNode::size(ra_);
}
// REQUIRED EMIT CODE
//=============================================================================
// Emit exception handler code.
int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf)
{
// mov rscratch1 #exception_blob_entry_point
// br rscratch1
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_exception_handler());
if (base == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return 0; // CodeBuffer::expand failed
}
int offset = __ offset();
__ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
// Emit deopt handler code.
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf)
{
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_deopt_handler());
if (base == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return 0; // CodeBuffer::expand failed
}
int offset = __ offset();
__ adr(lr, __ pc());
__ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
// REQUIRED MATCHER CODE
//=============================================================================
const bool Matcher::match_rule_supported(int opcode) {
switch (opcode) {
default:
break;
}
if (!has_match_rule(opcode)) {
return false;
}
return true; // Per default match rules are supported.
}
const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
// TODO
// identify extra cases that we might want to provide match rules for
// e.g. Op_ vector nodes and other intrinsics while guarding with vlen
bool ret_value = match_rule_supported(opcode);
// Add rules here.
return ret_value; // Per default match rules are supported.
}
const bool Matcher::has_predicated_vectors(void) {
return false;
}
const int Matcher::float_pressure(int default_pressure_threshold) {
return default_pressure_threshold;
}
int Matcher::regnum_to_fpu_offset(int regnum)
{
Unimplemented();
return 0;
}
// Is this branch offset short enough that a short branch can be used?
//
// NOTE: If the platform does not provide any short branch variants, then
// this method should return false for offset 0.
bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
// The passed offset is relative to address of the branch.
return (-32768 <= offset && offset < 32768);
}
const bool Matcher::isSimpleConstant64(jlong value) {
// Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
// Probably always true, even if a temp register is required.
return true;
}
// true just means we have fast l2f conversion
const bool Matcher::convL2FSupported(void) {
return true;
}
// Vector width in bytes.
const int Matcher::vector_width_in_bytes(BasicType bt) {
int size = MIN2(16,(int)MaxVectorSize);
// Minimum 2 values in vector
if (size < 2*type2aelembytes(bt)) size = 0;
// But never < 4
if (size < 4) size = 0;
return size;
}
// Limits on vector size (number of elements) loaded into vector.
const int Matcher::max_vector_size(const BasicType bt) {
return vector_width_in_bytes(bt)/type2aelembytes(bt);
}
const int Matcher::min_vector_size(const BasicType bt) {
// For the moment limit the vector size to 8 bytes
int size = 8 / type2aelembytes(bt);
if (size < 2) size = 2;
return size;
}
// Vector ideal reg.
const int Matcher::vector_ideal_reg(int len) {
switch(len) {
case 8: return Op_VecD;
case 16: return Op_VecX;
}
ShouldNotReachHere();
return 0;
}
const int Matcher::vector_shift_count_ideal_reg(int size) {
return Op_VecX;
}
// AES support not yet implemented
const bool Matcher::pass_original_key_for_aes() {
return false;
}
// x86 supports misaligned vectors store/load.
const bool Matcher::misaligned_vectors_ok() {
return !AlignVector; // can be changed by flag
}
// false => size gets scaled to BytesPerLong, ok.
const bool Matcher::init_array_count_is_in_bytes = false;
// Use conditional move (CMOVL)
const int Matcher::long_cmove_cost() {
// long cmoves are no more expensive than int cmoves
return 0;
}
const int Matcher::float_cmove_cost() {
// float cmoves are no more expensive than int cmoves
return 0;
}
// Does the CPU require late expand (see block.cpp for description of late expand)?
const bool Matcher::require_postalloc_expand = false;
// Do we need to mask the count passed to shift instructions or does
// the cpu only look at the lower 5/6 bits anyway?
const bool Matcher::need_masked_shift_count = false;
// This affects two different things:
// - how Decode nodes are matched
// - how ImplicitNullCheck opportunities are recognized
// If true, the matcher will try to remove all Decodes and match them
// (as operands) into nodes. NullChecks are not prepared to deal with
// Decodes by final_graph_reshaping().
// If false, final_graph_reshaping() forces the decode behind the Cmp
// for a NullCheck. The matcher matches the Decode node into a register.
// Implicit_null_check optimization moves the Decode along with the
// memory operation back up before the NullCheck.
bool Matcher::narrow_oop_use_complex_address() {
return Universe::narrow_oop_shift() == 0;
}
bool Matcher::narrow_klass_use_complex_address() {
// TODO
// decide whether we need to set this to true
return false;
}
bool Matcher::const_oop_prefer_decode() {
// Prefer ConN+DecodeN over ConP in simple compressed oops mode.
return Universe::narrow_oop_base() == NULL;
}
bool Matcher::const_klass_prefer_decode() {
// Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
return Universe::narrow_klass_base() == NULL;
}
// Is it better to copy float constants, or load them directly from
// memory? Intel can load a float constant from a direct address,
// requiring no extra registers. Most RISCs will have to materialize
// an address into a register first, so they would do better to copy
// the constant from stack.
const bool Matcher::rematerialize_float_constants = false;
// If CPU can load and store mis-aligned doubles directly then no
// fixup is needed. Else we split the double into 2 integer pieces
// and move it piece-by-piece. Only happens when passing doubles into
// C code as the Java calling convention forces doubles to be aligned.
const bool Matcher::misaligned_doubles_ok = true;
// No-op on amd64
void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
Unimplemented();
}
// Advertise here if the CPU requires explicit rounding operations to
// implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = false;
// Are floats converted to double when stored to stack during
// deoptimization?
bool Matcher::float_in_double() { return true; }
// Do ints take an entire long register or just half?
// The relevant question is how the int is callee-saved:
// the whole long is written but de-opt'ing will have to extract
// the relevant 32 bits.
const bool Matcher::int_in_long = true;
// Return whether or not this register is ever used as an argument.
// This function is used on startup to build the trampoline stubs in
// generateOptoStub. Registers not mentioned will be killed by the VM
// call in the trampoline, and arguments in those registers not be
// available to the callee.
bool Matcher::can_be_java_arg(int reg)
{
return
reg == R0_num || reg == R0_H_num ||
reg == R1_num || reg == R1_H_num ||
reg == R2_num || reg == R2_H_num ||
reg == R3_num || reg == R3_H_num ||
reg == R4_num || reg == R4_H_num ||
reg == R5_num || reg == R5_H_num ||
reg == R6_num || reg == R6_H_num ||
reg == R7_num || reg == R7_H_num ||
reg == V0_num || reg == V0_H_num ||
reg == V1_num || reg == V1_H_num ||
reg == V2_num || reg == V2_H_num ||
reg == V3_num || reg == V3_H_num ||
reg == V4_num || reg == V4_H_num ||
reg == V5_num || reg == V5_H_num ||
reg == V6_num || reg == V6_H_num ||
reg == V7_num || reg == V7_H_num;
}
bool Matcher::is_spillable_arg(int reg)
{
return can_be_java_arg(reg);
}
bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
return false;
}
RegMask Matcher::divI_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for MODI projection of divmodI.
RegMask Matcher::modI_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for DIVL projection of divmodL.
RegMask Matcher::divL_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for MODL projection of divmodL.
RegMask Matcher::modL_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
const RegMask Matcher::method_handle_invoke_SP_save_mask() {
return FP_REG_mask();
}
bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
Node* u = addp->fast_out(i);
if (u->is_Mem()) {
int opsize = u->as_Mem()->memory_size();
assert(opsize > 0, "unexpected memory operand size");
if (u->as_Mem()->memory_size() != (1<<shift)) {
return false;
}
}
}
return true;
}
const bool Matcher::convi2l_type_required = false;
// Should the Matcher clone shifts on addressing modes, expecting them
// to be subsumed into complex addressing expressions or compute them
// into registers?
bool Matcher::clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
if (clone_base_plus_offset_address(m, mstack, address_visited)) {
return true;
}
Node *off = m->in(AddPNode::Offset);
if (off->Opcode() == Op_LShiftL && off->in(2)->is_Con() &&
size_fits_all_mem_uses(m, off->in(2)->get_int()) &&
// Are there other uses besides address expressions?
!is_visited(off)) {
address_visited.set(off->_idx); // Flag as address_visited
mstack.push(off->in(2), Visit);
Node *conv = off->in(1);
if (conv->Opcode() == Op_ConvI2L &&
// Are there other uses besides address expressions?
!is_visited(conv)) {
address_visited.set(conv->_idx); // Flag as address_visited
mstack.push(conv->in(1), Pre_Visit);
} else {
mstack.push(conv, Pre_Visit);
}
address_visited.test_set(m->_idx); // Flag as address_visited
mstack.push(m->in(AddPNode::Address), Pre_Visit);
mstack.push(m->in(AddPNode::Base), Pre_Visit);
return true;
} else if (off->Opcode() == Op_ConvI2L &&
// Are there other uses besides address expressions?
!is_visited(off)) {
address_visited.test_set(m->_idx); // Flag as address_visited
address_visited.set(off->_idx); // Flag as address_visited
mstack.push(off->in(1), Pre_Visit);
mstack.push(m->in(AddPNode::Address), Pre_Visit);
mstack.push(m->in(AddPNode::Base), Pre_Visit);
return true;
}
return false;
}
// Transform:
// (AddP base (AddP base address (LShiftL index con)) offset)
// into:
// (AddP base (AddP base offset) (LShiftL index con))
// to take full advantage of ARM's addressing modes
void Compile::reshape_address(AddPNode* addp) {
Node *addr = addp->in(AddPNode::Address);
if (addr->is_AddP() && addr->in(AddPNode::Base) == addp->in(AddPNode::Base)) {
const AddPNode *addp2 = addr->as_AddP();
if ((addp2->in(AddPNode::Offset)->Opcode() == Op_LShiftL &&
addp2->in(AddPNode::Offset)->in(2)->is_Con() &&
size_fits_all_mem_uses(addp, addp2->in(AddPNode::Offset)->in(2)->get_int())) ||
addp2->in(AddPNode::Offset)->Opcode() == Op_ConvI2L) {
// Any use that can't embed the address computation?
for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
Node* u = addp->fast_out(i);
if (!u->is_Mem() || u->is_LoadVector() || u->is_StoreVector() || u->Opcode() == Op_StoreCM) {
return;
}
}
Node* off = addp->in(AddPNode::Offset);
Node* addr2 = addp2->in(AddPNode::Address);
Node* base = addp->in(AddPNode::Base);
Node* new_addr = NULL;
// Check whether the graph already has the new AddP we need
// before we create one (no GVN available here).
for (DUIterator_Fast imax, i = addr2->fast_outs(imax); i < imax; i++) {
Node* u = addr2->fast_out(i);
if (u->is_AddP() &&
u->in(AddPNode::Base) == base &&
u->in(AddPNode::Address) == addr2 &&
u->in(AddPNode::Offset) == off) {
new_addr = u;
break;
}
}
if (new_addr == NULL) {
new_addr = new AddPNode(base, addr2, off);
}
Node* new_off = addp2->in(AddPNode::Offset);
addp->set_req(AddPNode::Address, new_addr);
if (addr->outcnt() == 0) {
addr->disconnect_inputs(NULL, this);
}
addp->set_req(AddPNode::Offset, new_off);
if (off->outcnt() == 0) {
off->disconnect_inputs(NULL, this);
}
}
}
}
// helper for encoding java_to_runtime calls on sim
//
// this is needed to compute the extra arguments required when
// planting a call to the simulator blrt instruction. the TypeFunc
// can be queried to identify the counts for integral, and floating
// arguments and the return type
static void getCallInfo(const TypeFunc *tf, int &gpcnt, int &fpcnt, int &rtype)
{
int gps = 0;
int fps = 0;
const TypeTuple *domain = tf->domain();
int max = domain->cnt();
for (int i = TypeFunc::Parms; i < max; i++) {
const Type *t = domain->field_at(i);
switch(t->basic_type()) {
case T_FLOAT:
case T_DOUBLE:
fps++;
default:
gps++;
}
}
gpcnt = gps;
fpcnt = fps;
BasicType rt = tf->return_type();
switch (rt) {
case T_VOID:
rtype = MacroAssembler::ret_type_void;
break;
default:
rtype = MacroAssembler::ret_type_integral;
break;
case T_FLOAT:
rtype = MacroAssembler::ret_type_float;
break;
case T_DOUBLE:
rtype = MacroAssembler::ret_type_double;
break;
}
}
#define MOV_VOLATILE(REG, BASE, INDEX, SCALE, DISP, SCRATCH, INSN) \
MacroAssembler _masm(&cbuf); \
{ \
guarantee(INDEX == -1, "mode not permitted for volatile"); \
guarantee(DISP == 0, "mode not permitted for volatile"); \
guarantee(SCALE == 0, "mode not permitted for volatile"); \
__ INSN(REG, as_Register(BASE)); \
}
typedef void (MacroAssembler::* mem_insn)(Register Rt, const Address &adr);
typedef void (MacroAssembler::* mem_float_insn)(FloatRegister Rt, const Address &adr);
typedef void (MacroAssembler::* mem_vector_insn)(FloatRegister Rt,
MacroAssembler::SIMD_RegVariant T, const Address &adr);
// Used for all non-volatile memory accesses. The use of
// $mem->opcode() to discover whether this pattern uses sign-extended
// offsets is something of a kludge.
static void loadStore(MacroAssembler masm, mem_insn insn,
Register reg, int opcode,
Register base, int index, int size, int disp)
{
Address::extend scale;
// Hooboy, this is fugly. We need a way to communicate to the
// encoder that the index needs to be sign extended, so we have to
// enumerate all the cases.
switch (opcode) {
case INDINDEXSCALEDI2L:
case INDINDEXSCALEDI2LN:
case INDINDEXI2L:
case INDINDEXI2LN:
scale = Address::sxtw(size);
break;
default:
scale = Address::lsl(size);
}
if (index == -1) {
(masm.*insn)(reg, Address(base, disp));
} else {
assert(disp == 0, "unsupported address mode: disp = %d", disp);
(masm.*insn)(reg, Address(base, as_Register(index), scale));
}
}
static void loadStore(MacroAssembler masm, mem_float_insn insn,
FloatRegister reg, int opcode,
Register base, int index, int size, int disp)
{
Address::extend scale;
switch (opcode) {
case INDINDEXSCALEDI2L:
case INDINDEXSCALEDI2LN:
scale = Address::sxtw(size);
break;
default:
scale = Address::lsl(size);
}
if (index == -1) {
(masm.*insn)(reg, Address(base, disp));
} else {
assert(disp == 0, "unsupported address mode: disp = %d", disp);
(masm.*insn)(reg, Address(base, as_Register(index), scale));
}
}
static void loadStore(MacroAssembler masm, mem_vector_insn insn,
FloatRegister reg, MacroAssembler::SIMD_RegVariant T,
int opcode, Register base, int index, int size, int disp)
{
if (index == -1) {
(masm.*insn)(reg, T, Address(base, disp));
} else {
assert(disp == 0, "unsupported address mode");
(masm.*insn)(reg, T, Address(base, as_Register(index), Address::lsl(size)));
}
}
%}
//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to
// output byte streams. Encoding classes are parameterized macros
// used by Machine Instruction Nodes in order to generate the bit
// encoding of the instruction. Operands specify their base encoding
// interface with the interface keyword. There are currently
// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
// COND_INTER. REG_INTER causes an operand to generate a function
// which returns its register number when queried. CONST_INTER causes
// an operand to generate a function which returns the value of the
// constant when queried. MEMORY_INTER causes an operand to generate
// four functions which return the Base Register, the Index Register,
// the Scale Value, and the Offset Value of the operand when queried.
// COND_INTER causes an operand to generate six functions which return
// the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional
// instruction.
//
// Instructions specify two basic values for encoding. Again, a
// function is available to check if the constant displacement is an
// oop. They use the ins_encode keyword to specify their encoding
// classes (which must be a sequence of enc_class names, and their
// parameters, specified in the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular
// instruction needs for encoding need to be specified.
encode %{
// Build emit functions for each basic byte or larger field in the
// intel encoding scheme (opcode, rm, sib, immediate), and call them
// from C++ code in the enc_class source block. Emit functions will
// live in the main source block for now. In future, we can
// generalize this by adding a syntax that specifies the sizes of
// fields in an order, so that the adlc can build the emit functions
// automagically
// catch all for unimplemented encodings
enc_class enc_unimplemented %{
MacroAssembler _masm(&cbuf);
__ unimplemented("C2 catch all");
%}
// BEGIN Non-volatile memory access
enc_class aarch64_enc_ldrsbw(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsbw, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrsb(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsb, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrb(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrb(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrshw(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrshw, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrsh(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsh, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrh(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrh(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrw(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrw(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrsw(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsw, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldr(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrs(vRegF dst, memory mem) %{
FloatRegister dst_reg = as_FloatRegister($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrs, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrd(vRegD dst, memory mem) %{
FloatRegister dst_reg = as_FloatRegister($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrd, dst_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrvS(vecD dst, memory mem) %{
FloatRegister dst_reg = as_FloatRegister($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::S,
$mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrvD(vecD dst, memory mem) %{
FloatRegister dst_reg = as_FloatRegister($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::D,
$mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_ldrvQ(vecX dst, memory mem) %{
FloatRegister dst_reg = as_FloatRegister($dst$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::Q,
$mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strb(iRegI src, memory mem) %{
Register src_reg = as_Register($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::strb, src_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strb0(memory mem) %{
MacroAssembler _masm(&cbuf);
loadStore(_masm, &MacroAssembler::strb, zr, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strb0_ordered(memory mem) %{
MacroAssembler _masm(&cbuf);
__ membar(Assembler::StoreStore);
loadStore(_masm, &MacroAssembler::strb, zr, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strh(iRegI src, memory mem) %{
Register src_reg = as_Register($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::strh, src_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strh0(memory mem) %{
MacroAssembler _masm(&cbuf);
loadStore(_masm, &MacroAssembler::strh, zr, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strw(iRegI src, memory mem) %{
Register src_reg = as_Register($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::strw, src_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strw0(memory mem) %{
MacroAssembler _masm(&cbuf);
loadStore(_masm, &MacroAssembler::strw, zr, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_str(iRegL src, memory mem) %{
Register src_reg = as_Register($src$$reg);
// we sometimes get asked to store the stack pointer into the
// current thread -- we cannot do that directly on AArch64
if (src_reg == r31_sp) {
MacroAssembler _masm(&cbuf);
assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
__ mov(rscratch2, sp);
src_reg = rscratch2;
}
loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_str0(memory mem) %{
MacroAssembler _masm(&cbuf);
loadStore(_masm, &MacroAssembler::str, zr, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strs(vRegF src, memory mem) %{
FloatRegister src_reg = as_FloatRegister($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::strs, src_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strd(vRegD src, memory mem) %{
FloatRegister src_reg = as_FloatRegister($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::strd, src_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strvS(vecD src, memory mem) %{
FloatRegister src_reg = as_FloatRegister($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::S,
$mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strvD(vecD src, memory mem) %{
FloatRegister src_reg = as_FloatRegister($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::D,
$mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
enc_class aarch64_enc_strvQ(vecX src, memory mem) %{
FloatRegister src_reg = as_FloatRegister($src$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::Q,
$mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
%}
// END Non-volatile memory access
// volatile loads and stores
enc_class aarch64_enc_stlrb(iRegI src, memory mem) %{
MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, stlrb);
%}
enc_class aarch64_enc_stlrh(iRegI src, memory mem) %{
MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, stlrh);
%}
enc_class aarch64_enc_stlrw(iRegI src, memory mem) %{
MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, stlrw);
%}
enc_class aarch64_enc_ldarsbw(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarb);
__ sxtbw(dst_reg, dst_reg);
%}
enc_class aarch64_enc_ldarsb(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarb);
__ sxtb(dst_reg, dst_reg);
%}
enc_class aarch64_enc_ldarbw(iRegI dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarb);
%}
enc_class aarch64_enc_ldarb(iRegL dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarb);
%}
enc_class aarch64_enc_ldarshw(iRegI dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarh);
__ sxthw(dst_reg, dst_reg);
%}
enc_class aarch64_enc_ldarsh(iRegL dst, memory mem) %{
Register dst_reg = as_Register($dst$$reg);
MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarh);
__ sxth(dst_reg, dst_reg);
%}
enc_class aarch64_enc_ldarhw(iRegI dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarh);
%}
enc_class aarch64_enc_ldarh(iRegL dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarh);
%}
enc_class aarch64_enc_ldarw(iRegI dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarw);
%}
enc_class aarch64_enc_ldarw(iRegL dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarw);
%}
enc_class aarch64_enc_ldar(iRegL dst, memory mem) %{
MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldar);
%}
enc_class aarch64_enc_fldars(vRegF dst, memory mem) %{
MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldarw);
__ fmovs(as_FloatRegister($dst$$reg), rscratch1);
%}
enc_class aarch64_enc_fldard(vRegD dst, memory mem) %{
MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, ldar);
__ fmovd(as_FloatRegister($dst$$reg), rscratch1);
%}
enc_class aarch64_enc_stlr(iRegL src, memory mem) %{
Register src_reg = as_Register($src$$reg);
// we sometimes get asked to store the stack pointer into the
// current thread -- we cannot do that directly on AArch64
if (src_reg == r31_sp) {
MacroAssembler _masm(&cbuf);
assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
__ mov(rscratch2, sp);
src_reg = rscratch2;
}
MOV_VOLATILE(src_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, stlr);
%}
enc_class aarch64_enc_fstlrs(vRegF src, memory mem) %{
{
MacroAssembler _masm(&cbuf);
FloatRegister src_reg = as_FloatRegister($src$$reg);
__ fmovs(rscratch2, src_reg);
}
MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, stlrw);
%}
enc_class aarch64_enc_fstlrd(vRegD src, memory mem) %{
{
MacroAssembler _masm(&cbuf);
FloatRegister src_reg = as_FloatRegister($src$$reg);
__ fmovd(rscratch2, src_reg);
}
MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
rscratch1, stlr);
%}
// synchronized read/update encodings
enc_class aarch64_enc_ldaxr(iRegL dst, memory mem) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register base = as_Register($mem$$base);
int index = $mem$$index;
int scale = $mem$$scale;
int disp = $mem$$disp;
if (index == -1) {
if (disp != 0) {
__ lea(rscratch1, Address(base, disp));
__ ldaxr(dst_reg, rscratch1);
} else {
// TODO
// should we ever get anything other than this case?
__ ldaxr(dst_reg, base);
}
} else {
Register index_reg = as_Register(index);
if (disp == 0) {
__ lea(rscratch1, Address(base, index_reg, Address::lsl(scale)));
__ ldaxr(dst_reg, rscratch1);
} else {
__ lea(rscratch1, Address(base, disp));
__ lea(rscratch1, Address(rscratch1, index_reg, Address::lsl(scale)));
__ ldaxr(dst_reg, rscratch1);
}
}
%}
enc_class aarch64_enc_stlxr(iRegLNoSp src, memory mem) %{
MacroAssembler _masm(&cbuf);
Register src_reg = as_Register($src$$reg);
Register base = as_Register($mem$$base);
int index = $mem$$index;
int scale = $mem$$scale;
int disp = $mem$$disp;
if (index == -1) {
if (disp != 0) {
__ lea(rscratch2, Address(base, disp));
__ stlxr(rscratch1, src_reg, rscratch2);
} else {
// TODO
// should we ever get anything other than this case?
__ stlxr(rscratch1, src_reg, base);
}
} else {
Register index_reg = as_Register(index);
if (disp == 0) {
__ lea(rscratch2, Address(base, index_reg, Address::lsl(scale)));
__ stlxr(rscratch1, src_reg, rscratch2);
} else {
__ lea(rscratch2, Address(base, disp));
__ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale)));
__ stlxr(rscratch1, src_reg, rscratch2);
}
}
__ cmpw(rscratch1, zr);
%}
enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
MacroAssembler _masm(&cbuf);
guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
__ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
Assembler::xword, /*acquire*/ false, /*release*/ true,
/*weak*/ false, noreg);
%}
enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
MacroAssembler _masm(&cbuf);
guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
__ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
Assembler::word, /*acquire*/ false, /*release*/ true,
/*weak*/ false, noreg);
%}
// The only difference between aarch64_enc_cmpxchg and
// aarch64_enc_cmpxchg_acq is that we use load-acquire in the
// CompareAndSwap sequence to serve as a barrier on acquiring a
// lock.
enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
MacroAssembler _masm(&cbuf);
guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
__ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
Assembler::xword, /*acquire*/ true, /*release*/ true,
/*weak*/ false, noreg);
%}
enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
MacroAssembler _masm(&cbuf);
guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
__ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
Assembler::word, /*acquire*/ true, /*release*/ true,
/*weak*/ false, noreg);
%}
// auxiliary used for CompareAndSwapX to set result register
enc_class aarch64_enc_cset_eq(iRegINoSp res) %{
MacroAssembler _masm(&cbuf);
Register res_reg = as_Register($res$$reg);
__ cset(res_reg, Assembler::EQ);
%}
// prefetch encodings
enc_class aarch64_enc_prefetchw(memory mem) %{
MacroAssembler _masm(&cbuf);
Register base = as_Register($mem$$base);
int index = $mem$$index;
int scale = $mem$$scale;
int disp = $mem$$disp;
if (index == -1) {
__ prfm(Address(base, disp), PSTL1KEEP);
} else {
Register index_reg = as_Register(index);
if (disp == 0) {
__ prfm(Address(base, index_reg, Address::lsl(scale)), PSTL1KEEP);
} else {
__ lea(rscratch1, Address(base, disp));
__ prfm(Address(rscratch1, index_reg, Address::lsl(scale)), PSTL1KEEP);
}
}
%}
/// mov envcodings
enc_class aarch64_enc_movw_imm(iRegI dst, immI src) %{
MacroAssembler _masm(&cbuf);
u_int32_t con = (u_int32_t)$src$$constant;
Register dst_reg = as_Register($dst$$reg);
if (con == 0) {
__ movw(dst_reg, zr);
} else {
__ movw(dst_reg, con);
}
%}
enc_class aarch64_enc_mov_imm(iRegL dst, immL src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
u_int64_t con = (u_int64_t)$src$$constant;
if (con == 0) {
__ mov(dst_reg, zr);
} else {
__ mov(dst_reg, con);
}
%}
enc_class aarch64_enc_mov_p(iRegP dst, immP src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
address con = (address)$src$$constant;
if (con == NULL || con == (address)1) {
ShouldNotReachHere();
} else {
relocInfo::relocType rtype = $src->constant_reloc();
if (rtype == relocInfo::oop_type) {
__ movoop(dst_reg, (jobject)con, /*immediate*/true);
} else if (rtype == relocInfo::metadata_type) {
__ mov_metadata(dst_reg, (Metadata*)con);
} else {
assert(rtype == relocInfo::none, "unexpected reloc type");
if (con < (address)(uintptr_t)os::vm_page_size()) {
__ mov(dst_reg, con);
} else {
unsigned long offset;
__ adrp(dst_reg, con, offset);
__ add(dst_reg, dst_reg, offset);
}
}
}
%}
enc_class aarch64_enc_mov_p0(iRegP dst, immP0 src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
__ mov(dst_reg, zr);
%}
enc_class aarch64_enc_mov_p1(iRegP dst, immP_1 src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
__ mov(dst_reg, (u_int64_t)1);
%}
enc_class aarch64_enc_mov_poll_page(iRegP dst, immPollPage src) %{
MacroAssembler _masm(&cbuf);
address page = (address)$src$$constant;
Register dst_reg = as_Register($dst$$reg);
unsigned long off;
__ adrp(dst_reg, Address(page, relocInfo::poll_type), off);
assert(off == 0, "assumed offset == 0");
%}
enc_class aarch64_enc_mov_byte_map_base(iRegP dst, immByteMapBase src) %{
MacroAssembler _masm(&cbuf);
__ load_byte_map_base($dst$$Register);
%}
enc_class aarch64_enc_mov_n(iRegN dst, immN src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
address con = (address)$src$$constant;
if (con == NULL) {
ShouldNotReachHere();
} else {
relocInfo::relocType rtype = $src->constant_reloc();
assert(rtype == relocInfo::oop_type, "unexpected reloc type");
__ set_narrow_oop(dst_reg, (jobject)con);
}
%}
enc_class aarch64_enc_mov_n0(iRegN dst, immN0 src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
__ mov(dst_reg, zr);
%}
enc_class aarch64_enc_mov_nk(iRegN dst, immNKlass src) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
address con = (address)$src$$constant;
if (con == NULL) {
ShouldNotReachHere();
} else {
relocInfo::relocType rtype = $src->constant_reloc();
assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
__ set_narrow_klass(dst_reg, (Klass *)con);
}
%}
// arithmetic encodings
enc_class aarch64_enc_addsubw_imm(iRegI dst, iRegI src1, immIAddSub src2) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register src_reg = as_Register($src1$$reg);
int32_t con = (int32_t)$src2$$constant;
// add has primary == 0, subtract has primary == 1
if ($primary) { con = -con; }
if (con < 0) {
__ subw(dst_reg, src_reg, -con);
} else {
__ addw(dst_reg, src_reg, con);
}
%}
enc_class aarch64_enc_addsub_imm(iRegL dst, iRegL src1, immLAddSub src2) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register src_reg = as_Register($src1$$reg);
int32_t con = (int32_t)$src2$$constant;
// add has primary == 0, subtract has primary == 1
if ($primary) { con = -con; }
if (con < 0) {
__ sub(dst_reg, src_reg, -con);
} else {
__ add(dst_reg, src_reg, con);
}
%}
enc_class aarch64_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register src1_reg = as_Register($src1$$reg);
Register src2_reg = as_Register($src2$$reg);
__ corrected_idivl(dst_reg, src1_reg, src2_reg, false, rscratch1);
%}
enc_class aarch64_enc_div(iRegI dst, iRegI src1, iRegI src2) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register src1_reg = as_Register($src1$$reg);
Register src2_reg = as_Register($src2$$reg);
__ corrected_idivq(dst_reg, src1_reg, src2_reg, false, rscratch1);
%}
enc_class aarch64_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register src1_reg = as_Register($src1$$reg);
Register src2_reg = as_Register($src2$$reg);
__ corrected_idivl(dst_reg, src1_reg, src2_reg, true, rscratch1);
%}
enc_class aarch64_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{
MacroAssembler _masm(&cbuf);
Register dst_reg = as_Register($dst$$reg);
Register src1_reg = as_Register($src1$$reg);
Register src2_reg = as_Register($src2$$reg);
__ corrected_idivq(dst_reg, src1_reg, src2_reg, true, rscratch1);
%}
// compare instruction encodings
enc_class aarch64_enc_cmpw(iRegI src1, iRegI src2) %{
MacroAssembler _masm(&cbuf);
Register reg1 = as_Register($src1$$reg);
Register reg2 = as_Register($src2$$reg);
__ cmpw(reg1, reg2);
%}
enc_class aarch64_enc_cmpw_imm_addsub(iRegI src1, immIAddSub src2) %{
MacroAssembler _masm(&cbuf);
Register reg = as_Register($src1$$reg);
int32_t val = $src2$$constant;
if (val >= 0) {
__ subsw(zr, reg, val);
} else {
__ addsw(zr, reg, -val);
}
%}
enc_class aarch64_enc_cmpw_imm(iRegI src1, immI src2) %{
MacroAssembler _masm(&cbuf);
Register reg1 = as_Register($src1$$reg);
u_int32_t val = (u_int32_t)$src2$$constant;
__ movw(rscratch1, val);
__ cmpw(reg1, rscratch1);
%}
enc_class aarch64_enc_cmp(iRegL src1, iRegL src2) %{
MacroAssembler _masm(&cbuf);
Register reg1 = as_Register($src1$$reg);
Register reg2 = as_Register($src2$$reg);
__ cmp(reg1, reg2);
%}
enc_class aarch64_enc_cmp_imm_addsub(iRegL src1, immL12 src2) %{
MacroAssembler _masm(&cbuf);
Register reg = as_Register($src1$$reg);
int64_t val = $src2$$constant;
if (val >= 0) {
__ subs(zr, reg, val);
} else if (val != -val) {
__ adds(zr, reg, -val);
} else {
// aargh, Long.MIN_VALUE is a special case
__ orr(rscratch1, zr, (u_int64_t)val);
__ subs(zr, reg, rscratch1);
}
%}
enc_class aarch64_enc_cmp_imm(iRegL src1, immL src2) %{
MacroAssembler _masm(&cbuf);
Register reg1 = as_Register($src1$$reg);
u_int64_t val = (u_int64_t)$src2$$constant;
__ mov(rscratch1, val);
__ cmp(reg1, rscratch1);
%}
enc_class aarch64_enc_cmpp(iRegP src1, iRegP src2) %{
MacroAssembler _masm(&cbuf);
Register reg1 = as_Register($src1$$reg);
Register reg2 = as_Register($src2$$reg);
__ cmp(reg1, reg2);
%}
enc_class aarch64_enc_cmpn(iRegN src1, iRegN src2) %{
MacroAssembler _masm(&cbuf);
Register reg1 = as_Register($src1$$reg);
Register reg2 = as_Register($src2$$reg);
__ cmpw(reg1, reg2);
%}
enc_class aarch64_enc_testp(iRegP src) %{
MacroAssembler _masm(&cbuf);
Register reg = as_Register($src$$reg);
__ cmp(reg, zr);
%}
enc_class aarch64_enc_testn(iRegN src) %{
MacroAssembler _masm(&cbuf);
Register reg = as_Register($src$$reg);
__ cmpw(reg, zr);
%}
enc_class aarch64_enc_b(label lbl) %{
MacroAssembler _masm(&cbuf);
Label *L = $lbl$$label;
__ b(*L);
%}
enc_class aarch64_enc_br_con(cmpOp cmp, label lbl) %{
MacroAssembler _masm(&cbuf);
Label *L = $lbl$$label;
__ br ((Assembler::Condition)$cmp$$cmpcode, *L);
%}
enc_class aarch64_enc_br_conU(cmpOpU cmp, label lbl) %{
MacroAssembler _masm(&cbuf);
Label *L = $lbl$$label;
__ br ((Assembler::Condition)$cmp$$cmpcode, *L);
%}
enc_class aarch64_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result)
%{
Register sub_reg = as_Register($sub$$reg);
Register super_reg = as_Register($super$$reg);
Register temp_reg = as_Register($temp$$reg);
Register result_reg = as_Register($result$$reg);
Label miss;
MacroAssembler _masm(&cbuf);
__ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
NULL, &miss,
/*set_cond_codes:*/ true);
if ($primary) {
__ mov(result_reg, zr);
}
__ bind(miss);
%}
enc_class aarch64_enc_java_static_call(method meth) %{
MacroAssembler _masm(&cbuf);
address addr = (address)$meth$$method;
address call;
if (!_method) {
// A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type), &cbuf);
} else {
int method_index = resolved_method_index(cbuf);
RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
: static_call_Relocation::spec(method_index);
call = __ trampoline_call(Address(addr, rspec), &cbuf);
// Emit stub for static call
address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
if (stub == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return;
}
}
if (call == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return;
}
%}
enc_class aarch64_enc_java_dynamic_call(method meth) %{
MacroAssembler _masm(&cbuf);
int method_index = resolved_method_index(cbuf);
address call = __ ic_call((address)$meth$$method, method_index);
if (call == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return;
}
%}
enc_class aarch64_enc_call_epilog() %{
MacroAssembler _masm(&cbuf);
if (VerifyStackAtCalls) {
// Check that stack depth is unchanged: find majik cookie on stack
__ call_Unimplemented();
}
%}
enc_class aarch64_enc_java_to_runtime(method meth) %{
MacroAssembler _masm(&cbuf);
// some calls to generated routines (arraycopy code) are scheduled
// by C2 as runtime calls. if so we can call them using a br (they
// will be in a reachable segment) otherwise we have to use a blrt
// which loads the absolute address into a register.
address entry = (address)$meth$$method;
CodeBlob *cb = CodeCache::find_blob(entry);
if (cb) {
address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
if (call == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return;
}
} else {
int gpcnt;
int fpcnt;
int rtype;
getCallInfo(tf(), gpcnt, fpcnt, rtype);
Label retaddr;
__ adr(rscratch2, retaddr);
__ lea(rscratch1, RuntimeAddress(entry));
// Leave a breadcrumb for JavaFrameAnchor::capture_last_Java_pc()
__ stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize)));
__ blrt(rscratch1, gpcnt, fpcnt, rtype);
__ bind(retaddr);
__ add(sp, sp, 2 * wordSize);
}
%}
enc_class aarch64_enc_rethrow() %{
MacroAssembler _masm(&cbuf);
__ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
%}
enc_class aarch64_enc_ret() %{
MacroAssembler _masm(&cbuf);
__ ret(lr);
%}
enc_class aarch64_enc_tail_call(iRegP jump_target) %{
MacroAssembler _masm(&cbuf);
Register target_reg = as_Register($jump_target$$reg);
__ br(target_reg);
%}
enc_class aarch64_enc_tail_jmp(iRegP jump_target) %{
MacroAssembler _masm(&cbuf);
Register target_reg = as_Register($jump_target$$reg);
// exception oop should be in r0
// ret addr has been popped into lr
// callee expects it in r3
__ mov(r3, lr);
__ br(target_reg);
%}
enc_class aarch64_enc_fast_lock(iRegP object, iRegP box, iRegP tmp, iRegP tmp2) %{
MacroAssembler _masm(&cbuf);
Register oop = as_Register($object$$reg);
Register box = as_Register($box$$reg);
Register disp_hdr = as_Register($tmp$$reg);
Register tmp = as_Register($tmp2$$reg);
Label cont;
Label object_has_monitor;
Label cas_failed;
assert_different_registers(oop, box, tmp, disp_hdr);
// Load markOop from object into displaced_header.
__ ldr(disp_hdr, Address(oop, oopDesc::mark_offset_in_bytes()));
// Always do locking in runtime.
if (EmitSync & 0x01) {
__ cmp(oop, zr);
return;
}
if (UseBiasedLocking && !UseOptoBiasInlining) {
__ biased_locking_enter(box, oop, disp_hdr, tmp, true, cont);
}
// Handle existing monitor
if ((EmitSync & 0x02) == 0) {
// we can use AArch64's bit test and branch here but
// markoopDesc does not define a bit index just the bit value
// so assert in case the bit pos changes
# define __monitor_value_log2 1
assert(markOopDesc::monitor_value == (1 << __monitor_value_log2), "incorrect bit position");
__ tbnz(disp_hdr, __monitor_value_log2, object_has_monitor);
# undef __monitor_value_log2
}
// Set displaced_header to be (markOop of object | UNLOCK_VALUE).
__ orr(disp_hdr, disp_hdr, markOopDesc::unlocked_value);
// Load Compare Value application register.
// Initialize the box. (Must happen before we update the object mark!)
__ str(disp_hdr, Address(box, BasicLock::displaced_header_offset_in_bytes()));
// Compare object markOop with mark and if equal exchange scratch1
// with object markOop.
if (UseLSE) {
__ mov(tmp, disp_hdr);
__ casal(Assembler::xword, tmp, box, oop);
__ cmp(tmp, disp_hdr);
__ br(Assembler::EQ, cont);
} else {
Label retry_load;
if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
__ prfm(Address(oop), PSTL1STRM);
__ bind(retry_load);
__ ldaxr(tmp, oop);
__ cmp(tmp, disp_hdr);
__ br(Assembler::NE, cas_failed);
// use stlxr to ensure update is immediately visible
__ stlxr(tmp, box, oop);
__ cbzw(tmp, cont);
__ b(retry_load);
}
// Formerly:
// __ cmpxchgptr(/*oldv=*/disp_hdr,
// /*newv=*/box,
// /*addr=*/oop,
// /*tmp=*/tmp,
// cont,
// /*fail*/NULL);
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
// If the compare-and-exchange succeeded, then we found an unlocked
// object, will have now locked it will continue at label cont
__ bind(cas_failed);
// We did not see an unlocked object so try the fast recursive case.
// Check if the owner is self by comparing the value in the
// markOop of object (disp_hdr) with the stack pointer.
__ mov(rscratch1, sp);
__ sub(disp_hdr, disp_hdr, rscratch1);
__ mov(tmp, (address) (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
// If condition is true we are cont and hence we can store 0 as the
// displaced header in the box, which indicates that it is a recursive lock.
__ ands(tmp/*==0?*/, disp_hdr, tmp);
__ str(tmp/*==0, perhaps*/, Address(box, BasicLock::displaced_header_offset_in_bytes()));
// Handle existing monitor.
if ((EmitSync & 0x02) == 0) {
__ b(cont);
__ bind(object_has_monitor);
// The object's monitor m is unlocked iff m->owner == NULL,
// otherwise m->owner may contain a thread or a stack address.
//
// Try to CAS m->owner from NULL to current thread.
__ add(tmp, disp_hdr, (ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value));
__ mov(disp_hdr, zr);
if (UseLSE) {
__ mov(rscratch1, disp_hdr);
__ casal(Assembler::xword, rscratch1, rthread, tmp);
__ cmp(rscratch1, disp_hdr);
} else {
Label retry_load, fail;
if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
__ prfm(Address(tmp), PSTL1STRM);
__ bind(retry_load);
__ ldaxr(rscratch1, tmp);
__ cmp(disp_hdr, rscratch1);
__ br(Assembler::NE, fail);
// use stlxr to ensure update is immediately visible
__ stlxr(rscratch1, rthread, tmp);
__ cbnzw(rscratch1, retry_load);
__ bind(fail);
}
// Label next;
// __ cmpxchgptr(/*oldv=*/disp_hdr,
// /*newv=*/rthread,
// /*addr=*/tmp,
// /*tmp=*/rscratch1,
// /*succeed*/next,
// /*fail*/NULL);
// __ bind(next);
// store a non-null value into the box.
__ str(box, Address(box, BasicLock::displaced_header_offset_in_bytes()));
// PPC port checks the following invariants
// #ifdef ASSERT
// bne(flag, cont);
// We have acquired the monitor, check some invariants.
// addw(/*monitor=*/tmp, tmp, -ObjectMonitor::owner_offset_in_bytes());
// Invariant 1: _recursions should be 0.
// assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
// assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), tmp,
// "monitor->_recursions should be 0", -1);
// Invariant 2: OwnerIsThread shouldn't be 0.
// assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
//assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), tmp,
// "monitor->OwnerIsThread shouldn't be 0", -1);
// #endif
}
__ bind(cont);
// flag == EQ indicates success
// flag == NE indicates failure
%}
// TODO
// reimplement this with custom cmpxchgptr code
// which avoids some of the unnecessary branching
enc_class aarch64_enc_fast_unlock(iRegP object, iRegP box, iRegP tmp, iRegP tmp2) %{
MacroAssembler _masm(&cbuf);
Register oop = as_Register($object$$reg);
Register box = as_Register($box$$reg);
Register disp_hdr = as_Register($tmp$$reg);
Register tmp = as_Register($tmp2$$reg);
Label cont;
Label object_has_monitor;
Label cas_failed;
assert_different_registers(oop, box, tmp, disp_hdr);
// Always do locking in runtime.
if (EmitSync & 0x01) {
__ cmp(oop, zr); // Oop can't be 0 here => always false.
return;
}
if (UseBiasedLocking && !UseOptoBiasInlining) {
__ biased_locking_exit(oop, tmp, cont);
}
// Find the lock address and load the displaced header from the stack.
__ ldr(disp_hdr, Address(box, BasicLock::displaced_header_offset_in_bytes()));
// If the displaced header is 0, we have a recursive unlock.
__ cmp(disp_hdr, zr);
__ br(Assembler::EQ, cont);
// Handle existing monitor.
if ((EmitSync & 0x02) == 0) {
__ ldr(tmp, Address(oop, oopDesc::mark_offset_in_bytes()));
__ tbnz(disp_hdr, exact_log2(markOopDesc::monitor_value), object_has_monitor);
}
// Check if it is still a light weight lock, this is is true if we
// see the stack address of the basicLock in the markOop of the
// object.
if (UseLSE) {
__ mov(tmp, box);
__ casl(Assembler::xword, tmp, disp_hdr, oop);
__ cmp(tmp, box);
} else {
Label retry_load;
if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
__ prfm(Address(oop), PSTL1STRM);
__ bind(retry_load);
__ ldxr(tmp, oop);
__ cmp(box, tmp);
__ br(Assembler::NE, cas_failed);
// use stlxr to ensure update is immediately visible
__ stlxr(tmp, disp_hdr, oop);
__ cbzw(tmp, cont);
__ b(retry_load);
}
// __ cmpxchgptr(/*compare_value=*/box,
// /*exchange_value=*/disp_hdr,
// /*where=*/oop,
// /*result=*/tmp,
// cont,
// /*cas_failed*/NULL);
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
__ bind(cas_failed);
// Handle existing monitor.
if ((EmitSync & 0x02) == 0) {
__ b(cont);
__ bind(object_has_monitor);
__ add(tmp, tmp, -markOopDesc::monitor_value); // monitor
__ ldr(rscratch1, Address(tmp, ObjectMonitor::owner_offset_in_bytes()));
__ ldr(disp_hdr, Address(tmp, ObjectMonitor::recursions_offset_in_bytes()));
__ eor(rscratch1, rscratch1, rthread); // Will be 0 if we are the owner.
__ orr(rscratch1, rscratch1, disp_hdr); // Will be 0 if there are 0 recursions
__ cmp(rscratch1, zr);
__ br(Assembler::NE, cont);
__ ldr(rscratch1, Address(tmp, ObjectMonitor::EntryList_offset_in_bytes()));
__ ldr(disp_hdr, Address(tmp, ObjectMonitor::cxq_offset_in_bytes()));
__ orr(rscratch1, rscratch1, disp_hdr); // Will be 0 if both are 0.
__ cmp(rscratch1, zr);
__ cbnz(rscratch1, cont);
// need a release store here
__ lea(tmp, Address(tmp, ObjectMonitor::owner_offset_in_bytes()));
__ stlr(rscratch1, tmp); // rscratch1 is zero
}
__ bind(cont);
// flag == EQ indicates success
// flag == NE indicates failure
%}
%}
//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
//
// S T A C K L A Y O U T Allocators stack-slot number
// | (to get allocators register number
// G Owned by | | v add OptoReg::stack0())
// r CALLER | |
// o | +--------+ pad to even-align allocators stack-slot
// w V | pad0 | numbers; owned by CALLER
// t -----------+--------+----> Matcher::_in_arg_limit, unaligned
// h ^ | in | 5
// | | args | 4 Holes in incoming args owned by SELF
// | | | | 3
// | | +--------+
// V | | old out| Empty on Intel, window on Sparc
// | old |preserve| Must be even aligned.
// | SP-+--------+----> Matcher::_old_SP, even aligned
// | | in | 3 area for Intel ret address
// Owned by |preserve| Empty on Sparc.
// SELF +--------+
// | | pad2 | 2 pad to align old SP
// | +--------+ 1
// | | locks | 0
// | +--------+----> OptoReg::stack0(), even aligned
// | | pad1 | 11 pad to align new SP
// | +--------+
// | | | 10
// | | spills | 9 spills
// V | | 8 (pad0 slot for callee)
// -----------+--------+----> Matcher::_out_arg_limit, unaligned
// ^ | out | 7
// | | args | 6 Holes in outgoing args owned by CALLEE
// Owned by +--------+
// CALLEE | new out| 6 Empty on Intel, window on Sparc
// | new |preserve| Must be even-aligned.
// | SP-+--------+----> Matcher::_new_SP, even aligned
// | | |
//
// Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
// known from SELF's arguments and the Java calling convention.
// Region 6-7 is determined per call site.
// Note 2: If the calling convention leaves holes in the incoming argument
// area, those holes are owned by SELF. Holes in the outgoing area
// are owned by the CALLEE. Holes should not be nessecary in the
// incoming area, as the Java calling convention is completely under
// the control of the AD file. Doubles can be sorted and packed to
// avoid holes. Holes in the outgoing arguments may be nessecary for
// varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
// even aligned with pad0 as needed.
// Region 6 is even aligned. Region 6-7 is NOT even aligned;
// (the latter is true on Intel but is it false on AArch64?)
// region 6-11 is even aligned; it may be padded out more so that
// the region from SP to FP meets the minimum stack alignment.
// Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
// alignment. Region 11, pad1, may be dynamically extended so that
// SP meets the minimum alignment.
frame %{
// What direction does stack grow in (assumed to be same for C & Java)
stack_direction(TOWARDS_LOW);
// These three registers define part of the calling convention
// between compiled code and the interpreter.
// Inline Cache Register or methodOop for I2C.
inline_cache_reg(R12);
// Method Oop Register when calling interpreter.
interpreter_method_oop_reg(R12);
// Number of stack slots consumed by locking an object
sync_stack_slots(2);
// Compiled code's Frame Pointer
frame_pointer(R31);
// Interpreter stores its frame pointer in a register which is
// stored to the stack by I2CAdaptors.
// I2CAdaptors convert from interpreted java to compiled java.
interpreter_frame_pointer(R29);
// Stack alignment requirement
stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
// Number of stack slots between incoming argument block and the start of
// a new frame. The PROLOG must add this many slots to the stack. The
// EPILOG must remove this many slots. aarch64 needs two slots for
// return address and fp.
// TODO think this is correct but check
in_preserve_stack_slots(4);
// Number of outgoing stack slots killed above the out_preserve_stack_slots
// for calls to C. Supports the var-args backing area for register parms.
varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
// The after-PROLOG location of the return address. Location of
// return address specifies a type (REG or STACK) and a number
// representing the register number (i.e. - use a register name) or
// stack slot.
// Ret Addr is on stack in slot 0 if no locks or verification or alignment.
// Otherwise, it is above the locks and verification slot and alignment word
// TODO this may well be correct but need to check why that - 2 is there
// ppc port uses 0 but we definitely need to allow for fixed_slots
// which folds in the space used for monitors
return_addr(STACK - 2 +
round_to((Compile::current()->in_preserve_stack_slots() +
Compile::current()->fixed_slots()),
stack_alignment_in_slots()));
// Body of function which returns an integer array locating
// arguments either in registers or in stack slots. Passed an array
// of ideal registers called "sig" and a "length" count. Stack-slot
// offsets are based on outgoing arguments, i.e. a CALLER setting up
// arguments for a CALLEE. Incoming stack arguments are
// automatically biased by the preserve_stack_slots field above.
calling_convention
%{
// No difference between ingoing/outgoing just pass false
SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
%}
c_calling_convention
%{
// This is obviously always outgoing
(void) SharedRuntime::c_calling_convention(sig_bt, regs, NULL, length);
%}
// Location of compiled Java return values. Same as C for now.
return_value
%{
// TODO do we allow ideal_reg == Op_RegN???
assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
"only return normal values");
static const int lo[Op_RegL + 1] = { // enum name
0, // Op_Node
0, // Op_Set
R0_num, // Op_RegN
R0_num, // Op_RegI
R0_num, // Op_RegP
V0_num, // Op_RegF
V0_num, // Op_RegD
R0_num // Op_RegL
};
static const int hi[Op_RegL + 1] = { // enum name
0, // Op_Node
0, // Op_Set
OptoReg::Bad, // Op_RegN
OptoReg::Bad, // Op_RegI
R0_H_num, // Op_RegP
OptoReg::Bad, // Op_RegF
V0_H_num, // Op_RegD
R0_H_num // Op_RegL
};
return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
%}
%}
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1); // Required cost attribute
//----------Instruction Attributes---------------------------------------------
ins_attrib ins_cost(INSN_COST); // Required cost attribute
ins_attrib ins_size(32); // Required size attribute (in bits)
ins_attrib ins_short_branch(0); // Required flag: is this instruction
// a non-matching short branch variant
// of some long branch?
ins_attrib ins_alignment(4); // Required alignment attribute (must
// be a power of 2) specifies the
// alignment that some part of the
// instruction (not necessarily the
// start) requires. If > 1, a
// compute_padding() function must be
// provided for the instruction
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.
//----------Simple Operands----------------------------------------------------
// Integer operands 32 bit
// 32 bit immediate
operand immI()
%{
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 32 bit zero
operand immI0()
%{
predicate(n->get_int() == 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 32 bit unit increment
operand immI_1()
%{
predicate(n->get_int() == 1);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 32 bit unit decrement
operand immI_M1()
%{
predicate(n->get_int() == -1);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_le_4()
%{
predicate(n->get_int() <= 4);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_31()
%{
predicate(n->get_int() == 31);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_8()
%{
predicate(n->get_int() == 8);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_16()
%{
predicate(n->get_int() == 16);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_24()
%{
predicate(n->get_int() == 24);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_32()
%{
predicate(n->get_int() == 32);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_48()
%{
predicate(n->get_int() == 48);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_56()
%{
predicate(n->get_int() == 56);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_64()
%{
predicate(n->get_int() == 64);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_255()
%{
predicate(n->get_int() == 255);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_65535()
%{
predicate(n->get_int() == 65535);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immL_63()
%{
predicate(n->get_int() == 63);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immL_255()
%{
predicate(n->get_int() == 255);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immL_65535()
%{
predicate(n->get_long() == 65535L);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immL_4294967295()
%{
predicate(n->get_long() == 4294967295L);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immL_bitmask()
%{
predicate(((n->get_long() & 0xc000000000000000l) == 0)
&& is_power_of_2(n->get_long() + 1));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_bitmask()
%{
predicate(((n->get_int() & 0xc0000000) == 0)
&& is_power_of_2(n->get_int() + 1));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Scale values for scaled offset addressing modes (up to long but not quad)
operand immIScale()
%{
predicate(0 <= n->get_int() && (n->get_int() <= 3));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 26 bit signed offset -- for pc-relative branches
operand immI26()
%{
predicate(((-(1 << 25)) <= n->get_int()) && (n->get_int() < (1 << 25)));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 19 bit signed offset -- for pc-relative loads
operand immI19()
%{
predicate(((-(1 << 18)) <= n->get_int()) && (n->get_int() < (1 << 18)));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 12 bit unsigned offset -- for base plus immediate loads
operand immIU12()
%{
predicate((0 <= n->get_int()) && (n->get_int() < (1 << 12)));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLU12()
%{
predicate((0 <= n->get_long()) && (n->get_long() < (1 << 12)));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Offset for scaled or unscaled immediate loads and stores
operand immIOffset()
%{
predicate(Address::offset_ok_for_immed(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immIOffset4()
%{
predicate(Address::offset_ok_for_immed(n->get_int(), 2));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immIOffset8()
%{
predicate(Address::offset_ok_for_immed(n->get_int(), 3));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immIOffset16()
%{
predicate(Address::offset_ok_for_immed(n->get_int(), 4));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLoffset()
%{
predicate(Address::offset_ok_for_immed(n->get_long()));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLoffset4()
%{
predicate(Address::offset_ok_for_immed(n->get_long(), 2));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLoffset8()
%{
predicate(Address::offset_ok_for_immed(n->get_long(), 3));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLoffset16()
%{
predicate(Address::offset_ok_for_immed(n->get_long(), 4));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 32 bit integer valid for add sub immediate
operand immIAddSub()
%{
predicate(Assembler::operand_valid_for_add_sub_immediate((long)n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 32 bit unsigned integer valid for logical immediate
// TODO -- check this is right when e.g the mask is 0x80000000
operand immILog()
%{
predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/true, (unsigned long)n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer operands 64 bit
// 64 bit immediate
operand immL()
%{
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 64 bit zero
operand immL0()
%{
predicate(n->get_long() == 0);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 64 bit unit increment
operand immL_1()
%{
predicate(n->get_long() == 1);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 64 bit unit decrement
operand immL_M1()
%{
predicate(n->get_long() == -1);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 32 bit offset of pc in thread anchor
operand immL_pc_off()
%{
predicate(n->get_long() == in_bytes(JavaThread::frame_anchor_offset()) +
in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 64 bit integer valid for add sub immediate
operand immLAddSub()
%{
predicate(Assembler::operand_valid_for_add_sub_immediate(n->get_long()));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// 64 bit integer valid for logical immediate
operand immLLog()
%{
predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/false, (unsigned long)n->get_long()));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: low 32-bit mask
operand immL_32bits()
%{
predicate(n->get_long() == 0xFFFFFFFFL);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer operands
// Pointer Immediate
operand immP()
%{
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// NULL Pointer Immediate
operand immP0()
%{
predicate(n->get_ptr() == 0);
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate One
// this is used in object initialization (initial object header)
operand immP_1()
%{
predicate(n->get_ptr() == 1);
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Polling Page Pointer Immediate
operand immPollPage()
%{
predicate((address)n->get_ptr() == os::get_polling_page());
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Card Table Byte Map Base
operand immByteMapBase()
%{
// Get base of card map
predicate((jbyte*)n->get_ptr() ==
((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base);
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate Minus One
// this is used when we want to write the current PC to the thread anchor
operand immP_M1()
%{
predicate(n->get_ptr() == -1);
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate Minus Two
// this is used when we want to write the current PC to the thread anchor
operand immP_M2()
%{
predicate(n->get_ptr() == -2);
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Float and Double operands
// Double Immediate
operand immD()
%{
match(ConD);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate: +0.0d
operand immD0()
%{
predicate(jlong_cast(n->getd()) == 0);
match(ConD);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// constant 'double +0.0'.
operand immDPacked()
%{
predicate(Assembler::operand_valid_for_float_immediate(n->getd()));
match(ConD);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate
operand immF()
%{
match(ConF);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate: +0.0f.
operand immF0()
%{
predicate(jint_cast(n->getf()) == 0);
match(ConF);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
//
operand immFPacked()
%{
predicate(Assembler::operand_valid_for_float_immediate((double)n->getf()));
match(ConF);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Narrow pointer operands
// Narrow Pointer Immediate
operand immN()
%{
match(ConN);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Narrow NULL Pointer Immediate
operand immN0()
%{
predicate(n->get_narrowcon() == 0);
match(ConN);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immNKlass()
%{
match(ConNKlass);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer 32 bit Register Operands
// Integer 32 bitRegister (excludes SP)
operand iRegI()
%{
constraint(ALLOC_IN_RC(any_reg32));
match(RegI);
match(iRegINoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Integer 32 bit Register not Special
operand iRegINoSp()
%{
constraint(ALLOC_IN_RC(no_special_reg32));
match(RegI);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Integer 64 bit Register Operands
// Integer 64 bit Register (includes SP)
operand iRegL()
%{
constraint(ALLOC_IN_RC(any_reg));
match(RegL);
match(iRegLNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Integer 64 bit Register not Special
operand iRegLNoSp()
%{
constraint(ALLOC_IN_RC(no_special_reg));
match(RegL);
match(iRegL_R0);
format %{ %}
interface(REG_INTER);
%}
// Pointer Register Operands
// Pointer Register
operand iRegP()
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(RegP);
match(iRegPNoSp);
match(iRegP_R0);
//match(iRegP_R2);
//match(iRegP_R4);
//match(iRegP_R5);
match(thread_RegP);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register not Special
operand iRegPNoSp()
%{
constraint(ALLOC_IN_RC(no_special_ptr_reg));
match(RegP);
// match(iRegP);
// match(iRegP_R0);
// match(iRegP_R2);
// match(iRegP_R4);
// match(iRegP_R5);
// match(thread_RegP);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R0 only
operand iRegP_R0()
%{
constraint(ALLOC_IN_RC(r0_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R1 only
operand iRegP_R1()
%{
constraint(ALLOC_IN_RC(r1_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R2 only
operand iRegP_R2()
%{
constraint(ALLOC_IN_RC(r2_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R3 only
operand iRegP_R3()
%{
constraint(ALLOC_IN_RC(r3_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R4 only
operand iRegP_R4()
%{
constraint(ALLOC_IN_RC(r4_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R5 only
operand iRegP_R5()
%{
constraint(ALLOC_IN_RC(r5_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register R10 only
operand iRegP_R10()
%{
constraint(ALLOC_IN_RC(r10_reg));
match(RegP);
// match(iRegP);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Long 64 bit Register R0 only
operand iRegL_R0()
%{
constraint(ALLOC_IN_RC(r0_reg));
match(RegL);
match(iRegLNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Long 64 bit Register R2 only
operand iRegL_R2()
%{
constraint(ALLOC_IN_RC(r2_reg));
match(RegL);
match(iRegLNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Long 64 bit Register R3 only
operand iRegL_R3()
%{
constraint(ALLOC_IN_RC(r3_reg));
match(RegL);
match(iRegLNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Long 64 bit Register R11 only
operand iRegL_R11()
%{
constraint(ALLOC_IN_RC(r11_reg));
match(RegL);
match(iRegLNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer 64 bit Register FP only
operand iRegP_FP()
%{
constraint(ALLOC_IN_RC(fp_reg));
match(RegP);
// match(iRegP);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Register R0 only
operand iRegI_R0()
%{
constraint(ALLOC_IN_RC(int_r0_reg));
match(RegI);
match(iRegINoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Register R2 only
operand iRegI_R2()
%{
constraint(ALLOC_IN_RC(int_r2_reg));
match(RegI);
match(iRegINoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Register R3 only
operand iRegI_R3()
%{
constraint(ALLOC_IN_RC(int_r3_reg));
match(RegI);
match(iRegINoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Register R4 only
operand iRegI_R4()
%{
constraint(ALLOC_IN_RC(int_r4_reg));
match(RegI);
match(iRegINoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Pointer Register Operands
// Narrow Pointer Register
operand iRegN()
%{
constraint(ALLOC_IN_RC(any_reg32));
match(RegN);
match(iRegNNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand iRegN_R0()
%{
constraint(ALLOC_IN_RC(r0_reg));
match(iRegN);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand iRegN_R2()
%{
constraint(ALLOC_IN_RC(r2_reg));
match(iRegN);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand iRegN_R3()
%{
constraint(ALLOC_IN_RC(r3_reg));
match(iRegN);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Integer 64 bit Register not Special
operand iRegNNoSp()
%{
constraint(ALLOC_IN_RC(no_special_reg32));
match(RegN);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// heap base register -- used for encoding immN0
operand iRegIHeapbase()
%{
constraint(ALLOC_IN_RC(heapbase_reg));
match(RegI);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Float Register
// Float register operands
operand vRegF()
%{
constraint(ALLOC_IN_RC(float_reg));
match(RegF);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Double Register
// Double register operands
operand vRegD()
%{
constraint(ALLOC_IN_RC(double_reg));
match(RegD);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand vecD()
%{
constraint(ALLOC_IN_RC(vectord_reg));
match(VecD);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand vecX()
%{
constraint(ALLOC_IN_RC(vectorx_reg));
match(VecX);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand vRegD_V0()
%{
constraint(ALLOC_IN_RC(v0_reg));
match(RegD);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand vRegD_V1()
%{
constraint(ALLOC_IN_RC(v1_reg));
match(RegD);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand vRegD_V2()
%{
constraint(ALLOC_IN_RC(v2_reg));
match(RegD);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand vRegD_V3()
%{
constraint(ALLOC_IN_RC(v3_reg));
match(RegD);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Flags register, used as output of signed compare instructions
// note that on AArch64 we also use this register as the output for
// for floating point compare instructions (CmpF CmpD). this ensures
// that ordered inequality tests use GT, GE, LT or LE none of which
// pass through cases where the result is unordered i.e. one or both
// inputs to the compare is a NaN. this means that the ideal code can
// replace e.g. a GT with an LE and not end up capturing the NaN case
// (where the comparison should always fail). EQ and NE tests are
// always generated in ideal code so that unordered folds into the NE
// case, matching the behaviour of AArch64 NE.
//
// This differs from x86 where the outputs of FP compares use a
// special FP flags registers and where compares based on this
// register are distinguished into ordered inequalities (cmpOpUCF) and
// EQ/NEQ tests (cmpOpUCF2). x86 has to special case the latter tests
// to explicitly handle the unordered case in branches. x86 also has
// to include extra CMoveX rules to accept a cmpOpUCF input.
operand rFlagsReg()
%{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
op_cost(0);
format %{ "RFLAGS" %}
interface(REG_INTER);
%}
// Flags register, used as output of unsigned compare instructions
operand rFlagsRegU()
%{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
op_cost(0);
format %{ "RFLAGSU" %}
interface(REG_INTER);
%}
// Special Registers
// Method Register
operand inline_cache_RegP(iRegP reg)
%{
constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
match(reg);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand interpreter_method_oop_RegP(iRegP reg)
%{
constraint(ALLOC_IN_RC(method_reg)); // interpreter_method_oop_reg
match(reg);
match(iRegPNoSp);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
// Thread Register
operand thread_RegP(iRegP reg)
%{
constraint(ALLOC_IN_RC(thread_reg)); // link_reg
match(reg);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
operand lr_RegP(iRegP reg)
%{
constraint(ALLOC_IN_RC(lr_reg)); // link_reg
match(reg);
op_cost(0);
format %{ %}
interface(REG_INTER);
%}
//----------Memory Operands----------------------------------------------------
operand indirect(iRegP reg)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(reg);
op_cost(0);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp(0x0);
%}
%}
operand indIndexScaledI2L(iRegP reg, iRegI ireg, immIScale scale)
%{
constraint(ALLOC_IN_RC(ptr_reg));
predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
match(AddP reg (LShiftL (ConvI2L ireg) scale));
op_cost(0);
format %{ "$reg, $ireg sxtw($scale), 0, I2L" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale($scale);
disp(0x0);
%}
%}
operand indIndexScaled(iRegP reg, iRegL lreg, immIScale scale)
%{
constraint(ALLOC_IN_RC(ptr_reg));
predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
match(AddP reg (LShiftL lreg scale));
op_cost(0);
format %{ "$reg, $lreg lsl($scale)" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale($scale);
disp(0x0);
%}
%}
operand indIndexI2L(iRegP reg, iRegI ireg)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg (ConvI2L ireg));
op_cost(0);
format %{ "$reg, $ireg, 0, I2L" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale(0x0);
disp(0x0);
%}
%}
operand indIndex(iRegP reg, iRegL lreg)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg lreg);
op_cost(0);
format %{ "$reg, $lreg" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale(0x0);
disp(0x0);
%}
%}
operand indOffI(iRegP reg, immIOffset off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffI4(iRegP reg, immIOffset4 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffI8(iRegP reg, immIOffset8 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffI16(iRegP reg, immIOffset16 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffL(iRegP reg, immLoffset off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffL4(iRegP reg, immLoffset4 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffL8(iRegP reg, immLoffset8 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffL16(iRegP reg, immLoffset16 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indirectN(iRegN reg)
%{
predicate(Universe::narrow_oop_shift() == 0);
constraint(ALLOC_IN_RC(ptr_reg));
match(DecodeN reg);
op_cost(0);
format %{ "[$reg]\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp(0x0);
%}
%}
operand indIndexScaledI2LN(iRegN reg, iRegI ireg, immIScale scale)
%{
predicate(Universe::narrow_oop_shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN reg) (LShiftL (ConvI2L ireg) scale));
op_cost(0);
format %{ "$reg, $ireg sxtw($scale), 0, I2L\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale($scale);
disp(0x0);
%}
%}
operand indIndexScaledN(iRegN reg, iRegL lreg, immIScale scale)
%{
predicate(Universe::narrow_oop_shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN reg) (LShiftL lreg scale));
op_cost(0);
format %{ "$reg, $lreg lsl($scale)\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale($scale);
disp(0x0);
%}
%}
operand indIndexI2LN(iRegN reg, iRegI ireg)
%{
predicate(Universe::narrow_oop_shift() == 0);
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN reg) (ConvI2L ireg));
op_cost(0);
format %{ "$reg, $ireg, 0, I2L\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale(0x0);
disp(0x0);
%}
%}
operand indIndexN(iRegN reg, iRegL lreg)
%{
predicate(Universe::narrow_oop_shift() == 0);
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN reg) lreg);
op_cost(0);
format %{ "$reg, $lreg\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale(0x0);
disp(0x0);
%}
%}
operand indOffIN(iRegN reg, immIOffset off)
%{
predicate(Universe::narrow_oop_shift() == 0);
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN reg) off);
op_cost(0);
format %{ "[$reg, $off]\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
operand indOffLN(iRegN reg, immLoffset off)
%{
predicate(Universe::narrow_oop_shift() == 0);
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN reg) off);
op_cost(0);
format %{ "[$reg, $off]\t# narrow" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
// AArch64 opto stubs need to write to the pc slot in the thread anchor
operand thread_anchor_pc(thread_RegP reg, immL_pc_off off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
op_cost(0);
format %{ "[$reg, $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0xffffffff);
scale(0x0);
disp($off);
%}
%}
//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand - This operand is used for loading and storing temporary
// values on the stack where a match requires a value to
// flow through memory.
operand stackSlotP(sRegP reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(100);
// No match rule because this operand is only generated in matching
// match(RegP);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x1e); // RSP
index(0x0); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotI(sRegI reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
// match(RegI);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x1e); // RSP
index(0x0); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotF(sRegF reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
// match(RegF);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x1e); // RSP
index(0x0); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotD(sRegD reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
// match(RegD);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x1e); // RSP
index(0x0); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotL(sRegL reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
// match(RegL);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x1e); // RSP
index(0x0); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
// Operands for expressing Control Flow
// NOTE: Label is a predefined operand which should not be redefined in
// the AD file. It is generically handled within the ADLC.
//----------Conditional Branch Operands----------------------------------------
// Comparison Op - This is the operation of the comparison, and is limited to
// the following set of codes:
// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below, such as cmpOpU.
// used for signed integral comparisons and fp comparisons
operand cmpOp()
%{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x0, "eq");
not_equal(0x1, "ne");
less(0xb, "lt");
greater_equal(0xa, "ge");
less_equal(0xd, "le");
greater(0xc, "gt");
overflow(0x6, "vs");
no_overflow(0x7, "vc");
%}
%}
// used for unsigned integral comparisons
operand cmpOpU()
%{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x0, "eq");
not_equal(0x1, "ne");
less(0x3, "lo");
greater_equal(0x2, "hs");
less_equal(0x9, "ls");
greater(0x8, "hi");
overflow(0x6, "vs");
no_overflow(0x7, "vc");
%}
%}
// used for certain integral comparisons which can be
// converted to cbxx or tbxx instructions
operand cmpOpEqNe()
%{
match(Bool);
match(CmpOp);
op_cost(0);
predicate(n->as_Bool()->_test._test == BoolTest::ne
|| n->as_Bool()->_test._test == BoolTest::eq);
format %{ "" %}
interface(COND_INTER) %{
equal(0x0, "eq");
not_equal(0x1, "ne");
less(0xb, "lt");
greater_equal(0xa, "ge");
less_equal(0xd, "le");
greater(0xc, "gt");
overflow(0x6, "vs");
no_overflow(0x7, "vc");
%}
%}
// used for certain integral comparisons which can be
// converted to cbxx or tbxx instructions
operand cmpOpLtGe()
%{
match(Bool);
match(CmpOp);
op_cost(0);
predicate(n->as_Bool()->_test._test == BoolTest::lt
|| n->as_Bool()->_test._test == BoolTest::ge);
format %{ "" %}
interface(COND_INTER) %{
equal(0x0, "eq");
not_equal(0x1, "ne");
less(0xb, "lt");
greater_equal(0xa, "ge");
less_equal(0xd, "le");
greater(0xc, "gt");
overflow(0x6, "vs");
no_overflow(0x7, "vc");
%}
%}
// used for certain unsigned integral comparisons which can be
// converted to cbxx or tbxx instructions
operand cmpOpUEqNeLtGe()
%{
match(Bool);
match(CmpOp);
op_cost(0);
predicate(n->as_Bool()->_test._test == BoolTest::eq
|| n->as_Bool()->_test._test == BoolTest::ne
|| n->as_Bool()->_test._test == BoolTest::lt
|| n->as_Bool()->_test._test == BoolTest::ge);
format %{ "" %}
interface(COND_INTER) %{
equal(0x0, "eq");
not_equal(0x1, "ne");
less(0xb, "lt");
greater_equal(0xa, "ge");
less_equal(0xd, "le");
greater(0xc, "gt");
overflow(0x6, "vs");
no_overflow(0x7, "vc");
%}
%}
// Special operand allowing long args to int ops to be truncated for free
operand iRegL2I(iRegL reg) %{
op_cost(0);
match(ConvL2I reg);
format %{ "l2i($reg)" %}
interface(REG_INTER)
%}
opclass vmem4(indirect, indIndex, indOffI4, indOffL4);
opclass vmem8(indirect, indIndex, indOffI8, indOffL8);
opclass vmem16(indirect, indIndex, indOffI16, indOffL16);
//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used as to simplify
// instruction definitions by not requiring the AD writer to specify
// separate instructions for every form of operand when the
// instruction accepts multiple operand types with the same basic
// encoding and format. The classic case of this is memory operands.
// memory is used to define read/write location for load/store
// instruction defs. we can turn a memory op into an Address
opclass memory(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI, indOffL,
indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN);
// iRegIorL2I is used for src inputs in rules for 32 bit int (I)
// operations. it allows the src to be either an iRegI or a (ConvL2I
// iRegL). in the latter case the l2i normally planted for a ConvL2I
// can be elided because the 32-bit instruction will just employ the
// lower 32 bits anyway.
//
// n.b. this does not elide all L2I conversions. if the truncated
// value is consumed by more than one operation then the ConvL2I
// cannot be bundled into the consuming nodes so an l2i gets planted
// (actually a movw $dst $src) and the downstream instructions consume
// the result of the l2i as an iRegI input. That's a shame since the
// movw is actually redundant but its not too costly.
opclass iRegIorL2I(iRegI, iRegL2I);
//----------PIPELINE-----------------------------------------------------------
// Rules which define the behavior of the target architectures pipeline.
// For specific pipelines, eg A53, define the stages of that pipeline
//pipe_desc(ISS, EX1, EX2, WR);
#define ISS S0
#define EX1 S1
#define EX2 S2
#define WR S3
// Integer ALU reg operation
pipeline %{
attributes %{
// ARM instructions are of fixed length
fixed_size_instructions; // Fixed size instructions TODO does
max_instructions_per_bundle = 2; // A53 = 2, A57 = 4
// ARM instructions come in 32-bit word units
instruction_unit_size = 4; // An instruction is 4 bytes long
instruction_fetch_unit_size = 64; // The processor fetches one line
instruction_fetch_units = 1; // of 64 bytes
// List of nop instructions
nops( MachNop );
%}
// We don't use an actual pipeline model so don't care about resources
// or description. we do use pipeline classes to introduce fixed
// latencies
//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine
resources( INS0, INS1, INS01 = INS0 | INS1,
ALU0, ALU1, ALU = ALU0 | ALU1,
MAC,
DIV,
BRANCH,
LDST,
NEON_FP);
//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline
// Define the pipeline as a generic 6 stage pipeline
pipe_desc(S0, S1, S2, S3, S4, S5);
//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.
pipe_class fp_dop_reg_reg_s(vRegF dst, vRegF src1, vRegF src2)
%{
single_instruction;
src1 : S1(read);
src2 : S2(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_dop_reg_reg_d(vRegD dst, vRegD src1, vRegD src2)
%{
single_instruction;
src1 : S1(read);
src2 : S2(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_uop_s(vRegF dst, vRegF src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_uop_d(vRegD dst, vRegD src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_d2f(vRegF dst, vRegD src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_f2d(vRegD dst, vRegF src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_f2i(iRegINoSp dst, vRegF src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_f2l(iRegLNoSp dst, vRegF src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_i2f(vRegF dst, iRegIorL2I src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_l2f(vRegF dst, iRegL src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_d2i(iRegINoSp dst, vRegD src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_d2l(iRegLNoSp dst, vRegD src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_i2d(vRegD dst, iRegIorL2I src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_l2d(vRegD dst, iRegIorL2I src)
%{
single_instruction;
src : S1(read);
dst : S5(write);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class fp_div_s(vRegF dst, vRegF src1, vRegF src2)
%{
single_instruction;
src1 : S1(read);
src2 : S2(read);
dst : S5(write);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class fp_div_d(vRegD dst, vRegD src1, vRegD src2)
%{
single_instruction;
src1 : S1(read);
src2 : S2(read);
dst : S5(write);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class fp_cond_reg_reg_s(vRegF dst, vRegF src1, vRegF src2, rFlagsReg cr)
%{
single_instruction;
cr : S1(read);
src1 : S1(read);
src2 : S1(read);
dst : S3(write);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class fp_cond_reg_reg_d(vRegD dst, vRegD src1, vRegD src2, rFlagsReg cr)
%{
single_instruction;
cr : S1(read);
src1 : S1(read);
src2 : S1(read);
dst : S3(write);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class fp_imm_s(vRegF dst)
%{
single_instruction;
dst : S3(write);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class fp_imm_d(vRegD dst)
%{
single_instruction;
dst : S3(write);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class fp_load_constant_s(vRegF dst)
%{
single_instruction;
dst : S4(write);
INS01 : ISS;
NEON_FP : S4;
%}
pipe_class fp_load_constant_d(vRegD dst)
%{
single_instruction;
dst : S4(write);
INS01 : ISS;
NEON_FP : S4;
%}
pipe_class vmul64(vecD dst, vecD src1, vecD src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class vmul128(vecX dst, vecX src1, vecX src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vmla64(vecD dst, vecD src1, vecD src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
dst : S1(read);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class vmla128(vecX dst, vecX src1, vecX src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
dst : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vdop64(vecD dst, vecD src1, vecD src2)
%{
single_instruction;
dst : S4(write);
src1 : S2(read);
src2 : S2(read);
INS01 : ISS;
NEON_FP : S4;
%}
pipe_class vdop128(vecX dst, vecX src1, vecX src2)
%{
single_instruction;
dst : S4(write);
src1 : S2(read);
src2 : S2(read);
INS0 : ISS;
NEON_FP : S4;
%}
pipe_class vlogical64(vecD dst, vecD src1, vecD src2)
%{
single_instruction;
dst : S3(write);
src1 : S2(read);
src2 : S2(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vlogical128(vecX dst, vecX src1, vecX src2)
%{
single_instruction;
dst : S3(write);
src1 : S2(read);
src2 : S2(read);
INS0 : ISS;
NEON_FP : S3;
%}
pipe_class vshift64(vecD dst, vecD src, vecX shift)
%{
single_instruction;
dst : S3(write);
src : S1(read);
shift : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vshift128(vecX dst, vecX src, vecX shift)
%{
single_instruction;
dst : S3(write);
src : S1(read);
shift : S1(read);
INS0 : ISS;
NEON_FP : S3;
%}
pipe_class vshift64_imm(vecD dst, vecD src, immI shift)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vshift128_imm(vecX dst, vecX src, immI shift)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS0 : ISS;
NEON_FP : S3;
%}
pipe_class vdop_fp64(vecD dst, vecD src1, vecD src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class vdop_fp128(vecX dst, vecX src1, vecX src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vmuldiv_fp64(vecD dst, vecD src1, vecD src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vmuldiv_fp128(vecX dst, vecX src1, vecX src2)
%{
single_instruction;
dst : S5(write);
src1 : S1(read);
src2 : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vsqrt_fp128(vecX dst, vecX src)
%{
single_instruction;
dst : S5(write);
src : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vunop_fp64(vecD dst, vecD src)
%{
single_instruction;
dst : S5(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S5;
%}
pipe_class vunop_fp128(vecX dst, vecX src)
%{
single_instruction;
dst : S5(write);
src : S1(read);
INS0 : ISS;
NEON_FP : S5;
%}
pipe_class vdup_reg_reg64(vecD dst, iRegI src)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vdup_reg_reg128(vecX dst, iRegI src)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vdup_reg_freg64(vecD dst, vRegF src)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vdup_reg_freg128(vecX dst, vRegF src)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vdup_reg_dreg128(vecX dst, vRegD src)
%{
single_instruction;
dst : S3(write);
src : S1(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vmovi_reg_imm64(vecD dst)
%{
single_instruction;
dst : S3(write);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vmovi_reg_imm128(vecX dst)
%{
single_instruction;
dst : S3(write);
INS0 : ISS;
NEON_FP : S3;
%}
pipe_class vload_reg_mem64(vecD dst, vmem8 mem)
%{
single_instruction;
dst : S5(write);
mem : ISS(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vload_reg_mem128(vecX dst, vmem16 mem)
%{
single_instruction;
dst : S5(write);
mem : ISS(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vstore_reg_mem64(vecD src, vmem8 mem)
%{
single_instruction;
mem : ISS(read);
src : S2(read);
INS01 : ISS;
NEON_FP : S3;
%}
pipe_class vstore_reg_mem128(vecD src, vmem16 mem)
%{
single_instruction;
mem : ISS(read);
src : S2(read);
INS01 : ISS;
NEON_FP : S3;
%}
//------- Integer ALU operations --------------------------
// Integer ALU reg-reg operation
// Operands needed in EX1, result generated in EX2
// Eg. ADD x0, x1, x2
pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
dst : EX2(write);
src1 : EX1(read);
src2 : EX1(read);
INS01 : ISS; // Dual issue as instruction 0 or 1
ALU : EX2;
%}
// Integer ALU reg-reg operation with constant shift
// Shifted register must be available in LATE_ISS instead of EX1
// Eg. ADD x0, x1, x2, LSL #2
pipe_class ialu_reg_reg_shift(iRegI dst, iRegI src1, iRegI src2, immI shift)
%{
single_instruction;
dst : EX2(write);
src1 : EX1(read);
src2 : ISS(read);
INS01 : ISS;
ALU : EX2;
%}
// Integer ALU reg operation with constant shift
// Eg. LSL x0, x1, #shift
pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
%{
single_instruction;
dst : EX2(write);
src1 : ISS(read);
INS01 : ISS;
ALU : EX2;
%}
// Integer ALU reg-reg operation with variable shift
// Both operands must be available in LATE_ISS instead of EX1
// Result is available in EX1 instead of EX2
// Eg. LSLV x0, x1, x2
pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
dst : EX1(write);
src1 : ISS(read);
src2 : ISS(read);
INS01 : ISS;
ALU : EX1;
%}
// Integer ALU reg-reg operation with extract
// As for _vshift above, but result generated in EX2
// Eg. EXTR x0, x1, x2, #N
pipe_class ialu_reg_reg_extr(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
dst : EX2(write);
src1 : ISS(read);
src2 : ISS(read);
INS1 : ISS; // Can only dual issue as Instruction 1
ALU : EX1;
%}
// Integer ALU reg operation
// Eg. NEG x0, x1
pipe_class ialu_reg(iRegI dst, iRegI src)
%{
single_instruction;
dst : EX2(write);
src : EX1(read);
INS01 : ISS;
ALU : EX2;
%}
// Integer ALU reg mmediate operation
// Eg. ADD x0, x1, #N
pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
%{
single_instruction;
dst : EX2(write);
src1 : EX1(read);
INS01 : ISS;
ALU : EX2;
%}
// Integer ALU immediate operation (no source operands)
// Eg. MOV x0, #N
pipe_class ialu_imm(iRegI dst)
%{
single_instruction;
dst : EX1(write);
INS01 : ISS;
ALU : EX1;
%}
//------- Compare operation -------------------------------
// Compare reg-reg
// Eg. CMP x0, x1
pipe_class icmp_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
%{
single_instruction;
// fixed_latency(16);
cr : EX2(write);
op1 : EX1(read);
op2 : EX1(read);
INS01 : ISS;
ALU : EX2;
%}
// Compare reg-reg
// Eg. CMP x0, #N
pipe_class icmp_reg_imm(rFlagsReg cr, iRegI op1)
%{
single_instruction;
// fixed_latency(16);
cr : EX2(write);
op1 : EX1(read);
INS01 : ISS;
ALU : EX2;
%}
//------- Conditional instructions ------------------------
// Conditional no operands
// Eg. CSINC x0, zr, zr, <cond>
pipe_class icond_none(iRegI dst, rFlagsReg cr)
%{
single_instruction;
cr : EX1(read);
dst : EX2(write);
INS01 : ISS;
ALU : EX2;
%}
// Conditional 2 operand
// EG. CSEL X0, X1, X2, <cond>
pipe_class icond_reg_reg(iRegI dst, iRegI src1, iRegI src2, rFlagsReg cr)
%{
single_instruction;
cr : EX1(read);
src1 : EX1(read);
src2 : EX1(read);
dst : EX2(write);
INS01 : ISS;
ALU : EX2;
%}
// Conditional 2 operand
// EG. CSEL X0, X1, X2, <cond>
pipe_class icond_reg(iRegI dst, iRegI src, rFlagsReg cr)
%{
single_instruction;
cr : EX1(read);
src : EX1(read);
dst : EX2(write);
INS01 : ISS;
ALU : EX2;
%}
//------- Multiply pipeline operations --------------------
// Multiply reg-reg
// Eg. MUL w0, w1, w2
pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
dst : WR(write);
src1 : ISS(read);
src2 : ISS(read);
INS01 : ISS;
MAC : WR;
%}
// Multiply accumulate
// Eg. MADD w0, w1, w2, w3
pipe_class imac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
%{
single_instruction;
dst : WR(write);
src1 : ISS(read);
src2 : ISS(read);
src3 : ISS(read);
INS01 : ISS;
MAC : WR;
%}
// Eg. MUL w0, w1, w2
pipe_class lmul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
fixed_latency(3); // Maximum latency for 64 bit mul
dst : WR(write);
src1 : ISS(read);
src2 : ISS(read);
INS01 : ISS;
MAC : WR;
%}
// Multiply accumulate
// Eg. MADD w0, w1, w2, w3
pipe_class lmac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
%{
single_instruction;
fixed_latency(3); // Maximum latency for 64 bit mul
dst : WR(write);
src1 : ISS(read);
src2 : ISS(read);
src3 : ISS(read);
INS01 : ISS;
MAC : WR;
%}
//------- Divide pipeline operations --------------------
// Eg. SDIV w0, w1, w2
pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
fixed_latency(8); // Maximum latency for 32 bit divide
dst : WR(write);
src1 : ISS(read);
src2 : ISS(read);
INS0 : ISS; // Can only dual issue as instruction 0
DIV : WR;
%}
// Eg. SDIV x0, x1, x2
pipe_class ldiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
%{
single_instruction;
fixed_latency(16); // Maximum latency for 64 bit divide
dst : WR(write);
src1 : ISS(read);
src2 : ISS(read);
INS0 : ISS; // Can only dual issue as instruction 0
DIV : WR;
%}
//------- Load pipeline operations ------------------------
// Load - prefetch
// Eg. PFRM <mem>
pipe_class iload_prefetch(memory mem)
%{
single_instruction;
mem : ISS(read);
INS01 : ISS;
LDST : WR;
%}
// Load - reg, mem
// Eg. LDR x0, <mem>
pipe_class iload_reg_mem(iRegI dst, memory mem)
%{
single_instruction;
dst : WR(write);
mem : ISS(read);
INS01 : ISS;
LDST : WR;
%}
// Load - reg, reg
// Eg. LDR x0, [sp, x1]
pipe_class iload_reg_reg(iRegI dst, iRegI src)
%{
single_instruction;
dst : WR(write);
src : ISS(read);
INS01 : ISS;
LDST : WR;
%}
//------- Store pipeline operations -----------------------
// Store - zr, mem
// Eg. STR zr, <mem>
pipe_class istore_mem(memory mem)
%{
single_instruction;
mem : ISS(read);
INS01 : ISS;
LDST : WR;
%}
// Store - reg, mem
// Eg. STR x0, <mem>
pipe_class istore_reg_mem(iRegI src, memory mem)
%{
single_instruction;
mem : ISS(read);
src : EX2(read);
INS01 : ISS;
LDST : WR;
%}
// Store - reg, reg
// Eg. STR x0, [sp, x1]
pipe_class istore_reg_reg(iRegI dst, iRegI src)
%{
single_instruction;
dst : ISS(read);
src : EX2(read);
INS01 : ISS;
LDST : WR;
%}
//------- Store pipeline operations -----------------------
// Branch
pipe_class pipe_branch()
%{
single_instruction;
INS01 : ISS;
BRANCH : EX1;
%}
// Conditional branch
pipe_class pipe_branch_cond(rFlagsReg cr)
%{
single_instruction;
cr : EX1(read);
INS01 : ISS;
BRANCH : EX1;
%}
// Compare & Branch
// EG. CBZ/CBNZ
pipe_class pipe_cmp_branch(iRegI op1)
%{
single_instruction;
op1 : EX1(read);
INS01 : ISS;
BRANCH : EX1;
%}
//------- Synchronisation operations ----------------------
// Any operation requiring serialization.
// EG. DMB/Atomic Ops/Load Acquire/Str Release
pipe_class pipe_serial()
%{
single_instruction;
force_serialization;
fixed_latency(16);
INS01 : ISS(2); // Cannot dual issue with any other instruction
LDST : WR;
%}
// Generic big/slow expanded idiom - also serialized
pipe_class pipe_slow()
%{
instruction_count(10);
multiple_bundles;
force_serialization;
fixed_latency(16);
INS01 : ISS(2); // Cannot dual issue with any other instruction
LDST : WR;
%}
// Empty pipeline class
pipe_class pipe_class_empty()
%{
single_instruction;
fixed_latency(0);
%}
// Default pipeline class.
pipe_class pipe_class_default()
%{
single_instruction;
fixed_latency(2);
%}
// Pipeline class for compares.
pipe_class pipe_class_compare()
%{
single_instruction;
fixed_latency(16);
%}
// Pipeline class for memory operations.
pipe_class pipe_class_memory()
%{
single_instruction;
fixed_latency(16);
%}
// Pipeline class for call.
pipe_class pipe_class_call()
%{
single_instruction;
fixed_latency(100);
%}
// Define the class for the Nop node.
define %{
MachNop = pipe_class_empty;
%}
%}
//----------INSTRUCTIONS-------------------------------------------------------
//
// match -- States which machine-independent subtree may be replaced
// by this instruction.
// ins_cost -- The estimated cost of this instruction is used by instruction
// selection to identify a minimum cost tree of machine
// instructions that matches a tree of machine-independent
// instructions.
// format -- A string providing the disassembly for this instruction.
// The value of an instruction's operand may be inserted
// by referring to it with a '$' prefix.
// opcode -- Three instruction opcodes may be provided. These are referred
// to within an encode class as $primary, $secondary, and $tertiary
// rrspectively. The primary opcode is commonly used to
// indicate the type of machine instruction, while secondary
// and tertiary are often used for prefix options or addressing
// modes.
// ins_encode -- A list of encode classes with parameters. The encode class
// name must have been defined in an 'enc_class' specification
// in the encode section of the architecture description.
// ============================================================================
// Memory (Load/Store) Instructions
// Load Instructions
// Load Byte (8 bit signed)
instruct loadB(iRegINoSp dst, memory mem)
%{
match(Set dst (LoadB mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrsbw $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldrsbw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Byte (8 bit signed) into long
instruct loadB2L(iRegLNoSp dst, memory mem)
%{
match(Set dst (ConvI2L (LoadB mem)));
predicate(!needs_acquiring_load(n->in(1)));
ins_cost(4 * INSN_COST);
format %{ "ldrsb $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldrsb(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Byte (8 bit unsigned)
instruct loadUB(iRegINoSp dst, memory mem)
%{
match(Set dst (LoadUB mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrbw $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldrb(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Byte (8 bit unsigned) into long
instruct loadUB2L(iRegLNoSp dst, memory mem)
%{
match(Set dst (ConvI2L (LoadUB mem)));
predicate(!needs_acquiring_load(n->in(1)));
ins_cost(4 * INSN_COST);
format %{ "ldrb $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldrb(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Short (16 bit signed)
instruct loadS(iRegINoSp dst, memory mem)
%{
match(Set dst (LoadS mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrshw $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldrshw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Short (16 bit signed) into long
instruct loadS2L(iRegLNoSp dst, memory mem)
%{
match(Set dst (ConvI2L (LoadS mem)));
predicate(!needs_acquiring_load(n->in(1)));
ins_cost(4 * INSN_COST);
format %{ "ldrsh $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldrsh(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Char (16 bit unsigned)
instruct loadUS(iRegINoSp dst, memory mem)
%{
match(Set dst (LoadUS mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrh $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldrh(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Short/Char (16 bit unsigned) into long
instruct loadUS2L(iRegLNoSp dst, memory mem)
%{
match(Set dst (ConvI2L (LoadUS mem)));
predicate(!needs_acquiring_load(n->in(1)));
ins_cost(4 * INSN_COST);
format %{ "ldrh $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldrh(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Integer (32 bit signed)
instruct loadI(iRegINoSp dst, memory mem)
%{
match(Set dst (LoadI mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrw $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldrw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Integer (32 bit signed) into long
instruct loadI2L(iRegLNoSp dst, memory mem)
%{
match(Set dst (ConvI2L (LoadI mem)));
predicate(!needs_acquiring_load(n->in(1)));
ins_cost(4 * INSN_COST);
format %{ "ldrsw $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldrsw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Integer (32 bit unsigned) into long
instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask)
%{
match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
predicate(!needs_acquiring_load(n->in(1)->in(1)->as_Load()));
ins_cost(4 * INSN_COST);
format %{ "ldrw $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldrw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Long (64 bit signed)
instruct loadL(iRegLNoSp dst, memory mem)
%{
match(Set dst (LoadL mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldr $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldr(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Range
instruct loadRange(iRegINoSp dst, memory mem)
%{
match(Set dst (LoadRange mem));
ins_cost(4 * INSN_COST);
format %{ "ldrw $dst, $mem\t# range" %}
ins_encode(aarch64_enc_ldrw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Pointer
instruct loadP(iRegPNoSp dst, memory mem)
%{
match(Set dst (LoadP mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldr $dst, $mem\t# ptr" %}
ins_encode(aarch64_enc_ldr(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Compressed Pointer
instruct loadN(iRegNNoSp dst, memory mem)
%{
match(Set dst (LoadN mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrw $dst, $mem\t# compressed ptr" %}
ins_encode(aarch64_enc_ldrw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Klass Pointer
instruct loadKlass(iRegPNoSp dst, memory mem)
%{
match(Set dst (LoadKlass mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldr $dst, $mem\t# class" %}
ins_encode(aarch64_enc_ldr(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Narrow Klass Pointer
instruct loadNKlass(iRegNNoSp dst, memory mem)
%{
match(Set dst (LoadNKlass mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrw $dst, $mem\t# compressed class ptr" %}
ins_encode(aarch64_enc_ldrw(dst, mem));
ins_pipe(iload_reg_mem);
%}
// Load Float
instruct loadF(vRegF dst, memory mem)
%{
match(Set dst (LoadF mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrs $dst, $mem\t# float" %}
ins_encode( aarch64_enc_ldrs(dst, mem) );
ins_pipe(pipe_class_memory);
%}
// Load Double
instruct loadD(vRegD dst, memory mem)
%{
match(Set dst (LoadD mem));
predicate(!needs_acquiring_load(n));
ins_cost(4 * INSN_COST);
format %{ "ldrd $dst, $mem\t# double" %}
ins_encode( aarch64_enc_ldrd(dst, mem) );
ins_pipe(pipe_class_memory);
%}
// Load Int Constant
instruct loadConI(iRegINoSp dst, immI src)
%{
match(Set dst src);
ins_cost(INSN_COST);
format %{ "mov $dst, $src\t# int" %}
ins_encode( aarch64_enc_movw_imm(dst, src) );
ins_pipe(ialu_imm);
%}
// Load Long Constant
instruct loadConL(iRegLNoSp dst, immL src)
%{
match(Set dst src);
ins_cost(INSN_COST);
format %{ "mov $dst, $src\t# long" %}
ins_encode( aarch64_enc_mov_imm(dst, src) );
ins_pipe(ialu_imm);
%}
// Load Pointer Constant
instruct loadConP(iRegPNoSp dst, immP con)
%{
match(Set dst con);
ins_cost(INSN_COST * 4);
format %{
"mov $dst, $con\t# ptr\n\t"
%}
ins_encode(aarch64_enc_mov_p(dst, con));
ins_pipe(ialu_imm);
%}
// Load Null Pointer Constant
instruct loadConP0(iRegPNoSp dst, immP0 con)
%{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "mov $dst, $con\t# NULL ptr" %}
ins_encode(aarch64_enc_mov_p0(dst, con));
ins_pipe(ialu_imm);
%}
// Load Pointer Constant One
instruct loadConP1(iRegPNoSp dst, immP_1 con)
%{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "mov $dst, $con\t# NULL ptr" %}
ins_encode(aarch64_enc_mov_p1(dst, con));
ins_pipe(ialu_imm);
%}
// Load Poll Page Constant
instruct loadConPollPage(iRegPNoSp dst, immPollPage con)
%{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "adr $dst, $con\t# Poll Page Ptr" %}
ins_encode(aarch64_enc_mov_poll_page(dst, con));
ins_pipe(ialu_imm);
%}
// Load Byte Map Base Constant
instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
%{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "adr $dst, $con\t# Byte Map Base" %}
ins_encode(aarch64_enc_mov_byte_map_base(dst, con));
ins_pipe(ialu_imm);
%}
// Load Narrow Pointer Constant
instruct loadConN(iRegNNoSp dst, immN con)
%{
match(Set dst con);
ins_cost(INSN_COST * 4);
format %{ "mov $dst, $con\t# compressed ptr" %}
ins_encode(aarch64_enc_mov_n(dst, con));
ins_pipe(ialu_imm);
%}
// Load Narrow Null Pointer Constant
instruct loadConN0(iRegNNoSp dst, immN0 con)
%{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "mov $dst, $con\t# compressed NULL ptr" %}
ins_encode(aarch64_enc_mov_n0(dst, con));
ins_pipe(ialu_imm);
%}
// Load Narrow Klass Constant
instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
%{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "mov $dst, $con\t# compressed klass ptr" %}
ins_encode(aarch64_enc_mov_nk(dst, con));
ins_pipe(ialu_imm);
%}
// Load Packed Float Constant
instruct loadConF_packed(vRegF dst, immFPacked con) %{
match(Set dst con);
ins_cost(INSN_COST * 4);
format %{ "fmovs $dst, $con"%}
ins_encode %{
__ fmovs(as_FloatRegister($dst$$reg), (double)$con$$constant);
%}
ins_pipe(fp_imm_s);
%}
// Load Float Constant
instruct loadConF(vRegF dst, immF con) %{
match(Set dst con);
ins_cost(INSN_COST * 4);
format %{
"ldrs $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
%}
ins_encode %{
__ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con));
%}
ins_pipe(fp_load_constant_s);
%}
// Load Packed Double Constant
instruct loadConD_packed(vRegD dst, immDPacked con) %{
match(Set dst con);
ins_cost(INSN_COST);
format %{ "fmovd $dst, $con"%}
ins_encode %{
__ fmovd(as_FloatRegister($dst$$reg), $con$$constant);
%}
ins_pipe(fp_imm_d);
%}
// Load Double Constant
instruct loadConD(vRegD dst, immD con) %{
match(Set dst con);
ins_cost(INSN_COST * 5);
format %{
"ldrd $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
%}
ins_encode %{
__ ldrd(as_FloatRegister($dst$$reg), $constantaddress($con));
%}
ins_pipe(fp_load_constant_d);
%}
// Store Instructions
// Store CMS card-mark Immediate
instruct storeimmCM0(immI0 zero, memory mem)
%{
match(Set mem (StoreCM mem zero));
predicate(unnecessary_storestore(n));
ins_cost(INSN_COST);
format %{ "strb zr, $mem\t# byte" %}
ins_encode(aarch64_enc_strb0(mem));
ins_pipe(istore_mem);
%}
// Store CMS card-mark Immediate with intervening StoreStore
// needed when using CMS with no conditional card marking
instruct storeimmCM0_ordered(immI0 zero, memory mem)
%{
match(Set mem (StoreCM mem zero));
ins_cost(INSN_COST * 2);
format %{ "dmb ishst"
"\n\tstrb zr, $mem\t# byte" %}
ins_encode(aarch64_enc_strb0_ordered(mem));
ins_pipe(istore_mem);
%}
// Store Byte
instruct storeB(iRegIorL2I src, memory mem)
%{
match(Set mem (StoreB mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strb $src, $mem\t# byte" %}
ins_encode(aarch64_enc_strb(src, mem));
ins_pipe(istore_reg_mem);
%}
instruct storeimmB0(immI0 zero, memory mem)
%{
match(Set mem (StoreB mem zero));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strb rscractch2, $mem\t# byte" %}
ins_encode(aarch64_enc_strb0(mem));
ins_pipe(istore_mem);
%}
// Store Char/Short
instruct storeC(iRegIorL2I src, memory mem)
%{
match(Set mem (StoreC mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strh $src, $mem\t# short" %}
ins_encode(aarch64_enc_strh(src, mem));
ins_pipe(istore_reg_mem);
%}
instruct storeimmC0(immI0 zero, memory mem)
%{
match(Set mem (StoreC mem zero));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strh zr, $mem\t# short" %}
ins_encode(aarch64_enc_strh0(mem));
ins_pipe(istore_mem);
%}
// Store Integer
instruct storeI(iRegIorL2I src, memory mem)
%{
match(Set mem(StoreI mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strw $src, $mem\t# int" %}
ins_encode(aarch64_enc_strw(src, mem));
ins_pipe(istore_reg_mem);
%}
instruct storeimmI0(immI0 zero, memory mem)
%{
match(Set mem(StoreI mem zero));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strw zr, $mem\t# int" %}
ins_encode(aarch64_enc_strw0(mem));
ins_pipe(istore_mem);
%}
// Store Long (64 bit signed)
instruct storeL(iRegL src, memory mem)
%{
match(Set mem (StoreL mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "str $src, $mem\t# int" %}
ins_encode(aarch64_enc_str(src, mem));
ins_pipe(istore_reg_mem);
%}
// Store Long (64 bit signed)
instruct storeimmL0(immL0 zero, memory mem)
%{
match(Set mem (StoreL mem zero));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "str zr, $mem\t# int" %}
ins_encode(aarch64_enc_str0(mem));
ins_pipe(istore_mem);
%}
// Store Pointer
instruct storeP(iRegP src, memory mem)
%{
match(Set mem (StoreP mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "str $src, $mem\t# ptr" %}
ins_encode(aarch64_enc_str(src, mem));
ins_pipe(istore_reg_mem);
%}
// Store Pointer
instruct storeimmP0(immP0 zero, memory mem)
%{
match(Set mem (StoreP mem zero));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "str zr, $mem\t# ptr" %}
ins_encode(aarch64_enc_str0(mem));
ins_pipe(istore_mem);
%}
// Store Compressed Pointer
instruct storeN(iRegN src, memory mem)
%{
match(Set mem (StoreN mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strw $src, $mem\t# compressed ptr" %}
ins_encode(aarch64_enc_strw(src, mem));
ins_pipe(istore_reg_mem);
%}
instruct storeImmN0(iRegIHeapbase heapbase, immN0 zero, memory mem)
%{
match(Set mem (StoreN mem zero));
predicate(Universe::narrow_oop_base() == NULL &&
Universe::narrow_klass_base() == NULL &&
(!needs_releasing_store(n)));
ins_cost(INSN_COST);
format %{ "strw rheapbase, $mem\t# compressed ptr (rheapbase==0)" %}
ins_encode(aarch64_enc_strw(heapbase, mem));
ins_pipe(istore_reg_mem);
%}
// Store Float
instruct storeF(vRegF src, memory mem)
%{
match(Set mem (StoreF mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strs $src, $mem\t# float" %}
ins_encode( aarch64_enc_strs(src, mem) );
ins_pipe(pipe_class_memory);
%}
// TODO
// implement storeImmF0 and storeFImmPacked
// Store Double
instruct storeD(vRegD src, memory mem)
%{
match(Set mem (StoreD mem src));
predicate(!needs_releasing_store(n));
ins_cost(INSN_COST);
format %{ "strd $src, $mem\t# double" %}
ins_encode( aarch64_enc_strd(src, mem) );
ins_pipe(pipe_class_memory);
%}
// Store Compressed Klass Pointer
instruct storeNKlass(iRegN src, memory mem)
%{
predicate(!needs_releasing_store(n));
match(Set mem (StoreNKlass mem src));
ins_cost(INSN_COST);
format %{ "strw $src, $mem\t# compressed klass ptr" %}
ins_encode(aarch64_enc_strw(src, mem));
ins_pipe(istore_reg_mem);
%}
// TODO
// implement storeImmD0 and storeDImmPacked
// prefetch instructions
// Must be safe to execute with invalid address (cannot fault).
instruct prefetchalloc( memory mem ) %{
match(PrefetchAllocation mem);
ins_cost(INSN_COST);
format %{ "prfm $mem, PSTL1KEEP\t# Prefetch into level 1 cache write keep" %}
ins_encode( aarch64_enc_prefetchw(mem) );
ins_pipe(iload_prefetch);
%}
// ---------------- volatile loads and stores ----------------
// Load Byte (8 bit signed)
instruct loadB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadB mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarsb $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldarsb(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Byte (8 bit signed) into long
instruct loadB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (ConvI2L (LoadB mem)));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarsb $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldarsb(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Byte (8 bit unsigned)
instruct loadUB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadUB mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarb $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldarb(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Byte (8 bit unsigned) into long
instruct loadUB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (ConvI2L (LoadUB mem)));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarb $dst, $mem\t# byte" %}
ins_encode(aarch64_enc_ldarb(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Short (16 bit signed)
instruct loadS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadS mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarshw $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldarshw(dst, mem));
ins_pipe(pipe_serial);
%}
instruct loadUS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadUS mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarhw $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldarhw(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Short/Char (16 bit unsigned) into long
instruct loadUS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (ConvI2L (LoadUS mem)));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarh $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldarh(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Short/Char (16 bit signed) into long
instruct loadS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (ConvI2L (LoadS mem)));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarh $dst, $mem\t# short" %}
ins_encode(aarch64_enc_ldarsh(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Integer (32 bit signed)
instruct loadI_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadI mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarw $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldarw(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Integer (32 bit unsigned) into long
instruct loadUI2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem, immL_32bits mask)
%{
match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarw $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldarw(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Long (64 bit signed)
instruct loadL_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadL mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldar $dst, $mem\t# int" %}
ins_encode(aarch64_enc_ldar(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Pointer
instruct loadP_volatile(iRegPNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadP mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldar $dst, $mem\t# ptr" %}
ins_encode(aarch64_enc_ldar(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Compressed Pointer
instruct loadN_volatile(iRegNNoSp dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadN mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldarw $dst, $mem\t# compressed ptr" %}
ins_encode(aarch64_enc_ldarw(dst, mem));
ins_pipe(pipe_serial);
%}
// Load Float
instruct loadF_volatile(vRegF dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadF mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldars $dst, $mem\t# float" %}
ins_encode( aarch64_enc_fldars(dst, mem) );
ins_pipe(pipe_serial);
%}
// Load Double
instruct loadD_volatile(vRegD dst, /* sync_memory*/indirect mem)
%{
match(Set dst (LoadD mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldard $dst, $mem\t# double" %}
ins_encode( aarch64_enc_fldard(dst, mem) );
ins_pipe(pipe_serial);
%}
// Store Byte
instruct storeB_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreB mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlrb $src, $mem\t# byte" %}
ins_encode(aarch64_enc_stlrb(src, mem));
ins_pipe(pipe_class_memory);
%}
// Store Char/Short
instruct storeC_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreC mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlrh $src, $mem\t# short" %}
ins_encode(aarch64_enc_stlrh(src, mem));
ins_pipe(pipe_class_memory);
%}
// Store Integer
instruct storeI_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
%{
match(Set mem(StoreI mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlrw $src, $mem\t# int" %}
ins_encode(aarch64_enc_stlrw(src, mem));
ins_pipe(pipe_class_memory);
%}
// Store Long (64 bit signed)
instruct storeL_volatile(iRegL src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreL mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlr $src, $mem\t# int" %}
ins_encode(aarch64_enc_stlr(src, mem));
ins_pipe(pipe_class_memory);
%}
// Store Pointer
instruct storeP_volatile(iRegP src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreP mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlr $src, $mem\t# ptr" %}
ins_encode(aarch64_enc_stlr(src, mem));
ins_pipe(pipe_class_memory);
%}
// Store Compressed Pointer
instruct storeN_volatile(iRegN src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreN mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlrw $src, $mem\t# compressed ptr" %}
ins_encode(aarch64_enc_stlrw(src, mem));
ins_pipe(pipe_class_memory);
%}
// Store Float
instruct storeF_volatile(vRegF src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreF mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlrs $src, $mem\t# float" %}
ins_encode( aarch64_enc_fstlrs(src, mem) );
ins_pipe(pipe_class_memory);
%}
// TODO
// implement storeImmF0 and storeFImmPacked
// Store Double
instruct storeD_volatile(vRegD src, /* sync_memory*/indirect mem)
%{
match(Set mem (StoreD mem src));
ins_cost(VOLATILE_REF_COST);
format %{ "stlrd $src, $mem\t# double" %}
ins_encode( aarch64_enc_fstlrd(src, mem) );
ins_pipe(pipe_class_memory);
%}
// ---------------- end of volatile loads and stores ----------------
// ============================================================================
// BSWAP Instructions
instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src) %{
match(Set dst (ReverseBytesI src));
ins_cost(INSN_COST);
format %{ "revw $dst, $src" %}
ins_encode %{
__ revw(as_Register($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct bytes_reverse_long(iRegLNoSp dst, iRegL src) %{
match(Set dst (ReverseBytesL src));
ins_cost(INSN_COST);
format %{ "rev $dst, $src" %}
ins_encode %{
__ rev(as_Register($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{
match(Set dst (ReverseBytesUS src));
ins_cost(INSN_COST);
format %{ "rev16w $dst, $src" %}
ins_encode %{
__ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{
match(Set dst (ReverseBytesS src));
ins_cost(INSN_COST);
format %{ "rev16w $dst, $src\n\t"
"sbfmw $dst, $dst, #0, #15" %}
ins_encode %{
__ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
__ sbfmw(as_Register($dst$$reg), as_Register($dst$$reg), 0U, 15U);
%}
ins_pipe(ialu_reg);
%}
// ============================================================================
// Zero Count Instructions
instruct countLeadingZerosI(iRegINoSp dst, iRegIorL2I src) %{
match(Set dst (CountLeadingZerosI src));
ins_cost(INSN_COST);
format %{ "clzw $dst, $src" %}
ins_encode %{
__ clzw(as_Register($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct countLeadingZerosL(iRegINoSp dst, iRegL src) %{
match(Set dst (CountLeadingZerosL src));
ins_cost(INSN_COST);
format %{ "clz $dst, $src" %}
ins_encode %{
__ clz(as_Register($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct countTrailingZerosI(iRegINoSp dst, iRegIorL2I src) %{
match(Set dst (CountTrailingZerosI src));
ins_cost(INSN_COST * 2);
format %{ "rbitw $dst, $src\n\t"
"clzw $dst, $dst" %}
ins_encode %{
__ rbitw(as_Register($dst$$reg), as_Register($src$$reg));
__ clzw(as_Register($dst$$reg), as_Register($dst$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct countTrailingZerosL(iRegINoSp dst, iRegL src) %{
match(Set dst (CountTrailingZerosL src));
ins_cost(INSN_COST * 2);
format %{ "rbit $dst, $src\n\t"
"clz $dst, $dst" %}
ins_encode %{
__ rbit(as_Register($dst$$reg), as_Register($src$$reg));
__ clz(as_Register($dst$$reg), as_Register($dst$$reg));
%}
ins_pipe(ialu_reg);
%}
//---------- Population Count Instructions -------------------------------------
//
instruct popCountI(iRegINoSp dst, iRegIorL2I src, vRegF tmp) %{
predicate(UsePopCountInstruction);
match(Set dst (PopCountI src));
effect(TEMP tmp);
ins_cost(INSN_COST * 13);
format %{ "movw $src, $src\n\t"
"mov $tmp, $src\t# vector (1D)\n\t"
"cnt $tmp, $tmp\t# vector (8B)\n\t"
"addv $tmp, $tmp\t# vector (8B)\n\t"
"mov $dst, $tmp\t# vector (1D)" %}
ins_encode %{
__ movw($src$$Register, $src$$Register); // ensure top 32 bits 0
__ mov($tmp$$FloatRegister, __ T1D, 0, $src$$Register);
__ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
%}
ins_pipe(pipe_class_default);
%}
instruct popCountI_mem(iRegINoSp dst, memory mem, vRegF tmp) %{
predicate(UsePopCountInstruction);
match(Set dst (PopCountI (LoadI mem)));
effect(TEMP tmp);
ins_cost(INSN_COST * 13);
format %{ "ldrs $tmp, $mem\n\t"
"cnt $tmp, $tmp\t# vector (8B)\n\t"
"addv $tmp, $tmp\t# vector (8B)\n\t"
"mov $dst, $tmp\t# vector (1D)" %}
ins_encode %{
FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrs, tmp_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
__ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
%}
ins_pipe(pipe_class_default);
%}
// Note: Long.bitCount(long) returns an int.
instruct popCountL(iRegINoSp dst, iRegL src, vRegD tmp) %{
predicate(UsePopCountInstruction);
match(Set dst (PopCountL src));
effect(TEMP tmp);
ins_cost(INSN_COST * 13);
format %{ "mov $tmp, $src\t# vector (1D)\n\t"
"cnt $tmp, $tmp\t# vector (8B)\n\t"
"addv $tmp, $tmp\t# vector (8B)\n\t"
"mov $dst, $tmp\t# vector (1D)" %}
ins_encode %{
__ mov($tmp$$FloatRegister, __ T1D, 0, $src$$Register);
__ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
%}
ins_pipe(pipe_class_default);
%}
instruct popCountL_mem(iRegINoSp dst, memory mem, vRegD tmp) %{
predicate(UsePopCountInstruction);
match(Set dst (PopCountL (LoadL mem)));
effect(TEMP tmp);
ins_cost(INSN_COST * 13);
format %{ "ldrd $tmp, $mem\n\t"
"cnt $tmp, $tmp\t# vector (8B)\n\t"
"addv $tmp, $tmp\t# vector (8B)\n\t"
"mov $dst, $tmp\t# vector (1D)" %}
ins_encode %{
FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrd, tmp_reg, $mem->opcode(),
as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
__ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
__ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
%}
ins_pipe(pipe_class_default);
%}
// ============================================================================
// MemBar Instruction
instruct load_fence() %{
match(LoadFence);
ins_cost(VOLATILE_REF_COST);
format %{ "load_fence" %}
ins_encode %{
__ membar(Assembler::LoadLoad|Assembler::LoadStore);
%}
ins_pipe(pipe_serial);
%}
instruct unnecessary_membar_acquire() %{
predicate(unnecessary_acquire(n));
match(MemBarAcquire);
ins_cost(0);
format %{ "membar_acquire (elided)" %}
ins_encode %{
__ block_comment("membar_acquire (elided)");
%}
ins_pipe(pipe_class_empty);
%}
instruct membar_acquire() %{
match(MemBarAcquire);
ins_cost(VOLATILE_REF_COST);
format %{ "membar_acquire" %}
ins_encode %{
__ block_comment("membar_acquire");
__ membar(Assembler::LoadLoad|Assembler::LoadStore);
%}
ins_pipe(pipe_serial);
%}
instruct membar_acquire_lock() %{
match(MemBarAcquireLock);
ins_cost(VOLATILE_REF_COST);
format %{ "membar_acquire_lock (elided)" %}
ins_encode %{
__ block_comment("membar_acquire_lock (elided)");
%}
ins_pipe(pipe_serial);
%}
instruct store_fence() %{
match(StoreFence);
ins_cost(VOLATILE_REF_COST);
format %{ "store_fence" %}
ins_encode %{
__ membar(Assembler::LoadStore|Assembler::StoreStore);
%}
ins_pipe(pipe_serial);
%}
instruct unnecessary_membar_release() %{
predicate(unnecessary_release(n));
match(MemBarRelease);
ins_cost(0);
format %{ "membar_release (elided)" %}
ins_encode %{
__ block_comment("membar_release (elided)");
%}
ins_pipe(pipe_serial);
%}
instruct membar_release() %{
match(MemBarRelease);
ins_cost(VOLATILE_REF_COST);
format %{ "membar_release" %}
ins_encode %{
__ block_comment("membar_release");
__ membar(Assembler::LoadStore|Assembler::StoreStore);
%}
ins_pipe(pipe_serial);
%}
instruct membar_storestore() %{
match(MemBarStoreStore);
ins_cost(VOLATILE_REF_COST);
format %{ "MEMBAR-store-store" %}
ins_encode %{
__ membar(Assembler::StoreStore);
%}
ins_pipe(pipe_serial);
%}
instruct membar_release_lock() %{
match(MemBarReleaseLock);
ins_cost(VOLATILE_REF_COST);
format %{ "membar_release_lock (elided)" %}
ins_encode %{
__ block_comment("membar_release_lock (elided)");
%}
ins_pipe(pipe_serial);
%}
instruct unnecessary_membar_volatile() %{
predicate(unnecessary_volatile(n));
match(MemBarVolatile);
ins_cost(0);
format %{ "membar_volatile (elided)" %}
ins_encode %{
__ block_comment("membar_volatile (elided)");
%}
ins_pipe(pipe_serial);
%}
instruct membar_volatile() %{
match(MemBarVolatile);
ins_cost(VOLATILE_REF_COST*100);
format %{ "membar_volatile" %}
ins_encode %{
__ block_comment("membar_volatile");
__ membar(Assembler::StoreLoad);
%}
ins_pipe(pipe_serial);
%}
// ============================================================================
// Cast/Convert Instructions
instruct castX2P(iRegPNoSp dst, iRegL src) %{
match(Set dst (CastX2P src));
ins_cost(INSN_COST);
format %{ "mov $dst, $src\t# long -> ptr" %}
ins_encode %{
if ($dst$$reg != $src$$reg) {
__ mov(as_Register($dst$$reg), as_Register($src$$reg));
}
%}
ins_pipe(ialu_reg);
%}
instruct castP2X(iRegLNoSp dst, iRegP src) %{
match(Set dst (CastP2X src));
ins_cost(INSN_COST);
format %{ "mov $dst, $src\t# ptr -> long" %}
ins_encode %{
if ($dst$$reg != $src$$reg) {
__ mov(as_Register($dst$$reg), as_Register($src$$reg));
}
%}
ins_pipe(ialu_reg);
%}
// Convert oop into int for vectors alignment masking
instruct convP2I(iRegINoSp dst, iRegP src) %{
match(Set dst (ConvL2I (CastP2X src)));
ins_cost(INSN_COST);
format %{ "movw $dst, $src\t# ptr -> int" %}
ins_encode %{
__ movw($dst$$Register, $src$$Register);
%}
ins_pipe(ialu_reg);
%}
// Convert compressed oop into int for vectors alignment masking
// in case of 32bit oops (heap < 4Gb).
instruct convN2I(iRegINoSp dst, iRegN src)
%{
predicate(Universe::narrow_oop_shift() == 0);
match(Set dst (ConvL2I (CastP2X (DecodeN src))));
ins_cost(INSN_COST);
format %{ "mov dst, $src\t# compressed ptr -> int" %}
ins_encode %{
__ movw($dst$$Register, $src$$Register);
%}
ins_pipe(ialu_reg);
%}
// Convert oop pointer into compressed form
instruct encodeHeapOop(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
match(Set dst (EncodeP src));
effect(KILL cr);
ins_cost(INSN_COST * 3);
format %{ "encode_heap_oop $dst, $src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ encode_heap_oop(d, s);
%}
ins_pipe(ialu_reg);
%}
instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
match(Set dst (EncodeP src));
ins_cost(INSN_COST * 3);
format %{ "encode_heap_oop_not_null $dst, $src" %}
ins_encode %{
__ encode_heap_oop_not_null($dst$$Register, $src$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct decodeHeapOop(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
match(Set dst (DecodeN src));
ins_cost(INSN_COST * 3);
format %{ "decode_heap_oop $dst, $src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ decode_heap_oop(d, s);
%}
ins_pipe(ialu_reg);
%}
instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
match(Set dst (DecodeN src));
ins_cost(INSN_COST * 3);
format %{ "decode_heap_oop_not_null $dst, $src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ decode_heap_oop_not_null(d, s);
%}
ins_pipe(ialu_reg);
%}
// n.b. AArch64 implementations of encode_klass_not_null and
// decode_klass_not_null do not modify the flags register so, unlike
// Intel, we don't kill CR as a side effect here
instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
match(Set dst (EncodePKlass src));
ins_cost(INSN_COST * 3);
format %{ "encode_klass_not_null $dst,$src" %}
ins_encode %{
Register src_reg = as_Register($src$$reg);
Register dst_reg = as_Register($dst$$reg);
__ encode_klass_not_null(dst_reg, src_reg);
%}
ins_pipe(ialu_reg);
%}
instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src) %{
match(Set dst (DecodeNKlass src));
ins_cost(INSN_COST * 3);
format %{ "decode_klass_not_null $dst,$src" %}
ins_encode %{
Register src_reg = as_Register($src$$reg);
Register dst_reg = as_Register($dst$$reg);
if (dst_reg != src_reg) {
__ decode_klass_not_null(dst_reg, src_reg);
} else {
__ decode_klass_not_null(dst_reg);
}
%}
ins_pipe(ialu_reg);
%}
instruct checkCastPP(iRegPNoSp dst)
%{
match(Set dst (CheckCastPP dst));
size(0);
format %{ "# checkcastPP of $dst" %}
ins_encode(/* empty encoding */);
ins_pipe(pipe_class_empty);
%}
instruct castPP(iRegPNoSp dst)
%{
match(Set dst (CastPP dst));
size(0);
format %{ "# castPP of $dst" %}
ins_encode(/* empty encoding */);
ins_pipe(pipe_class_empty);
%}
instruct castII(iRegI dst)
%{
match(Set dst (CastII dst));
size(0);
format %{ "# castII of $dst" %}
ins_encode(/* empty encoding */);
ins_cost(0);
ins_pipe(pipe_class_empty);
%}
// ============================================================================
// Atomic operation instructions
//
// Intel and SPARC both implement Ideal Node LoadPLocked and
// Store{PIL}Conditional instructions using a normal load for the
// LoadPLocked and a CAS for the Store{PIL}Conditional.
//
// The ideal code appears only to use LoadPLocked/StorePLocked as a
// pair to lock object allocations from Eden space when not using
// TLABs.
//
// There does not appear to be a Load{IL}Locked Ideal Node and the
// Ideal code appears to use Store{IL}Conditional as an alias for CAS
// and to use StoreIConditional only for 32-bit and StoreLConditional
// only for 64-bit.
//
// We implement LoadPLocked and StorePLocked instructions using,
// respectively the AArch64 hw load-exclusive and store-conditional
// instructions. Whereas we must implement each of
// Store{IL}Conditional using a CAS which employs a pair of
// instructions comprising a load-exclusive followed by a
// store-conditional.
// Locked-load (linked load) of the current heap-top
// used when updating the eden heap top
// implemented using ldaxr on AArch64
instruct loadPLocked(iRegPNoSp dst, indirect mem)
%{
match(Set dst (LoadPLocked mem));
ins_cost(VOLATILE_REF_COST);
format %{ "ldaxr $dst, $mem\t# ptr linked acquire" %}
ins_encode(aarch64_enc_ldaxr(dst, mem));
ins_pipe(pipe_serial);
%}
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flag (EQ) on success.
// implemented using stlxr on AArch64.
instruct storePConditional(memory heap_top_ptr, iRegP oldval, iRegP newval, rFlagsReg cr)
%{
match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
// TODO
// do we need to do a store-conditional release or can we just use a
// plain store-conditional?
format %{
"stlxr rscratch1, $newval, $heap_top_ptr\t# ptr cond release"
"cmpw rscratch1, zr\t# EQ on successful write"
%}
ins_encode(aarch64_enc_stlxr(newval, heap_top_ptr));
ins_pipe(pipe_serial);
%}
// storeLConditional is used by PhaseMacroExpand::expand_lock_node
// when attempting to rebias a lock towards the current thread. We
// must use the acquire form of cmpxchg in order to guarantee acquire
// semantics in this case.
instruct storeLConditional(indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr)
%{
match(Set cr (StoreLConditional mem (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
format %{
"cmpxchg rscratch1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval"
"cmpw rscratch1, zr\t# EQ on successful write"
%}
ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval));
ins_pipe(pipe_slow);
%}
// storeIConditional also has acquire semantics, for no better reason
// than matching storeLConditional. At the time of writing this
// comment storeIConditional was not used anywhere by AArch64.
instruct storeIConditional(indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr)
%{
match(Set cr (StoreIConditional mem (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
format %{
"cmpxchgw rscratch1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval"
"cmpw rscratch1, zr\t# EQ on successful write"
%}
ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval));
ins_pipe(pipe_slow);
%}
// standard CompareAndSwapX when we are using barriers
// these have higher priority than the rules selected by a predicate
// XXX No flag versions for CompareAndSwap{I,L,P,N} because matcher
// can't match them
instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
match(Set res (CompareAndSwapI mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchgw $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
match(Set res (CompareAndSwapL mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
match(Set res (CompareAndSwapP mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
match(Set res (CompareAndSwapN mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchgw $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
// alternative CompareAndSwapX when we are eliding barriers
instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
predicate(needs_acquiring_load_exclusive(n));
match(Set res (CompareAndSwapI mem (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchgw_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
predicate(needs_acquiring_load_exclusive(n));
match(Set res (CompareAndSwapL mem (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
predicate(needs_acquiring_load_exclusive(n));
match(Set res (CompareAndSwapP mem (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
predicate(needs_acquiring_load_exclusive(n));
match(Set res (CompareAndSwapN mem (Binary oldval newval)));
ins_cost(VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchgw_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
"cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
aarch64_enc_cset_eq(res));
ins_pipe(pipe_slow);
%}
// ---------------------------------------------------------------------
// BEGIN This section of the file is automatically generated. Do not edit --------------
// Sundry CAS operations. Note that release is always true,
// regardless of the memory ordering of the CAS. This is because we
// need the volatile case to be sequentially consistent but there is
// no trailing StoreLoad barrier emitted by C2. Unfortunately we
// can't check the type of memory ordering here, so we always emit a
// STLXR.
// This section is generated from aarch64_ad_cas.m4
instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(TEMP_DEF res, KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
%}
ins_encode %{
__ uxtbw(rscratch2, $oldval$$Register);
__ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
Assembler::byte, /*acquire*/ false, /*release*/ true,
/*weak*/ false, $res$$Register);
__ sxtbw($res$$Register, $res$$Register);
%}
ins_pipe(pipe_slow);
%}
instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(TEMP_DEF res, KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
%}
ins_encode %{
__ uxthw(rscratch2, $oldval$$Register);
__ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
Assembler::halfword, /*acquire*/ false, /*release*/ true,
/*weak*/ false, $res$$Register);
__ sxthw($res$$Register, $res$$Register);
%}
ins_pipe(pipe_slow);
%}
instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(TEMP_DEF res, KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::word, /*acquire*/ false, /*release*/ true,
/*weak*/ false, $res$$Register);
%}
ins_pipe(pipe_slow);
%}
instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(TEMP_DEF res, KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::xword, /*acquire*/ false, /*release*/ true,
/*weak*/ false, $res$$Register);
%}
ins_pipe(pipe_slow);
%}
instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(TEMP_DEF res, KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::word, /*acquire*/ false, /*release*/ true,
/*weak*/ false, $res$$Register);
%}
ins_pipe(pipe_slow);
%}
instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(TEMP_DEF res, KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::xword, /*acquire*/ false, /*release*/ true,
/*weak*/ false, $res$$Register);
%}
ins_pipe(pipe_slow);
%}
instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
"csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode %{
__ uxtbw(rscratch2, $oldval$$Register);
__ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
Assembler::byte, /*acquire*/ false, /*release*/ true,
/*weak*/ true, noreg);
__ csetw($res$$Register, Assembler::EQ);
%}
ins_pipe(pipe_slow);
%}
instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
"csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode %{
__ uxthw(rscratch2, $oldval$$Register);
__ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
Assembler::halfword, /*acquire*/ false, /*release*/ true,
/*weak*/ true, noreg);
__ csetw($res$$Register, Assembler::EQ);
%}
ins_pipe(pipe_slow);
%}
instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
"csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::word, /*acquire*/ false, /*release*/ true,
/*weak*/ true, noreg);
__ csetw($res$$Register, Assembler::EQ);
%}
ins_pipe(pipe_slow);
%}
instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
"csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::xword, /*acquire*/ false, /*release*/ true,
/*weak*/ true, noreg);
__ csetw($res$$Register, Assembler::EQ);
%}
ins_pipe(pipe_slow);
%}
instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
"csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::word, /*acquire*/ false, /*release*/ true,
/*weak*/ true, noreg);
__ csetw($res$$Register, Assembler::EQ);
%}
ins_pipe(pipe_slow);
%}
instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
ins_cost(2 * VOLATILE_REF_COST);
effect(KILL cr);
format %{
"cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
"csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
%}
ins_encode %{
__ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
Assembler::xword, /*acquire*/ false, /*release*/ true,
/*weak*/ true, noreg);
__ csetw($res$$Register, Assembler::EQ);
%}
ins_pipe(pipe_slow);
%}
// END This section of the file is automatically generated. Do not edit --------------
// ---------------------------------------------------------------------
instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) %{
match(Set prev (GetAndSetI mem newv));
format %{ "atomic_xchgw $prev, $newv, [$mem]" %}
ins_encode %{
__ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) %{
match(Set prev (GetAndSetL mem newv));
format %{ "atomic_xchg $prev, $newv, [$mem]" %}
ins_encode %{
__ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) %{
match(Set prev (GetAndSetN mem newv));
format %{ "atomic_xchgw $prev, $newv, [$mem]" %}
ins_encode %{
__ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) %{
match(Set prev (GetAndSetP mem newv));
format %{ "atomic_xchg $prev, $newv, [$mem]" %}
ins_encode %{
__ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) %{
match(Set newval (GetAndAddL mem incr));
ins_cost(INSN_COST * 10);
format %{ "get_and_addL $newval, [$mem], $incr" %}
ins_encode %{
__ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) %{
predicate(n->as_LoadStore()->result_not_used());
match(Set dummy (GetAndAddL mem incr));
ins_cost(INSN_COST * 9);
format %{ "get_and_addL [$mem], $incr" %}
ins_encode %{
__ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAddSub incr) %{
match(Set newval (GetAndAddL mem incr));
ins_cost(INSN_COST * 10);
format %{ "get_and_addL $newval, [$mem], $incr" %}
ins_encode %{
__ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAddSub incr) %{
predicate(n->as_LoadStore()->result_not_used());
match(Set dummy (GetAndAddL mem incr));
ins_cost(INSN_COST * 9);
format %{ "get_and_addL [$mem], $incr" %}
ins_encode %{
__ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{
match(Set newval (GetAndAddI mem incr));
ins_cost(INSN_COST * 10);
format %{ "get_and_addI $newval, [$mem], $incr" %}
ins_encode %{
__ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) %{
predicate(n->as_LoadStore()->result_not_used());
match(Set dummy (GetAndAddI mem incr));
ins_cost(INSN_COST * 9);
format %{ "get_and_addI [$mem], $incr" %}
ins_encode %{
__ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAddSub incr) %{
match(Set newval (GetAndAddI mem incr));
ins_cost(INSN_COST * 10);
format %{ "get_and_addI $newval, [$mem], $incr" %}
ins_encode %{
__ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAddSub incr) %{
predicate(n->as_LoadStore()->result_not_used());
match(Set dummy (GetAndAddI mem incr));
ins_cost(INSN_COST * 9);
format %{ "get_and_addI [$mem], $incr" %}
ins_encode %{
__ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
%}
ins_pipe(pipe_serial);
%}
// Manifest a CmpL result in an integer register.
// (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
instruct cmpL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags)
%{
match(Set dst (CmpL3 src1 src2));
effect(KILL flags);
ins_cost(INSN_COST * 6);
format %{
"cmp $src1, $src2"
"csetw $dst, ne"
"cnegw $dst, lt"
%}
// format %{ "CmpL3 $dst, $src1, $src2" %}
ins_encode %{
__ cmp($src1$$Register, $src2$$Register);
__ csetw($dst$$Register, Assembler::NE);
__ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
%}
ins_pipe(pipe_class_default);
%}
instruct cmpL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags)
%{
match(Set dst (CmpL3 src1 src2));
effect(KILL flags);
ins_cost(INSN_COST * 6);
format %{
"cmp $src1, $src2"
"csetw $dst, ne"
"cnegw $dst, lt"
%}
ins_encode %{
int32_t con = (int32_t)$src2$$constant;
if (con < 0) {
__ adds(zr, $src1$$Register, -con);
} else {
__ subs(zr, $src1$$Register, con);
}
__ csetw($dst$$Register, Assembler::NE);
__ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
%}
ins_pipe(pipe_class_default);
%}
// ============================================================================
// Conditional Move Instructions
// n.b. we have identical rules for both a signed compare op (cmpOp)
// and an unsigned compare op (cmpOpU). it would be nice if we could
// define an op class which merged both inputs and use it to type the
// argument to a single rule. unfortunatelyt his fails because the
// opclass does not live up to the COND_INTER interface of its
// component operands. When the generic code tries to negate the
// operand it ends up running the generci Machoper::negate method
// which throws a ShouldNotHappen. So, we have to provide two flavours
// of each rule, one for a cmpOp and a second for a cmpOpU (sigh).
instruct cmovI_reg_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, int" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
instruct cmovUI_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src2, $src1 $cmp\t# unsigned, int" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
// special cases where one arg is zero
// n.b. this is selected in preference to the rule above because it
// avoids loading constant 0 into a source register
// TODO
// we ought only to be able to cull one of these variants as the ideal
// transforms ought always to order the zero consistently (to left/right?)
instruct cmovI_zero_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src, zr $cmp\t# signed, int" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUI_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src, zr $cmp\t# unsigned, int" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovI_reg_zero(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, zr, $src $cmp\t# signed, int" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUI_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, zr, $src $cmp\t# unsigned, int" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
// special case for creating a boolean 0 or 1
// n.b. this is selected in preference to the rule above because it
// avoids loading constants 0 and 1 into a source register
instruct cmovI_reg_zero_one(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
ins_cost(INSN_COST * 2);
format %{ "csincw $dst, zr, zr $cmp\t# signed, int" %}
ins_encode %{
// equivalently
// cset(as_Register($dst$$reg),
// negate_condition((Assembler::Condition)$cmp$$cmpcode));
__ csincw(as_Register($dst$$reg),
zr,
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_none);
%}
instruct cmovUI_reg_zero_one(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
ins_cost(INSN_COST * 2);
format %{ "csincw $dst, zr, zr $cmp\t# unsigned, int" %}
ins_encode %{
// equivalently
// cset(as_Register($dst$$reg),
// negate_condition((Assembler::Condition)$cmp$$cmpcode));
__ csincw(as_Register($dst$$reg),
zr,
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_none);
%}
instruct cmovL_reg_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src2, $src1 $cmp\t# signed, long" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
instruct cmovUL_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, long" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
// special cases where one arg is zero
instruct cmovL_reg_zero(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, zr, $src $cmp\t# signed, long" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUL_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, zr, $src $cmp\t# unsigned, long" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovL_zero_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src, zr $cmp\t# signed, long" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUL_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src, zr $cmp\t# unsigned, long" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovP_reg_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src2, $src1 $cmp\t# signed, ptr" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
instruct cmovUP_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, ptr" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
// special cases where one arg is zero
instruct cmovP_reg_zero(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, zr, $src $cmp\t# signed, ptr" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUP_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, zr, $src $cmp\t# unsigned, ptr" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovP_zero_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src, zr $cmp\t# signed, ptr" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUP_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "csel $dst, $src, zr $cmp\t# unsigned, ptr" %}
ins_encode %{
__ csel(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovN_reg_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
instruct cmovUN_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src2$$reg),
as_Register($src1$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg_reg);
%}
// special cases where one arg is zero
instruct cmovN_reg_zero(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, zr, $src $cmp\t# signed, compressed ptr" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUN_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, zr, $src $cmp\t# unsigned, compressed ptr" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
zr,
as_Register($src$$reg),
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovN_zero_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src, zr $cmp\t# signed, compressed ptr" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovUN_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
ins_cost(INSN_COST * 2);
format %{ "cselw $dst, $src, zr $cmp\t# unsigned, compressed ptr" %}
ins_encode %{
__ cselw(as_Register($dst$$reg),
as_Register($src$$reg),
zr,
(Assembler::Condition)$cmp$$cmpcode);
%}
ins_pipe(icond_reg);
%}
instruct cmovF_reg(cmpOp cmp, rFlagsReg cr, vRegF dst, vRegF src1, vRegF src2)
%{
match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 3);
format %{ "fcsels $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
ins_encode %{
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
__ fcsels(as_FloatRegister($dst$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src1$$reg),
cond);
%}
ins_pipe(fp_cond_reg_reg_s);
%}
instruct cmovUF_reg(cmpOpU cmp, rFlagsRegU cr, vRegF dst, vRegF src1, vRegF src2)
%{
match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 3);
format %{ "fcsels $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
ins_encode %{
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
__ fcsels(as_FloatRegister($dst$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src1$$reg),
cond);
%}
ins_pipe(fp_cond_reg_reg_s);
%}
instruct cmovD_reg(cmpOp cmp, rFlagsReg cr, vRegD dst, vRegD src1, vRegD src2)
%{
match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 3);
format %{ "fcseld $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
ins_encode %{
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
__ fcseld(as_FloatRegister($dst$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src1$$reg),
cond);
%}
ins_pipe(fp_cond_reg_reg_d);
%}
instruct cmovUD_reg(cmpOpU cmp, rFlagsRegU cr, vRegD dst, vRegD src1, vRegD src2)
%{
match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
ins_cost(INSN_COST * 3);
format %{ "fcseld $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
ins_encode %{
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
__ fcseld(as_FloatRegister($dst$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src1$$reg),
cond);
%}
ins_pipe(fp_cond_reg_reg_d);
%}
// ============================================================================
// Arithmetic Instructions
//
// Integer Addition
// TODO
// these currently employ operations which do not set CR and hence are
// not flagged as killing CR but we would like to isolate the cases
// where we want to set flags from those where we don't. need to work
// out how to do that.
instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (AddI src1 src2));
ins_cost(INSN_COST);
format %{ "addw $dst, $src1, $src2" %}
ins_encode %{
__ addw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
match(Set dst (AddI src1 src2));
ins_cost(INSN_COST);
format %{ "addw $dst, $src1, $src2" %}
// use opcode to indicate that this is an add not a sub
opcode(0x0);
ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
ins_pipe(ialu_reg_imm);
%}
instruct addI_reg_imm_i2l(iRegINoSp dst, iRegL src1, immIAddSub src2) %{
match(Set dst (AddI (ConvL2I src1) src2));
ins_cost(INSN_COST);
format %{ "addw $dst, $src1, $src2" %}
// use opcode to indicate that this is an add not a sub
opcode(0x0);
ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
ins_pipe(ialu_reg_imm);
%}
// Pointer Addition
instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{
match(Set dst (AddP src1 src2));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2\t# ptr" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct addP_reg_reg_ext(iRegPNoSp dst, iRegP src1, iRegIorL2I src2) %{
match(Set dst (AddP src1 (ConvI2L src2)));
ins_cost(1.9 * INSN_COST);
format %{ "add $dst, $src1, $src2, sxtw\t# ptr" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxtw);
%}
ins_pipe(ialu_reg_reg);
%}
instruct addP_reg_reg_lsl(iRegPNoSp dst, iRegP src1, iRegL src2, immIScale scale) %{
match(Set dst (AddP src1 (LShiftL src2 scale)));
ins_cost(1.9 * INSN_COST);
format %{ "add $dst, $src1, $src2, LShiftL $scale\t# ptr" %}
ins_encode %{
__ lea(as_Register($dst$$reg),
Address(as_Register($src1$$reg), as_Register($src2$$reg),
Address::lsl($scale$$constant)));
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct addP_reg_reg_ext_shift(iRegPNoSp dst, iRegP src1, iRegIorL2I src2, immIScale scale) %{
match(Set dst (AddP src1 (LShiftL (ConvI2L src2) scale)));
ins_cost(1.9 * INSN_COST);
format %{ "add $dst, $src1, $src2, I2L $scale\t# ptr" %}
ins_encode %{
__ lea(as_Register($dst$$reg),
Address(as_Register($src1$$reg), as_Register($src2$$reg),
Address::sxtw($scale$$constant)));
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct lshift_ext(iRegLNoSp dst, iRegIorL2I src, immI scale, rFlagsReg cr) %{
match(Set dst (LShiftL (ConvI2L src) scale));
ins_cost(INSN_COST);
format %{ "sbfiz $dst, $src, $scale & 63, -$scale & 63\t" %}
ins_encode %{
__ sbfiz(as_Register($dst$$reg),
as_Register($src$$reg),
$scale$$constant & 63, MIN(32, (-$scale$$constant) & 63));
%}
ins_pipe(ialu_reg_shift);
%}
// Pointer Immediate Addition
// n.b. this needs to be more expensive than using an indirect memory
// operand
instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAddSub src2) %{
match(Set dst (AddP src1 src2));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2\t# ptr" %}
// use opcode to indicate that this is an add not a sub
opcode(0x0);
ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
ins_pipe(ialu_reg_imm);
%}
// Long Addition
instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (AddL src1 src2));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
// No constant pool entries requiredLong Immediate Addition.
instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
match(Set dst (AddL src1 src2));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2" %}
// use opcode to indicate that this is an add not a sub
opcode(0x0);
ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
ins_pipe(ialu_reg_imm);
%}
// Integer Subtraction
instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (SubI src1 src2));
ins_cost(INSN_COST);
format %{ "subw $dst, $src1, $src2" %}
ins_encode %{
__ subw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
// Immediate Subtraction
instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
match(Set dst (SubI src1 src2));
ins_cost(INSN_COST);
format %{ "subw $dst, $src1, $src2" %}
// use opcode to indicate that this is a sub not an add
opcode(0x1);
ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
ins_pipe(ialu_reg_imm);
%}
// Long Subtraction
instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (SubL src1 src2));
ins_cost(INSN_COST);
format %{ "sub $dst, $src1, $src2" %}
ins_encode %{
__ sub(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
// No constant pool entries requiredLong Immediate Subtraction.
instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
match(Set dst (SubL src1 src2));
ins_cost(INSN_COST);
format %{ "sub$dst, $src1, $src2" %}
// use opcode to indicate that this is a sub not an add
opcode(0x1);
ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
ins_pipe(ialu_reg_imm);
%}
// Integer Negation (special case for sub)
instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) %{
match(Set dst (SubI zero src));
ins_cost(INSN_COST);
format %{ "negw $dst, $src\t# int" %}
ins_encode %{
__ negw(as_Register($dst$$reg),
as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
// Long Negation
instruct negL_reg(iRegLNoSp dst, iRegIorL2I src, immL0 zero, rFlagsReg cr) %{
match(Set dst (SubL zero src));
ins_cost(INSN_COST);
format %{ "neg $dst, $src\t# long" %}
ins_encode %{
__ neg(as_Register($dst$$reg),
as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
// Integer Multiply
instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (MulI src1 src2));
ins_cost(INSN_COST * 3);
format %{ "mulw $dst, $src1, $src2" %}
ins_encode %{
__ mulw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(imul_reg_reg);
%}
instruct smulI(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (MulL (ConvI2L src1) (ConvI2L src2)));
ins_cost(INSN_COST * 3);
format %{ "smull $dst, $src1, $src2" %}
ins_encode %{
__ smull(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(imul_reg_reg);
%}
// Long Multiply
instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (MulL src1 src2));
ins_cost(INSN_COST * 5);
format %{ "mul $dst, $src1, $src2" %}
ins_encode %{
__ mul(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(lmul_reg_reg);
%}
instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr)
%{
match(Set dst (MulHiL src1 src2));
ins_cost(INSN_COST * 7);
format %{ "smulh $dst, $src1, $src2, \t# mulhi" %}
ins_encode %{
__ smulh(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(lmul_reg_reg);
%}
// Combined Integer Multiply & Add/Sub
instruct maddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
match(Set dst (AddI src3 (MulI src1 src2)));
ins_cost(INSN_COST * 3);
format %{ "madd $dst, $src1, $src2, $src3" %}
ins_encode %{
__ maddw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
as_Register($src3$$reg));
%}
ins_pipe(imac_reg_reg);
%}
instruct msubI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
match(Set dst (SubI src3 (MulI src1 src2)));
ins_cost(INSN_COST * 3);
format %{ "msub $dst, $src1, $src2, $src3" %}
ins_encode %{
__ msubw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
as_Register($src3$$reg));
%}
ins_pipe(imac_reg_reg);
%}
// Combined Long Multiply & Add/Sub
instruct maddL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
match(Set dst (AddL src3 (MulL src1 src2)));
ins_cost(INSN_COST * 5);
format %{ "madd $dst, $src1, $src2, $src3" %}
ins_encode %{
__ madd(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
as_Register($src3$$reg));
%}
ins_pipe(lmac_reg_reg);
%}
instruct msubL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
match(Set dst (SubL src3 (MulL src1 src2)));
ins_cost(INSN_COST * 5);
format %{ "msub $dst, $src1, $src2, $src3" %}
ins_encode %{
__ msub(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
as_Register($src3$$reg));
%}
ins_pipe(lmac_reg_reg);
%}
// Integer Divide
instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (DivI src1 src2));
ins_cost(INSN_COST * 19);
format %{ "sdivw $dst, $src1, $src2" %}
ins_encode(aarch64_enc_divw(dst, src1, src2));
ins_pipe(idiv_reg_reg);
%}
instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{
match(Set dst (URShiftI (RShiftI src1 div1) div2));
ins_cost(INSN_COST);
format %{ "lsrw $dst, $src1, $div1" %}
ins_encode %{
__ lsrw(as_Register($dst$$reg), as_Register($src1$$reg), 31);
%}
ins_pipe(ialu_reg_shift);
%}
instruct div2Round(iRegINoSp dst, iRegIorL2I src, immI_31 div1, immI_31 div2) %{
match(Set dst (AddI src (URShiftI (RShiftI src div1) div2)));
ins_cost(INSN_COST);
format %{ "addw $dst, $src, LSR $div1" %}
ins_encode %{
__ addw(as_Register($dst$$reg),
as_Register($src$$reg),
as_Register($src$$reg),
Assembler::LSR, 31);
%}
ins_pipe(ialu_reg);
%}
// Long Divide
instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (DivL src1 src2));
ins_cost(INSN_COST * 35);
format %{ "sdiv $dst, $src1, $src2" %}
ins_encode(aarch64_enc_div(dst, src1, src2));
ins_pipe(ldiv_reg_reg);
%}
instruct signExtractL(iRegLNoSp dst, iRegL src1, immL_63 div1, immL_63 div2) %{
match(Set dst (URShiftL (RShiftL src1 div1) div2));
ins_cost(INSN_COST);
format %{ "lsr $dst, $src1, $div1" %}
ins_encode %{
__ lsr(as_Register($dst$$reg), as_Register($src1$$reg), 63);
%}
ins_pipe(ialu_reg_shift);
%}
instruct div2RoundL(iRegLNoSp dst, iRegL src, immL_63 div1, immL_63 div2) %{
match(Set dst (AddL src (URShiftL (RShiftL src div1) div2)));
ins_cost(INSN_COST);
format %{ "add $dst, $src, $div1" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src$$reg),
as_Register($src$$reg),
Assembler::LSR, 63);
%}
ins_pipe(ialu_reg);
%}
// Integer Remainder
instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (ModI src1 src2));
ins_cost(INSN_COST * 22);
format %{ "sdivw rscratch1, $src1, $src2\n\t"
"msubw($dst, rscratch1, $src2, $src1" %}
ins_encode(aarch64_enc_modw(dst, src1, src2));
ins_pipe(idiv_reg_reg);
%}
// Long Remainder
instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (ModL src1 src2));
ins_cost(INSN_COST * 38);
format %{ "sdiv rscratch1, $src1, $src2\n"
"msub($dst, rscratch1, $src2, $src1" %}
ins_encode(aarch64_enc_mod(dst, src1, src2));
ins_pipe(ldiv_reg_reg);
%}
// Integer Shifts
// Shift Left Register
instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (LShiftI src1 src2));
ins_cost(INSN_COST * 2);
format %{ "lslvw $dst, $src1, $src2" %}
ins_encode %{
__ lslvw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// Shift Left Immediate
instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
match(Set dst (LShiftI src1 src2));
ins_cost(INSN_COST);
format %{ "lslw $dst, $src1, ($src2 & 0x1f)" %}
ins_encode %{
__ lslw(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x1f);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Right Logical Register
instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (URShiftI src1 src2));
ins_cost(INSN_COST * 2);
format %{ "lsrvw $dst, $src1, $src2" %}
ins_encode %{
__ lsrvw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// Shift Right Logical Immediate
instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
match(Set dst (URShiftI src1 src2));
ins_cost(INSN_COST);
format %{ "lsrw $dst, $src1, ($src2 & 0x1f)" %}
ins_encode %{
__ lsrw(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x1f);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Right Arithmetic Register
instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (RShiftI src1 src2));
ins_cost(INSN_COST * 2);
format %{ "asrvw $dst, $src1, $src2" %}
ins_encode %{
__ asrvw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// Shift Right Arithmetic Immediate
instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
match(Set dst (RShiftI src1 src2));
ins_cost(INSN_COST);
format %{ "asrw $dst, $src1, ($src2 & 0x1f)" %}
ins_encode %{
__ asrw(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x1f);
%}
ins_pipe(ialu_reg_shift);
%}
// Combined Int Mask and Right Shift (using UBFM)
// TODO
// Long Shifts
// Shift Left Register
instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
match(Set dst (LShiftL src1 src2));
ins_cost(INSN_COST * 2);
format %{ "lslv $dst, $src1, $src2" %}
ins_encode %{
__ lslv(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// Shift Left Immediate
instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
match(Set dst (LShiftL src1 src2));
ins_cost(INSN_COST);
format %{ "lsl $dst, $src1, ($src2 & 0x3f)" %}
ins_encode %{
__ lsl(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x3f);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Right Logical Register
instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
match(Set dst (URShiftL src1 src2));
ins_cost(INSN_COST * 2);
format %{ "lsrv $dst, $src1, $src2" %}
ins_encode %{
__ lsrv(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// Shift Right Logical Immediate
instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
match(Set dst (URShiftL src1 src2));
ins_cost(INSN_COST);
format %{ "lsr $dst, $src1, ($src2 & 0x3f)" %}
ins_encode %{
__ lsr(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x3f);
%}
ins_pipe(ialu_reg_shift);
%}
// A special-case pattern for card table stores.
instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
match(Set dst (URShiftL (CastP2X src1) src2));
ins_cost(INSN_COST);
format %{ "lsr $dst, p2x($src1), ($src2 & 0x3f)" %}
ins_encode %{
__ lsr(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x3f);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Right Arithmetic Register
instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
match(Set dst (RShiftL src1 src2));
ins_cost(INSN_COST * 2);
format %{ "asrv $dst, $src1, $src2" %}
ins_encode %{
__ asrv(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// Shift Right Arithmetic Immediate
instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
match(Set dst (RShiftL src1 src2));
ins_cost(INSN_COST);
format %{ "asr $dst, $src1, ($src2 & 0x3f)" %}
ins_encode %{
__ asr(as_Register($dst$$reg),
as_Register($src1$$reg),
$src2$$constant & 0x3f);
%}
ins_pipe(ialu_reg_shift);
%}
// BEGIN This section of the file is automatically generated. Do not edit --------------
instruct regL_not_reg(iRegLNoSp dst,
iRegL src1, immL_M1 m1,
rFlagsReg cr) %{
match(Set dst (XorL src1 m1));
ins_cost(INSN_COST);
format %{ "eon $dst, $src1, zr" %}
ins_encode %{
__ eon(as_Register($dst$$reg),
as_Register($src1$$reg),
zr,
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg);
%}
instruct regI_not_reg(iRegINoSp dst,
iRegIorL2I src1, immI_M1 m1,
rFlagsReg cr) %{
match(Set dst (XorI src1 m1));
ins_cost(INSN_COST);
format %{ "eonw $dst, $src1, zr" %}
ins_encode %{
__ eonw(as_Register($dst$$reg),
as_Register($src1$$reg),
zr,
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg);
%}
instruct AndI_reg_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1,
rFlagsReg cr) %{
match(Set dst (AndI src1 (XorI src2 m1)));
ins_cost(INSN_COST);
format %{ "bicw $dst, $src1, $src2" %}
ins_encode %{
__ bicw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AndL_reg_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2, immL_M1 m1,
rFlagsReg cr) %{
match(Set dst (AndL src1 (XorL src2 m1)));
ins_cost(INSN_COST);
format %{ "bic $dst, $src1, $src2" %}
ins_encode %{
__ bic(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg_reg);
%}
instruct OrI_reg_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1,
rFlagsReg cr) %{
match(Set dst (OrI src1 (XorI src2 m1)));
ins_cost(INSN_COST);
format %{ "ornw $dst, $src1, $src2" %}
ins_encode %{
__ ornw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg_reg);
%}
instruct OrL_reg_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2, immL_M1 m1,
rFlagsReg cr) %{
match(Set dst (OrL src1 (XorL src2 m1)));
ins_cost(INSN_COST);
format %{ "orn $dst, $src1, $src2" %}
ins_encode %{
__ orn(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg_reg);
%}
instruct XorI_reg_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1,
rFlagsReg cr) %{
match(Set dst (XorI m1 (XorI src2 src1)));
ins_cost(INSN_COST);
format %{ "eonw $dst, $src1, $src2" %}
ins_encode %{
__ eonw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg_reg);
%}
instruct XorL_reg_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2, immL_M1 m1,
rFlagsReg cr) %{
match(Set dst (XorL m1 (XorL src2 src1)));
ins_cost(INSN_COST);
format %{ "eon $dst, $src1, $src2" %}
ins_encode %{
__ eon(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL, 0);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AndI_reg_URShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (AndI src1 (XorI(URShiftI src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "bicw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ bicw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndL_reg_URShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (AndL src1 (XorL(URShiftL src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "bic $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ bic(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndI_reg_RShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (AndI src1 (XorI(RShiftI src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "bicw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ bicw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndL_reg_RShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (AndL src1 (XorL(RShiftL src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "bic $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ bic(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndI_reg_LShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (AndI src1 (XorI(LShiftI src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "bicw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ bicw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndL_reg_LShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (AndL src1 (XorL(LShiftL src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "bic $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ bic(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorI_reg_URShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (XorI src4 (XorI(URShiftI src2 src3) src1)));
ins_cost(1.9 * INSN_COST);
format %{ "eonw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ eonw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorL_reg_URShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (XorL src4 (XorL(URShiftL src2 src3) src1)));
ins_cost(1.9 * INSN_COST);
format %{ "eon $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ eon(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorI_reg_RShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (XorI src4 (XorI(RShiftI src2 src3) src1)));
ins_cost(1.9 * INSN_COST);
format %{ "eonw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ eonw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorL_reg_RShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (XorL src4 (XorL(RShiftL src2 src3) src1)));
ins_cost(1.9 * INSN_COST);
format %{ "eon $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ eon(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorI_reg_LShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (XorI src4 (XorI(LShiftI src2 src3) src1)));
ins_cost(1.9 * INSN_COST);
format %{ "eonw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ eonw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorL_reg_LShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (XorL src4 (XorL(LShiftL src2 src3) src1)));
ins_cost(1.9 * INSN_COST);
format %{ "eon $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ eon(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrI_reg_URShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (OrI src1 (XorI(URShiftI src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "ornw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ ornw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrL_reg_URShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (OrL src1 (XorL(URShiftL src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "orn $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ orn(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrI_reg_RShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (OrI src1 (XorI(RShiftI src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "ornw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ ornw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrL_reg_RShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (OrL src1 (XorL(RShiftL src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "orn $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ orn(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrI_reg_LShift_not_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, immI_M1 src4, rFlagsReg cr) %{
match(Set dst (OrI src1 (XorI(LShiftI src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "ornw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ ornw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrL_reg_LShift_not_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, immL_M1 src4, rFlagsReg cr) %{
match(Set dst (OrL src1 (XorL(LShiftL src2 src3) src4)));
ins_cost(1.9 * INSN_COST);
format %{ "orn $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ orn(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndI_reg_URShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AndI src1 (URShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "andw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ andw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndL_reg_URShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AndL src1 (URShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "andr $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ andr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndI_reg_RShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AndI src1 (RShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "andw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ andw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndL_reg_RShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AndL src1 (RShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "andr $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ andr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndI_reg_LShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AndI src1 (LShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "andw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ andw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AndL_reg_LShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AndL src1 (LShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "andr $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ andr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorI_reg_URShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (XorI src1 (URShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "eorw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ eorw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorL_reg_URShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (XorL src1 (URShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "eor $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ eor(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorI_reg_RShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (XorI src1 (RShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "eorw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ eorw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorL_reg_RShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (XorL src1 (RShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "eor $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ eor(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorI_reg_LShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (XorI src1 (LShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "eorw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ eorw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct XorL_reg_LShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (XorL src1 (LShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "eor $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ eor(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrI_reg_URShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (OrI src1 (URShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "orrw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ orrw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrL_reg_URShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (OrL src1 (URShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "orr $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ orr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrI_reg_RShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (OrI src1 (RShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "orrw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ orrw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrL_reg_RShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (OrL src1 (RShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "orr $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ orr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrI_reg_LShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (OrI src1 (LShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "orrw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ orrw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct OrL_reg_LShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (OrL src1 (LShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "orr $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ orr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AddI_reg_URShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AddI src1 (URShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "addw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ addw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AddL_reg_URShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AddL src1 (URShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "add $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AddI_reg_RShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AddI src1 (RShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "addw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ addw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AddL_reg_RShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AddL src1 (RShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "add $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AddI_reg_LShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AddI src1 (LShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "addw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ addw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct AddL_reg_LShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (AddL src1 (LShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "add $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ add(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct SubI_reg_URShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (SubI src1 (URShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "subw $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ subw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct SubL_reg_URShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (SubL src1 (URShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "sub $dst, $src1, $src2, LSR $src3" %}
ins_encode %{
__ sub(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct SubI_reg_RShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (SubI src1 (RShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "subw $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ subw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct SubL_reg_RShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (SubL src1 (RShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "sub $dst, $src1, $src2, ASR $src3" %}
ins_encode %{
__ sub(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::ASR,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct SubI_reg_LShift_reg(iRegINoSp dst,
iRegIorL2I src1, iRegIorL2I src2,
immI src3, rFlagsReg cr) %{
match(Set dst (SubI src1 (LShiftI src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "subw $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ subw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x1f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
instruct SubL_reg_LShift_reg(iRegLNoSp dst,
iRegL src1, iRegL src2,
immI src3, rFlagsReg cr) %{
match(Set dst (SubL src1 (LShiftL src2 src3)));
ins_cost(1.9 * INSN_COST);
format %{ "sub $dst, $src1, $src2, LSL $src3" %}
ins_encode %{
__ sub(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LSL,
$src3$$constant & 0x3f);
%}
ins_pipe(ialu_reg_reg_shift);
%}
// Shift Left followed by Shift Right.
// This idiom is used by the compiler for the i2b bytecode etc.
instruct sbfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
%{
match(Set dst (RShiftL (LShiftL src lshift_count) rshift_count));
// Make sure we are not going to exceed what sbfm can do.
predicate((unsigned int)n->in(2)->get_int() <= 63
&& (unsigned int)n->in(1)->in(2)->get_int() <= 63);
ins_cost(INSN_COST * 2);
format %{ "sbfm $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
ins_encode %{
int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
int s = 63 - lshift;
int r = (rshift - lshift) & 63;
__ sbfm(as_Register($dst$$reg),
as_Register($src$$reg),
r, s);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Left followed by Shift Right.
// This idiom is used by the compiler for the i2b bytecode etc.
instruct sbfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
%{
match(Set dst (RShiftI (LShiftI src lshift_count) rshift_count));
// Make sure we are not going to exceed what sbfmw can do.
predicate((unsigned int)n->in(2)->get_int() <= 31
&& (unsigned int)n->in(1)->in(2)->get_int() <= 31);
ins_cost(INSN_COST * 2);
format %{ "sbfmw $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
ins_encode %{
int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
int s = 31 - lshift;
int r = (rshift - lshift) & 31;
__ sbfmw(as_Register($dst$$reg),
as_Register($src$$reg),
r, s);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Left followed by Shift Right.
// This idiom is used by the compiler for the i2b bytecode etc.
instruct ubfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
%{
match(Set dst (URShiftL (LShiftL src lshift_count) rshift_count));
// Make sure we are not going to exceed what ubfm can do.
predicate((unsigned int)n->in(2)->get_int() <= 63
&& (unsigned int)n->in(1)->in(2)->get_int() <= 63);
ins_cost(INSN_COST * 2);
format %{ "ubfm $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
ins_encode %{
int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
int s = 63 - lshift;
int r = (rshift - lshift) & 63;
__ ubfm(as_Register($dst$$reg),
as_Register($src$$reg),
r, s);
%}
ins_pipe(ialu_reg_shift);
%}
// Shift Left followed by Shift Right.
// This idiom is used by the compiler for the i2b bytecode etc.
instruct ubfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
%{
match(Set dst (URShiftI (LShiftI src lshift_count) rshift_count));
// Make sure we are not going to exceed what ubfmw can do.
predicate((unsigned int)n->in(2)->get_int() <= 31
&& (unsigned int)n->in(1)->in(2)->get_int() <= 31);
ins_cost(INSN_COST * 2);
format %{ "ubfmw $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
ins_encode %{
int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
int s = 31 - lshift;
int r = (rshift - lshift) & 31;
__ ubfmw(as_Register($dst$$reg),
as_Register($src$$reg),
r, s);
%}
ins_pipe(ialu_reg_shift);
%}
// Bitfield extract with shift & mask
instruct ubfxwI(iRegINoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
%{
match(Set dst (AndI (URShiftI src rshift) mask));
ins_cost(INSN_COST);
format %{ "ubfxw $dst, $src, $mask" %}
ins_encode %{
int rshift = $rshift$$constant;
long mask = $mask$$constant;
int width = exact_log2(mask+1);
__ ubfxw(as_Register($dst$$reg),
as_Register($src$$reg), rshift, width);
%}
ins_pipe(ialu_reg_shift);
%}
instruct ubfxL(iRegLNoSp dst, iRegL src, immI rshift, immL_bitmask mask)
%{
match(Set dst (AndL (URShiftL src rshift) mask));
ins_cost(INSN_COST);
format %{ "ubfx $dst, $src, $mask" %}
ins_encode %{
int rshift = $rshift$$constant;
long mask = $mask$$constant;
int width = exact_log2(mask+1);
__ ubfx(as_Register($dst$$reg),
as_Register($src$$reg), rshift, width);
%}
ins_pipe(ialu_reg_shift);
%}
// We can use ubfx when extending an And with a mask when we know mask
// is positive. We know that because immI_bitmask guarantees it.
instruct ubfxIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
%{
match(Set dst (ConvI2L (AndI (URShiftI src rshift) mask)));
ins_cost(INSN_COST * 2);
format %{ "ubfx $dst, $src, $mask" %}
ins_encode %{
int rshift = $rshift$$constant;
long mask = $mask$$constant;
int width = exact_log2(mask+1);
__ ubfx(as_Register($dst$$reg),
as_Register($src$$reg), rshift, width);
%}
ins_pipe(ialu_reg_shift);
%}
// Rotations
instruct extrOrL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
%{
match(Set dst (OrL (LShiftL src1 lshift) (URShiftL src2 rshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 63));
ins_cost(INSN_COST);
format %{ "extr $dst, $src1, $src2, #$rshift" %}
ins_encode %{
__ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
$rshift$$constant & 63);
%}
ins_pipe(ialu_reg_reg_extr);
%}
instruct extrOrI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
%{
match(Set dst (OrI (LShiftI src1 lshift) (URShiftI src2 rshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 31));
ins_cost(INSN_COST);
format %{ "extr $dst, $src1, $src2, #$rshift" %}
ins_encode %{
__ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
$rshift$$constant & 31);
%}
ins_pipe(ialu_reg_reg_extr);
%}
instruct extrAddL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
%{
match(Set dst (AddL (LShiftL src1 lshift) (URShiftL src2 rshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 63));
ins_cost(INSN_COST);
format %{ "extr $dst, $src1, $src2, #$rshift" %}
ins_encode %{
__ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
$rshift$$constant & 63);
%}
ins_pipe(ialu_reg_reg_extr);
%}
instruct extrAddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
%{
match(Set dst (AddI (LShiftI src1 lshift) (URShiftI src2 rshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 31));
ins_cost(INSN_COST);
format %{ "extr $dst, $src1, $src2, #$rshift" %}
ins_encode %{
__ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
$rshift$$constant & 31);
%}
ins_pipe(ialu_reg_reg_extr);
%}
// rol expander
instruct rolL_rReg(iRegLNoSp dst, iRegL src, iRegI shift, rFlagsReg cr)
%{
effect(DEF dst, USE src, USE shift);
format %{ "rol $dst, $src, $shift" %}
ins_cost(INSN_COST * 3);
ins_encode %{
__ subw(rscratch1, zr, as_Register($shift$$reg));
__ rorv(as_Register($dst$$reg), as_Register($src$$reg),
rscratch1);
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// rol expander
instruct rolI_rReg(iRegINoSp dst, iRegI src, iRegI shift, rFlagsReg cr)
%{
effect(DEF dst, USE src, USE shift);
format %{ "rol $dst, $src, $shift" %}
ins_cost(INSN_COST * 3);
ins_encode %{
__ subw(rscratch1, zr, as_Register($shift$$reg));
__ rorvw(as_Register($dst$$reg), as_Register($src$$reg),
rscratch1);
%}
ins_pipe(ialu_reg_reg_vshift);
%}
instruct rolL_rReg_Var_C_64(iRegLNoSp dst, iRegL src, iRegI shift, immI_64 c_64, rFlagsReg cr)
%{
match(Set dst (OrL (LShiftL src shift) (URShiftL src (SubI c_64 shift))));
expand %{
rolL_rReg(dst, src, shift, cr);
%}
%}
instruct rolL_rReg_Var_C0(iRegLNoSp dst, iRegL src, iRegI shift, immI0 c0, rFlagsReg cr)
%{
match(Set dst (OrL (LShiftL src shift) (URShiftL src (SubI c0 shift))));
expand %{
rolL_rReg(dst, src, shift, cr);
%}
%}
instruct rolI_rReg_Var_C_32(iRegINoSp dst, iRegI src, iRegI shift, immI_32 c_32, rFlagsReg cr)
%{
match(Set dst (OrI (LShiftI src shift) (URShiftI src (SubI c_32 shift))));
expand %{
rolI_rReg(dst, src, shift, cr);
%}
%}
instruct rolI_rReg_Var_C0(iRegINoSp dst, iRegI src, iRegI shift, immI0 c0, rFlagsReg cr)
%{
match(Set dst (OrI (LShiftI src shift) (URShiftI src (SubI c0 shift))));
expand %{
rolI_rReg(dst, src, shift, cr);
%}
%}
// ror expander
instruct rorL_rReg(iRegLNoSp dst, iRegL src, iRegI shift, rFlagsReg cr)
%{
effect(DEF dst, USE src, USE shift);
format %{ "ror $dst, $src, $shift" %}
ins_cost(INSN_COST);
ins_encode %{
__ rorv(as_Register($dst$$reg), as_Register($src$$reg),
as_Register($shift$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
// ror expander
instruct rorI_rReg(iRegINoSp dst, iRegI src, iRegI shift, rFlagsReg cr)
%{
effect(DEF dst, USE src, USE shift);
format %{ "ror $dst, $src, $shift" %}
ins_cost(INSN_COST);
ins_encode %{
__ rorvw(as_Register($dst$$reg), as_Register($src$$reg),
as_Register($shift$$reg));
%}
ins_pipe(ialu_reg_reg_vshift);
%}
instruct rorL_rReg_Var_C_64(iRegLNoSp dst, iRegL src, iRegI shift, immI_64 c_64, rFlagsReg cr)
%{
match(Set dst (OrL (URShiftL src shift) (LShiftL src (SubI c_64 shift))));
expand %{
rorL_rReg(dst, src, shift, cr);
%}
%}
instruct rorL_rReg_Var_C0(iRegLNoSp dst, iRegL src, iRegI shift, immI0 c0, rFlagsReg cr)
%{
match(Set dst (OrL (URShiftL src shift) (LShiftL src (SubI c0 shift))));
expand %{
rorL_rReg(dst, src, shift, cr);
%}
%}
instruct rorI_rReg_Var_C_32(iRegINoSp dst, iRegI src, iRegI shift, immI_32 c_32, rFlagsReg cr)
%{
match(Set dst (OrI (URShiftI src shift) (LShiftI src (SubI c_32 shift))));
expand %{
rorI_rReg(dst, src, shift, cr);
%}
%}
instruct rorI_rReg_Var_C0(iRegINoSp dst, iRegI src, iRegI shift, immI0 c0, rFlagsReg cr)
%{
match(Set dst (OrI (URShiftI src shift) (LShiftI src (SubI c0 shift))));
expand %{
rorI_rReg(dst, src, shift, cr);
%}
%}
// Add/subtract (extended)
instruct AddExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
%{
match(Set dst (AddL src1 (ConvI2L src2)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, sxtw $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxtw);
%}
ins_pipe(ialu_reg_reg);
%};
instruct SubExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
%{
match(Set dst (SubL src1 (ConvI2L src2)));
ins_cost(INSN_COST);
format %{ "sub $dst, $src1, sxtw $src2" %}
ins_encode %{
__ sub(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxtw);
%}
ins_pipe(ialu_reg_reg);
%};
instruct AddExtI_sxth(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_16 lshift, immI_16 rshift, rFlagsReg cr)
%{
match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, sxth $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxth);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtI_sxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
%{
match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, sxtb $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtI_uxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
%{
match(Set dst (AddI src1 (URShiftI (LShiftI src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, uxtb $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_sxth(iRegLNoSp dst, iRegL src1, iRegL src2, immI_48 lshift, immI_48 rshift, rFlagsReg cr)
%{
match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, sxth $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxth);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_sxtw(iRegLNoSp dst, iRegL src1, iRegL src2, immI_32 lshift, immI_32 rshift, rFlagsReg cr)
%{
match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, sxtw $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxtw);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_sxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
%{
match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, sxtb $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::sxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_uxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
%{
match(Set dst (AddL src1 (URShiftL (LShiftL src2 lshift) rshift)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, uxtb $src2" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
%{
match(Set dst (AddI src1 (AndI src2 mask)));
ins_cost(INSN_COST);
format %{ "addw $dst, $src1, $src2, uxtb" %}
ins_encode %{
__ addw(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
%{
match(Set dst (AddI src1 (AndI src2 mask)));
ins_cost(INSN_COST);
format %{ "addw $dst, $src1, $src2, uxth" %}
ins_encode %{
__ addw(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxth);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
%{
match(Set dst (AddL src1 (AndL src2 mask)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2, uxtb" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
%{
match(Set dst (AddL src1 (AndL src2 mask)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2, uxth" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxth);
%}
ins_pipe(ialu_reg_reg);
%}
instruct AddExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
%{
match(Set dst (AddL src1 (AndL src2 mask)));
ins_cost(INSN_COST);
format %{ "add $dst, $src1, $src2, uxtw" %}
ins_encode %{
__ add(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtw);
%}
ins_pipe(ialu_reg_reg);
%}
instruct SubExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
%{
match(Set dst (SubI src1 (AndI src2 mask)));
ins_cost(INSN_COST);
format %{ "subw $dst, $src1, $src2, uxtb" %}
ins_encode %{
__ subw(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct SubExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
%{
match(Set dst (SubI src1 (AndI src2 mask)));
ins_cost(INSN_COST);
format %{ "subw $dst, $src1, $src2, uxth" %}
ins_encode %{
__ subw(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxth);
%}
ins_pipe(ialu_reg_reg);
%}
instruct SubExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
%{
match(Set dst (SubL src1 (AndL src2 mask)));
ins_cost(INSN_COST);
format %{ "sub $dst, $src1, $src2, uxtb" %}
ins_encode %{
__ sub(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtb);
%}
ins_pipe(ialu_reg_reg);
%}
instruct SubExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
%{
match(Set dst (SubL src1 (AndL src2 mask)));
ins_cost(INSN_COST);
format %{ "sub $dst, $src1, $src2, uxth" %}
ins_encode %{
__ sub(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxth);
%}
ins_pipe(ialu_reg_reg);
%}
instruct SubExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
%{
match(Set dst (SubL src1 (AndL src2 mask)));
ins_cost(INSN_COST);
format %{ "sub $dst, $src1, $src2, uxtw" %}
ins_encode %{
__ sub(as_Register($dst$$reg), as_Register($src1$$reg),
as_Register($src2$$reg), ext::uxtw);
%}
ins_pipe(ialu_reg_reg);
%}
// END This section of the file is automatically generated. Do not edit --------------
// ============================================================================
// Floating Point Arithmetic Instructions
instruct addF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
match(Set dst (AddF src1 src2));
ins_cost(INSN_COST * 5);
format %{ "fadds $dst, $src1, $src2" %}
ins_encode %{
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_dop_reg_reg_s);
%}
instruct addD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
match(Set dst (AddD src1 src2));
ins_cost(INSN_COST * 5);
format %{ "faddd $dst, $src1, $src2" %}
ins_encode %{
__ faddd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_dop_reg_reg_d);
%}
instruct subF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
match(Set dst (SubF src1 src2));
ins_cost(INSN_COST * 5);
format %{ "fsubs $dst, $src1, $src2" %}
ins_encode %{
__ fsubs(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_dop_reg_reg_s);
%}
instruct subD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
match(Set dst (SubD src1 src2));
ins_cost(INSN_COST * 5);
format %{ "fsubd $dst, $src1, $src2" %}
ins_encode %{
__ fsubd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_dop_reg_reg_d);
%}
instruct mulF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
match(Set dst (MulF src1 src2));
ins_cost(INSN_COST * 6);
format %{ "fmuls $dst, $src1, $src2" %}
ins_encode %{
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_dop_reg_reg_s);
%}
instruct mulD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
match(Set dst (MulD src1 src2));
ins_cost(INSN_COST * 6);
format %{ "fmuld $dst, $src1, $src2" %}
ins_encode %{
__ fmuld(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_dop_reg_reg_d);
%}
// src1 * src2 + src3
instruct maddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
predicate(UseFMA);
match(Set dst (FmaF src3 (Binary src1 src2)));
format %{ "fmadds $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fmadds(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// src1 * src2 + src3
instruct maddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
predicate(UseFMA);
match(Set dst (FmaD src3 (Binary src1 src2)));
format %{ "fmaddd $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fmaddd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// -src1 * src2 + src3
instruct msubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
predicate(UseFMA);
match(Set dst (FmaF src3 (Binary (NegF src1) src2)));
match(Set dst (FmaF src3 (Binary src1 (NegF src2))));
format %{ "fmsubs $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fmsubs(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// -src1 * src2 + src3
instruct msubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
predicate(UseFMA);
match(Set dst (FmaD src3 (Binary (NegD src1) src2)));
match(Set dst (FmaD src3 (Binary src1 (NegD src2))));
format %{ "fmsubd $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fmsubd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// -src1 * src2 - src3
instruct mnaddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
predicate(UseFMA);
match(Set dst (FmaF (NegF src3) (Binary (NegF src1) src2)));
match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2))));
format %{ "fnmadds $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fnmadds(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// -src1 * src2 - src3
instruct mnaddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
predicate(UseFMA);
match(Set dst (FmaD (NegD src3) (Binary (NegD src1) src2)));
match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2))));
format %{ "fnmaddd $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fnmaddd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// src1 * src2 - src3
instruct mnsubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3, immF0 zero) %{
predicate(UseFMA);
match(Set dst (FmaF (NegF src3) (Binary src1 src2)));
format %{ "fnmsubs $dst, $src1, $src2, $src3" %}
ins_encode %{
__ fnmsubs(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
// src1 * src2 - src3
instruct mnsubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3, immD0 zero) %{
predicate(UseFMA);
match(Set dst (FmaD (NegD src3) (Binary src1 src2)));
format %{ "fnmsubd $dst, $src1, $src2, $src3" %}
ins_encode %{
// n.b. insn name should be fnmsubd
__ fnmsub(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg),
as_FloatRegister($src3$$reg));
%}
ins_pipe(pipe_class_default);
%}
instruct divF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
match(Set dst (DivF src1 src2));
ins_cost(INSN_COST * 18);
format %{ "fdivs $dst, $src1, $src2" %}
ins_encode %{
__ fdivs(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_div_s);
%}
instruct divD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
match(Set dst (DivD src1 src2));
ins_cost(INSN_COST * 32);
format %{ "fdivd $dst, $src1, $src2" %}
ins_encode %{
__ fdivd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(fp_div_d);
%}
instruct negF_reg_reg(vRegF dst, vRegF src) %{
match(Set dst (NegF src));
ins_cost(INSN_COST * 3);
format %{ "fneg $dst, $src" %}
ins_encode %{
__ fnegs(as_FloatRegister($dst$$reg),
as_FloatRegister($src$$reg));
%}
ins_pipe(fp_uop_s);
%}
instruct negD_reg_reg(vRegD dst, vRegD src) %{
match(Set dst (NegD src));
ins_cost(INSN_COST * 3);
format %{ "fnegd $dst, $src" %}
ins_encode %{
__ fnegd(as_FloatRegister($dst$$reg),
as_FloatRegister($src$$reg));
%}
ins_pipe(fp_uop_d);
%}
instruct absF_reg(vRegF dst, vRegF src) %{
match(Set dst (AbsF src));
ins_cost(INSN_COST * 3);
format %{ "fabss $dst, $src" %}
ins_encode %{
__ fabss(as_FloatRegister($dst$$reg),
as_FloatRegister($src$$reg));
%}
ins_pipe(fp_uop_s);
%}
instruct absD_reg(vRegD dst, vRegD src) %{
match(Set dst (AbsD src));
ins_cost(INSN_COST * 3);
format %{ "fabsd $dst, $src" %}
ins_encode %{
__ fabsd(as_FloatRegister($dst$$reg),
as_FloatRegister($src$$reg));
%}
ins_pipe(fp_uop_d);
%}
instruct sqrtD_reg(vRegD dst, vRegD src) %{
match(Set dst (SqrtD src));
ins_cost(INSN_COST * 50);
format %{ "fsqrtd $dst, $src" %}
ins_encode %{
__ fsqrtd(as_FloatRegister($dst$$reg),
as_FloatRegister($src$$reg));
%}
ins_pipe(fp_div_s);
%}
instruct sqrtF_reg(vRegF dst, vRegF src) %{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
ins_cost(INSN_COST * 50);
format %{ "fsqrts $dst, $src" %}
ins_encode %{
__ fsqrts(as_FloatRegister($dst$$reg),
as_FloatRegister($src$$reg));
%}
ins_pipe(fp_div_d);
%}
// ============================================================================
// Logical Instructions
// Integer Logical Instructions
// And Instructions
instruct andI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, rFlagsReg cr) %{
match(Set dst (AndI src1 src2));
format %{ "andw $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ andw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct andI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2, rFlagsReg cr) %{
match(Set dst (AndI src1 src2));
format %{ "andsw $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ andw(as_Register($dst$$reg),
as_Register($src1$$reg),
(unsigned long)($src2$$constant));
%}
ins_pipe(ialu_reg_imm);
%}
// Or Instructions
instruct orI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (OrI src1 src2));
format %{ "orrw $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ orrw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct orI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
match(Set dst (OrI src1 src2));
format %{ "orrw $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ orrw(as_Register($dst$$reg),
as_Register($src1$$reg),
(unsigned long)($src2$$constant));
%}
ins_pipe(ialu_reg_imm);
%}
// Xor Instructions
instruct xorI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
match(Set dst (XorI src1 src2));
format %{ "eorw $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ eorw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct xorI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
match(Set dst (XorI src1 src2));
format %{ "eorw $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ eorw(as_Register($dst$$reg),
as_Register($src1$$reg),
(unsigned long)($src2$$constant));
%}
ins_pipe(ialu_reg_imm);
%}
// Long Logical Instructions
// TODO
instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) %{
match(Set dst (AndL src1 src2));
format %{ "and $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ andr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2, rFlagsReg cr) %{
match(Set dst (AndL src1 src2));
format %{ "and $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ andr(as_Register($dst$$reg),
as_Register($src1$$reg),
(unsigned long)($src2$$constant));
%}
ins_pipe(ialu_reg_imm);
%}
// Or Instructions
instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (OrL src1 src2));
format %{ "orr $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ orr(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
match(Set dst (OrL src1 src2));
format %{ "orr $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ orr(as_Register($dst$$reg),
as_Register($src1$$reg),
(unsigned long)($src2$$constant));
%}
ins_pipe(ialu_reg_imm);
%}
// Xor Instructions
instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
match(Set dst (XorL src1 src2));
format %{ "eor $dst, $src1, $src2\t# int" %}
ins_cost(INSN_COST);
ins_encode %{
__ eor(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
match(Set dst (XorL src1 src2));
ins_cost(INSN_COST);
format %{ "eor $dst, $src1, $src2\t# int" %}
ins_encode %{
__ eor(as_Register($dst$$reg),
as_Register($src1$$reg),
(unsigned long)($src2$$constant));
%}
ins_pipe(ialu_reg_imm);
%}
instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
%{
match(Set dst (ConvI2L src));
ins_cost(INSN_COST);
format %{ "sxtw $dst, $src\t# i2l" %}
ins_encode %{
__ sbfm($dst$$Register, $src$$Register, 0, 31);
%}
ins_pipe(ialu_reg_shift);
%}
// this pattern occurs in bigmath arithmetic
instruct convUI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
%{
match(Set dst (AndL (ConvI2L src) mask));
ins_cost(INSN_COST);
format %{ "ubfm $dst, $src, 0, 31\t# ui2l" %}
ins_encode %{
__ ubfm($dst$$Register, $src$$Register, 0, 31);
%}
ins_pipe(ialu_reg_shift);
%}
instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
match(Set dst (ConvL2I src));
ins_cost(INSN_COST);
format %{ "movw $dst, $src \t// l2i" %}
ins_encode %{
__ movw(as_Register($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(ialu_reg);
%}
instruct convI2B(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr)
%{
match(Set dst (Conv2B src));
effect(KILL cr);
format %{
"cmpw $src, zr\n\t"
"cset $dst, ne"
%}
ins_encode %{
__ cmpw(as_Register($src$$reg), zr);
__ cset(as_Register($dst$$reg), Assembler::NE);
%}
ins_pipe(ialu_reg);
%}
instruct convP2B(iRegINoSp dst, iRegP src, rFlagsReg cr)
%{
match(Set dst (Conv2B src));
effect(KILL cr);
format %{
"cmp $src, zr\n\t"
"cset $dst, ne"
%}
ins_encode %{
__ cmp(as_Register($src$$reg), zr);
__ cset(as_Register($dst$$reg), Assembler::NE);
%}
ins_pipe(ialu_reg);
%}
instruct convD2F_reg(vRegF dst, vRegD src) %{
match(Set dst (ConvD2F src));
ins_cost(INSN_COST * 5);
format %{ "fcvtd $dst, $src \t// d2f" %}
ins_encode %{
__ fcvtd(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
%}
ins_pipe(fp_d2f);
%}
instruct convF2D_reg(vRegD dst, vRegF src) %{
match(Set dst (ConvF2D src));
ins_cost(INSN_COST * 5);
format %{ "fcvts $dst, $src \t// f2d" %}
ins_encode %{
__ fcvts(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
%}
ins_pipe(fp_f2d);
%}
instruct convF2I_reg_reg(iRegINoSp dst, vRegF src) %{
match(Set dst (ConvF2I src));
ins_cost(INSN_COST * 5);
format %{ "fcvtzsw $dst, $src \t// f2i" %}
ins_encode %{
__ fcvtzsw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
%}
ins_pipe(fp_f2i);
%}
instruct convF2L_reg_reg(iRegLNoSp dst, vRegF src) %{
match(Set dst (ConvF2L src));
ins_cost(INSN_COST * 5);
format %{ "fcvtzs $dst, $src \t// f2l" %}
ins_encode %{
__ fcvtzs(as_Register($dst$$reg), as_FloatRegister($src$$reg));
%}
ins_pipe(fp_f2l);
%}
instruct convI2F_reg_reg(vRegF dst, iRegIorL2I src) %{
match(Set dst (ConvI2F src));
ins_cost(INSN_COST * 5);
format %{ "scvtfws $dst, $src \t// i2f" %}
ins_encode %{
__ scvtfws(as_FloatRegister($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(fp_i2f);
%}
instruct convL2F_reg_reg(vRegF dst, iRegL src) %{
match(Set dst (ConvL2F src));
ins_cost(INSN_COST * 5);
format %{ "scvtfs $dst, $src \t// l2f" %}
ins_encode %{
__ scvtfs(as_FloatRegister($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(fp_l2f);
%}
instruct convD2I_reg_reg(iRegINoSp dst, vRegD src) %{
match(Set dst (ConvD2I src));
ins_cost(INSN_COST * 5);
format %{ "fcvtzdw $dst, $src \t// d2i" %}
ins_encode %{
__ fcvtzdw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
%}
ins_pipe(fp_d2i);
%}
instruct convD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
match(Set dst (ConvD2L src));
ins_cost(INSN_COST * 5);
format %{ "fcvtzd $dst, $src \t// d2l" %}
ins_encode %{
__ fcvtzd(as_Register($dst$$reg), as_FloatRegister($src$$reg));
%}
ins_pipe(fp_d2l);
%}
instruct convI2D_reg_reg(vRegD dst, iRegIorL2I src) %{
match(Set dst (ConvI2D src));
ins_cost(INSN_COST * 5);
format %{ "scvtfwd $dst, $src \t// i2d" %}
ins_encode %{
__ scvtfwd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(fp_i2d);
%}
instruct convL2D_reg_reg(vRegD dst, iRegL src) %{
match(Set dst (ConvL2D src));
ins_cost(INSN_COST * 5);
format %{ "scvtfd $dst, $src \t// l2d" %}
ins_encode %{
__ scvtfd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
%}
ins_pipe(fp_l2d);
%}
// stack <-> reg and reg <-> reg shuffles with no conversion
instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(4 * INSN_COST);
format %{ "ldrw $dst, $src\t# MoveF2I_stack_reg" %}
ins_encode %{
__ ldrw($dst$$Register, Address(sp, $src$$disp));
%}
ins_pipe(iload_reg_reg);
%}
instruct MoveI2F_stack_reg(vRegF dst, stackSlotI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(4 * INSN_COST);
format %{ "ldrs $dst, $src\t# MoveI2F_stack_reg" %}
ins_encode %{
__ ldrs(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
%}
ins_pipe(pipe_class_memory);
%}
instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(4 * INSN_COST);
format %{ "ldr $dst, $src\t# MoveD2L_stack_reg" %}
ins_encode %{
__ ldr($dst$$Register, Address(sp, $src$$disp));
%}
ins_pipe(iload_reg_reg);
%}
instruct MoveL2D_stack_reg(vRegD dst, stackSlotL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(4 * INSN_COST);
format %{ "ldrd $dst, $src\t# MoveL2D_stack_reg" %}
ins_encode %{
__ ldrd(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
%}
ins_pipe(pipe_class_memory);
%}
instruct MoveF2I_reg_stack(stackSlotI dst, vRegF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "strs $src, $dst\t# MoveF2I_reg_stack" %}
ins_encode %{
__ strs(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
%}
ins_pipe(pipe_class_memory);
%}
instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "strw $src, $dst\t# MoveI2F_reg_stack" %}
ins_encode %{
__ strw($src$$Register, Address(sp, $dst$$disp));
%}
ins_pipe(istore_reg_reg);
%}
instruct MoveD2L_reg_stack(stackSlotL dst, vRegD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "strd $dst, $src\t# MoveD2L_reg_stack" %}
ins_encode %{
__ strd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
%}
ins_pipe(pipe_class_memory);
%}
instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "str $src, $dst\t# MoveL2D_reg_stack" %}
ins_encode %{
__ str($src$$Register, Address(sp, $dst$$disp));
%}
ins_pipe(istore_reg_reg);
%}
instruct MoveF2I_reg_reg(iRegINoSp dst, vRegF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "fmovs $dst, $src\t# MoveF2I_reg_reg" %}
ins_encode %{
__ fmovs($dst$$Register, as_FloatRegister($src$$reg));
%}
ins_pipe(fp_f2i);
%}
instruct MoveI2F_reg_reg(vRegF dst, iRegI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "fmovs $dst, $src\t# MoveI2F_reg_reg" %}
ins_encode %{
__ fmovs(as_FloatRegister($dst$$reg), $src$$Register);
%}
ins_pipe(fp_i2f);
%}
instruct MoveD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "fmovd $dst, $src\t# MoveD2L_reg_reg" %}
ins_encode %{
__ fmovd($dst$$Register, as_FloatRegister($src$$reg));
%}
ins_pipe(fp_d2l);
%}
instruct MoveL2D_reg_reg(vRegD dst, iRegL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(INSN_COST);
format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
ins_encode %{
__ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
%}
ins_pipe(fp_l2d);
%}
// ============================================================================
// clearing of an array
instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
%{
match(Set dummy (ClearArray cnt base));
effect(USE_KILL cnt, USE_KILL base);
ins_cost(4 * INSN_COST);
format %{ "ClearArray $cnt, $base" %}
ins_encode %{
__ zero_words($base$$Register, $cnt$$Register);
%}
ins_pipe(pipe_class_memory);
%}
instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 tmp, Universe dummy, rFlagsReg cr)
%{
match(Set dummy (ClearArray cnt base));
effect(USE_KILL base, TEMP tmp);
ins_cost(4 * INSN_COST);
format %{ "ClearArray $cnt, $base" %}
ins_encode %{
__ zero_words($base$$Register, (u_int64_t)$cnt$$constant);
%}
ins_pipe(pipe_class_memory);
%}
// ============================================================================
// Overflow Math Instructions
instruct overflowAddI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
%{
match(Set cr (OverflowAddI op1 op2));
format %{ "cmnw $op1, $op2\t# overflow check int" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmnw($op1$$Register, $op2$$Register);
%}
ins_pipe(icmp_reg_reg);
%}
instruct overflowAddI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
%{
match(Set cr (OverflowAddI op1 op2));
format %{ "cmnw $op1, $op2\t# overflow check int" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmnw($op1$$Register, $op2$$constant);
%}
ins_pipe(icmp_reg_imm);
%}
instruct overflowAddL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
%{
match(Set cr (OverflowAddL op1 op2));
format %{ "cmn $op1, $op2\t# overflow check long" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmn($op1$$Register, $op2$$Register);
%}
ins_pipe(icmp_reg_reg);
%}
instruct overflowAddL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
%{
match(Set cr (OverflowAddL op1 op2));
format %{ "cmn $op1, $op2\t# overflow check long" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmn($op1$$Register, $op2$$constant);
%}
ins_pipe(icmp_reg_imm);
%}
instruct overflowSubI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
%{
match(Set cr (OverflowSubI op1 op2));
format %{ "cmpw $op1, $op2\t# overflow check int" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmpw($op1$$Register, $op2$$Register);
%}
ins_pipe(icmp_reg_reg);
%}
instruct overflowSubI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
%{
match(Set cr (OverflowSubI op1 op2));
format %{ "cmpw $op1, $op2\t# overflow check int" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmpw($op1$$Register, $op2$$constant);
%}
ins_pipe(icmp_reg_imm);
%}
instruct overflowSubL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
%{
match(Set cr (OverflowSubL op1 op2));
format %{ "cmp $op1, $op2\t# overflow check long" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmp($op1$$Register, $op2$$Register);
%}
ins_pipe(icmp_reg_reg);
%}
instruct overflowSubL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
%{
match(Set cr (OverflowSubL op1 op2));
format %{ "cmp $op1, $op2\t# overflow check long" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmp($op1$$Register, $op2$$constant);
%}
ins_pipe(icmp_reg_imm);
%}
instruct overflowNegI_reg(rFlagsReg cr, immI0 zero, iRegIorL2I op1)
%{
match(Set cr (OverflowSubI zero op1));
format %{ "cmpw zr, $op1\t# overflow check int" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmpw(zr, $op1$$Register);
%}
ins_pipe(icmp_reg_imm);
%}
instruct overflowNegL_reg(rFlagsReg cr, immI0 zero, iRegL op1)
%{
match(Set cr (OverflowSubL zero op1));
format %{ "cmp zr, $op1\t# overflow check long" %}
ins_cost(INSN_COST);
ins_encode %{
__ cmp(zr, $op1$$Register);
%}
ins_pipe(icmp_reg_imm);
%}
instruct overflowMulI_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
%{
match(Set cr (OverflowMulI op1 op2));
format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
"cmp rscratch1, rscratch1, sxtw\n\t"
"movw rscratch1, #0x80000000\n\t"
"cselw rscratch1, rscratch1, zr, NE\n\t"
"cmpw rscratch1, #1" %}
ins_cost(5 * INSN_COST);
ins_encode %{
__ smull(rscratch1, $op1$$Register, $op2$$Register);
__ subs(zr, rscratch1, rscratch1, ext::sxtw); // NE => overflow
__ movw(rscratch1, 0x80000000); // Develop 0 (EQ),
__ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
__ cmpw(rscratch1, 1); // 0x80000000 - 1 => VS
%}
ins_pipe(pipe_slow);
%}
instruct overflowMulI_reg_branch(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, label labl, rFlagsReg cr)
%{
match(If cmp (OverflowMulI op1 op2));
predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
|| n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
effect(USE labl, KILL cr);
format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
"cmp rscratch1, rscratch1, sxtw\n\t"
"b$cmp $labl" %}
ins_cost(3 * INSN_COST); // Branch is rare so treat as INSN_COST
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
__ smull(rscratch1, $op1$$Register, $op2$$Register);
__ subs(zr, rscratch1, rscratch1, ext::sxtw); // NE => overflow
__ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
%}
ins_pipe(pipe_serial);
%}
instruct overflowMulL_reg(rFlagsReg cr, iRegL op1, iRegL op2)
%{
match(Set cr (OverflowMulL op1 op2));
format %{ "mul rscratch1, $op1, $op2\t#overflow check long\n\t"
"smulh rscratch2, $op1, $op2\n\t"
"cmp rscratch2, rscratch1, ASR #63\n\t"
"movw rscratch1, #0x80000000\n\t"
"cselw rscratch1, rscratch1, zr, NE\n\t"
"cmpw rscratch1, #1" %}
ins_cost(6 * INSN_COST);
ins_encode %{
__ mul(rscratch1, $op1$$Register, $op2$$Register); // Result bits 0..63
__ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
__ cmp(rscratch2, rscratch1, Assembler::ASR, 63); // Top is pure sign ext
__ movw(rscratch1, 0x80000000); // Develop 0 (EQ),
__ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
__ cmpw(rscratch1, 1); // 0x80000000 - 1 => VS
%}
ins_pipe(pipe_slow);
%}
instruct overflowMulL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, rFlagsReg cr)
%{
match(If cmp (OverflowMulL op1 op2));
predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
|| n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
effect(USE labl, KILL cr);
format %{ "mul rscratch1, $op1, $op2\t#overflow check long\n\t"
"smulh rscratch2, $op1, $op2\n\t"
"cmp rscratch2, rscratch1, ASR #63\n\t"
"b$cmp $labl" %}
ins_cost(4 * INSN_COST); // Branch is rare so treat as INSN_COST
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
__ mul(rscratch1, $op1$$Register, $op2$$Register); // Result bits 0..63
__ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
__ cmp(rscratch2, rscratch1, Assembler::ASR, 63); // Top is pure sign ext
__ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
%}
ins_pipe(pipe_serial);
%}
// ============================================================================
// Compare Instructions
instruct compI_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
%{
match(Set cr (CmpI op1 op2));
effect(DEF cr, USE op1, USE op2);
ins_cost(INSN_COST);
format %{ "cmpw $op1, $op2" %}
ins_encode(aarch64_enc_cmpw(op1, op2));
ins_pipe(icmp_reg_reg);
%}
instruct compI_reg_immI0(rFlagsReg cr, iRegI op1, immI0 zero)
%{
match(Set cr (CmpI op1 zero));
effect(DEF cr, USE op1);
ins_cost(INSN_COST);
format %{ "cmpw $op1, 0" %}
ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
ins_pipe(icmp_reg_imm);
%}
instruct compI_reg_immIAddSub(rFlagsReg cr, iRegI op1, immIAddSub op2)
%{
match(Set cr (CmpI op1 op2));
effect(DEF cr, USE op1);
ins_cost(INSN_COST);
format %{ "cmpw $op1, $op2" %}
ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
ins_pipe(icmp_reg_imm);
%}
instruct compI_reg_immI(rFlagsReg cr, iRegI op1, immI op2)
%{
match(Set cr (CmpI op1 op2));
effect(DEF cr, USE op1);
ins_cost(INSN_COST * 2);
format %{ "cmpw $op1, $op2" %}
ins_encode(aarch64_enc_cmpw_imm(op1, op2));
ins_pipe(icmp_reg_imm);
%}
// Unsigned compare Instructions; really, same as signed compare
// except it should only be used to feed an If or a CMovI which takes a
// cmpOpU.
instruct compU_reg_reg(rFlagsRegU cr, iRegI op1, iRegI op2)
%{
match(Set cr (CmpU op1 op2));
effect(DEF cr, USE op1, USE op2);
ins_cost(INSN_COST);
format %{ "cmpw $op1, $op2\t# unsigned" %}
ins_encode(aarch64_enc_cmpw(op1, op2));
ins_pipe(icmp_reg_reg);
%}
instruct compU_reg_immI0(rFlagsRegU cr, iRegI op1, immI0 zero)
%{
match(Set cr (CmpU op1 zero));
effect(DEF cr, USE op1);
ins_cost(INSN_COST);
format %{ "cmpw $op1, #0\t# unsigned" %}
ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
ins_pipe(icmp_reg_imm);
%}
instruct compU_reg_immIAddSub(rFlagsRegU cr, iRegI op1, immIAddSub op2)
%{
match(Set cr (CmpU op1 op2));
effect(DEF cr, USE op1);
ins_cost(INSN_COST);
format %{ "cmpw $op1, $op2\t# unsigned" %}
ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
ins_pipe(icmp_reg_imm);
%}
instruct compU_reg_immI(rFlagsRegU cr, iRegI op1, immI op2)
%{
match(Set cr (CmpU op1 op2));
effect(DEF cr, USE op1);
ins_cost(INSN_COST * 2);
format %{ "cmpw $op1, $op2\t# unsigned" %}
ins_encode(aarch64_enc_cmpw_imm(op1, op2));
ins_pipe(icmp_reg_imm);
%}
instruct compL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
%{
match(Set cr (CmpL op1 op2));
effect(DEF cr, USE op1, USE op2);
ins_cost(INSN_COST);
format %{ "cmp $op1, $op2" %}
ins_encode(aarch64_enc_cmp(op1, op2));
ins_pipe(icmp_reg_reg);
%}
instruct compL_reg_immI0(rFlagsReg cr, iRegL op1, immI0 zero)
%{
match(Set cr (CmpL op1 zero));
effect(DEF cr, USE op1);
ins_cost(INSN_COST);
format %{ "tst $op1" %}
ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero));
ins_pipe(icmp_reg_imm);
%}
instruct compL_reg_immLAddSub(rFlagsReg cr, iRegL op1, immLAddSub op2)
%{
match(Set cr (CmpL op1 op2));
effect(DEF cr, USE op1);
ins_cost(INSN_COST);
format %{ "cmp $op1, $op2" %}
ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2));
ins_pipe(icmp_reg_imm);
%}
instruct compL_reg_immL(rFlagsReg cr, iRegL op1, immL op2)
%{
match(Set cr (CmpL op1 op2));
effect(DEF cr, USE op1);
ins_cost(INSN_COST * 2);
format %{ "cmp $op1, $op2" %}
ins_encode(aarch64_enc_cmp_imm(op1, op2));
ins_pipe(icmp_reg_imm);
%}
instruct compP_reg_reg(rFlagsRegU cr, iRegP op1, iRegP op2)
%{
match(Set cr (CmpP op1 op2));
effect(DEF cr, USE op1, USE op2);
ins_cost(INSN_COST);
format %{ "cmp $op1, $op2\t // ptr" %}
ins_encode(aarch64_enc_cmpp(op1, op2));
ins_pipe(icmp_reg_reg);
%}
instruct compN_reg_reg(rFlagsRegU cr, iRegN op1, iRegN op2)
%{
match(Set cr (CmpN op1 op2));
effect(DEF cr, USE op1, USE op2);
ins_cost(INSN_COST);
format %{ "cmp $op1, $op2\t // compressed ptr" %}
ins_encode(aarch64_enc_cmpn(op1, op2));
ins_pipe(icmp_reg_reg);
%}
instruct testP_reg(rFlagsRegU cr, iRegP op1, immP0 zero)
%{
match(Set cr (CmpP op1 zero));
effect(DEF cr, USE op1, USE zero);
ins_cost(INSN_COST);
format %{ "cmp $op1, 0\t // ptr" %}
ins_encode(aarch64_enc_testp(op1));
ins_pipe(icmp_reg_imm);
%}
instruct testN_reg(rFlagsRegU cr, iRegN op1, immN0 zero)
%{
match(Set cr (CmpN op1 zero));
effect(DEF cr, USE op1, USE zero);
ins_cost(INSN_COST);
format %{ "cmp $op1, 0\t // compressed ptr" %}
ins_encode(aarch64_enc_testn(op1));
ins_pipe(icmp_reg_imm);
%}
// FP comparisons
//
// n.b. CmpF/CmpD set a normal flags reg which then gets compared
// using normal cmpOp. See declaration of rFlagsReg for details.
instruct compF_reg_reg(rFlagsReg cr, vRegF src1, vRegF src2)
%{
match(Set cr (CmpF src1 src2));
ins_cost(3 * INSN_COST);
format %{ "fcmps $src1, $src2" %}
ins_encode %{
__ fcmps(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
%}
ins_pipe(pipe_class_compare);
%}
instruct compF_reg_zero(rFlagsReg cr, vRegF src1, immF0 src2)
%{
match(Set cr (CmpF src1 src2));
ins_cost(3 * INSN_COST);
format %{ "fcmps $src1, 0.0" %}
ins_encode %{
__ fcmps(as_FloatRegister($src1$$reg), 0.0D);
%}
ins_pipe(pipe_class_compare);
%}
// FROM HERE
instruct compD_reg_reg(rFlagsReg cr, vRegD src1, vRegD src2)
%{
match(Set cr (CmpD src1 src2));
ins_cost(3 * INSN_COST);
format %{ "fcmpd $src1, $src2" %}
ins_encode %{
__ fcmpd(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
%}
ins_pipe(pipe_class_compare);
%}
instruct compD_reg_zero(rFlagsReg cr, vRegD src1, immD0 src2)
%{
match(Set cr (CmpD src1 src2));
ins_cost(3 * INSN_COST);
format %{ "fcmpd $src1, 0.0" %}
ins_encode %{
__ fcmpd(as_FloatRegister($src1$$reg), 0.0D);
%}
ins_pipe(pipe_class_compare);
%}
instruct compF3_reg_reg(iRegINoSp dst, vRegF src1, vRegF src2, rFlagsReg cr)
%{
match(Set dst (CmpF3 src1 src2));
effect(KILL cr);
ins_cost(5 * INSN_COST);
format %{ "fcmps $src1, $src2\n\t"
"csinvw($dst, zr, zr, eq\n\t"
"csnegw($dst, $dst, $dst, lt)"
%}
ins_encode %{
Label done;
FloatRegister s1 = as_FloatRegister($src1$$reg);
FloatRegister s2 = as_FloatRegister($src2$$reg);
Register d = as_Register($dst$$reg);
__ fcmps(s1, s2);
// installs 0 if EQ else -1
__ csinvw(d, zr, zr, Assembler::EQ);
// keeps -1 if less or unordered else installs 1
__ csnegw(d, d, d, Assembler::LT);
__ bind(done);
%}
ins_pipe(pipe_class_default);
%}
instruct compD3_reg_reg(iRegINoSp dst, vRegD src1, vRegD src2, rFlagsReg cr)
%{
match(Set dst (CmpD3 src1 src2));
effect(KILL cr);
ins_cost(5 * INSN_COST);
format %{ "fcmpd $src1, $src2\n\t"
"csinvw($dst, zr, zr, eq\n\t"
"csnegw($dst, $dst, $dst, lt)"
%}
ins_encode %{
Label done;
FloatRegister s1 = as_FloatRegister($src1$$reg);
FloatRegister s2 = as_FloatRegister($src2$$reg);
Register d = as_Register($dst$$reg);
__ fcmpd(s1, s2);
// installs 0 if EQ else -1
__ csinvw(d, zr, zr, Assembler::EQ);
// keeps -1 if less or unordered else installs 1
__ csnegw(d, d, d, Assembler::LT);
__ bind(done);
%}
ins_pipe(pipe_class_default);
%}
instruct compF3_reg_immF0(iRegINoSp dst, vRegF src1, immF0 zero, rFlagsReg cr)
%{
match(Set dst (CmpF3 src1 zero));
effect(KILL cr);
ins_cost(5 * INSN_COST);
format %{ "fcmps $src1, 0.0\n\t"
"csinvw($dst, zr, zr, eq\n\t"
"csnegw($dst, $dst, $dst, lt)"
%}
ins_encode %{
Label done;
FloatRegister s1 = as_FloatRegister($src1$$reg);
Register d = as_Register($dst$$reg);
__ fcmps(s1, 0.0D);
// installs 0 if EQ else -1
__ csinvw(d, zr, zr, Assembler::EQ);
// keeps -1 if less or unordered else installs 1
__ csnegw(d, d, d, Assembler::LT);
__ bind(done);
%}
ins_pipe(pipe_class_default);
%}
instruct compD3_reg_immD0(iRegINoSp dst, vRegD src1, immD0 zero, rFlagsReg cr)
%{
match(Set dst (CmpD3 src1 zero));
effect(KILL cr);
ins_cost(5 * INSN_COST);
format %{ "fcmpd $src1, 0.0\n\t"
"csinvw($dst, zr, zr, eq\n\t"
"csnegw($dst, $dst, $dst, lt)"
%}
ins_encode %{
Label done;
FloatRegister s1 = as_FloatRegister($src1$$reg);
Register d = as_Register($dst$$reg);
__ fcmpd(s1, 0.0D);
// installs 0 if EQ else -1
__ csinvw(d, zr, zr, Assembler::EQ);
// keeps -1 if less or unordered else installs 1
__ csnegw(d, d, d, Assembler::LT);
__ bind(done);
%}
ins_pipe(pipe_class_default);
%}
instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegIorL2I p, iRegIorL2I q, rFlagsReg cr)
%{
match(Set dst (CmpLTMask p q));
effect(KILL cr);
ins_cost(3 * INSN_COST);
format %{ "cmpw $p, $q\t# cmpLTMask\n\t"
"csetw $dst, lt\n\t"
"subw $dst, zr, $dst"
%}
ins_encode %{
__ cmpw(as_Register($p$$reg), as_Register($q$$reg));
__ csetw(as_Register($dst$$reg), Assembler::LT);
__ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr)
%{
match(Set dst (CmpLTMask src zero));
effect(KILL cr);
ins_cost(INSN_COST);
format %{ "asrw $dst, $src, #31\t# cmpLTMask0" %}
ins_encode %{
__ asrw(as_Register($dst$$reg), as_Register($src$$reg), 31);
%}
ins_pipe(ialu_reg_shift);
%}
// ============================================================================
// Max and Min
instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
%{
match(Set dst (MinI src1 src2));
effect(DEF dst, USE src1, USE src2, KILL cr);
size(8);
ins_cost(INSN_COST * 3);
format %{
"cmpw $src1 $src2\t signed int\n\t"
"cselw $dst, $src1, $src2 lt\t"
%}
ins_encode %{
__ cmpw(as_Register($src1$$reg),
as_Register($src2$$reg));
__ cselw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::LT);
%}
ins_pipe(ialu_reg_reg);
%}
// FROM HERE
instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
%{
match(Set dst (MaxI src1 src2));
effect(DEF dst, USE src1, USE src2, KILL cr);
size(8);
ins_cost(INSN_COST * 3);
format %{
"cmpw $src1 $src2\t signed int\n\t"
"cselw $dst, $src1, $src2 gt\t"
%}
ins_encode %{
__ cmpw(as_Register($src1$$reg),
as_Register($src2$$reg));
__ cselw(as_Register($dst$$reg),
as_Register($src1$$reg),
as_Register($src2$$reg),
Assembler::GT);
%}
ins_pipe(ialu_reg_reg);
%}
// ============================================================================
// Branch Instructions
// Direct Branch.
instruct branch(label lbl)
%{
match(Goto);
effect(USE lbl);
ins_cost(BRANCH_COST);
format %{ "b $lbl" %}
ins_encode(aarch64_enc_b(lbl));
ins_pipe(pipe_branch);
%}
// Conditional Near Branch
instruct branchCon(cmpOp cmp, rFlagsReg cr, label lbl)
%{
// Same match rule as `branchConFar'.
match(If cmp cr);
effect(USE lbl);
ins_cost(BRANCH_COST);
// If set to 1 this indicates that the current instruction is a
// short variant of a long branch. This avoids using this
// instruction in first-pass matching. It will then only be used in
// the `Shorten_branches' pass.
// ins_short_branch(1);
format %{ "b$cmp $lbl" %}
ins_encode(aarch64_enc_br_con(cmp, lbl));
ins_pipe(pipe_branch_cond);
%}
// Conditional Near Branch Unsigned
instruct branchConU(cmpOpU cmp, rFlagsRegU cr, label lbl)
%{
// Same match rule as `branchConFar'.
match(If cmp cr);
effect(USE lbl);
ins_cost(BRANCH_COST);
// If set to 1 this indicates that the current instruction is a
// short variant of a long branch. This avoids using this
// instruction in first-pass matching. It will then only be used in
// the `Shorten_branches' pass.
// ins_short_branch(1);
format %{ "b$cmp $lbl\t# unsigned" %}
ins_encode(aarch64_enc_br_conU(cmp, lbl));
ins_pipe(pipe_branch_cond);
%}
// Make use of CBZ and CBNZ. These instructions, as well as being
// shorter than (cmp; branch), have the additional benefit of not
// killing the flags.
instruct cmpI_imm0_branch(cmpOpEqNe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsReg cr) %{
match(If cmp (CmpI op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cbw$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ)
__ cbzw($op1$$Register, *L);
else
__ cbnzw($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpL_imm0_branch(cmpOpEqNe cmp, iRegL op1, immL0 op2, label labl, rFlagsReg cr) %{
match(If cmp (CmpL op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ)
__ cbz($op1$$Register, *L);
else
__ cbnz($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 op2, label labl, rFlagsReg cr) %{
match(If cmp (CmpP op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ)
__ cbz($op1$$Register, *L);
else
__ cbnz($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 op2, label labl, rFlagsReg cr) %{
match(If cmp (CmpN op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cbw$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ)
__ cbzw($op1$$Register, *L);
else
__ cbnzw($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN oop, immP0 zero, label labl, rFlagsReg cr) %{
match(If cmp (CmpP (DecodeN oop) zero));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $oop, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ)
__ cbzw($oop$$Register, *L);
else
__ cbnzw($oop$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpUI_imm0_branch(cmpOpUEqNeLtGe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsRegU cr) %{
match(If cmp (CmpU op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cbw$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ || cond == Assembler::LS)
__ cbzw($op1$$Register, *L);
else
__ cbnzw($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpUL_imm0_branch(cmpOpUEqNeLtGe cmp, iRegL op1, immL0 op2, label labl, rFlagsRegU cr) %{
match(If cmp (CmpU op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ || cond == Assembler::LS)
__ cbz($op1$$Register, *L);
else
__ cbnz($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
// Test bit and Branch
// Patterns for short (< 32KiB) variants
instruct cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
match(If cmp (CmpL op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl # long" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond =
((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
__ tbr(cond, $op1$$Register, 63, *L);
%}
ins_pipe(pipe_cmp_branch);
ins_short_branch(1);
%}
instruct cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
match(If cmp (CmpI op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl # int" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond =
((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
__ tbr(cond, $op1$$Register, 31, *L);
%}
ins_pipe(pipe_cmp_branch);
ins_short_branch(1);
%}
instruct cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
match(If cmp (CmpL (AndL op1 op2) op3));
predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_long()));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "tb$cmp $op1, $op2, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
int bit = exact_log2($op2$$constant);
__ tbr(cond, $op1$$Register, bit, *L);
%}
ins_pipe(pipe_cmp_branch);
ins_short_branch(1);
%}
instruct cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
match(If cmp (CmpI (AndI op1 op2) op3));
predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_int()));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "tb$cmp $op1, $op2, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
int bit = exact_log2($op2$$constant);
__ tbr(cond, $op1$$Register, bit, *L);
%}
ins_pipe(pipe_cmp_branch);
ins_short_branch(1);
%}
// And far variants
instruct far_cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
match(If cmp (CmpL op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl # long" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond =
((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
__ tbr(cond, $op1$$Register, 63, *L, /*far*/true);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct far_cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
match(If cmp (CmpI op1 op2));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl # int" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond =
((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
__ tbr(cond, $op1$$Register, 31, *L, /*far*/true);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct far_cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
match(If cmp (CmpL (AndL op1 op2) op3));
predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_long()));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "tb$cmp $op1, $op2, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
int bit = exact_log2($op2$$constant);
__ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct far_cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
match(If cmp (CmpI (AndI op1 op2) op3));
predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_int()));
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "tb$cmp $op1, $op2, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
int bit = exact_log2($op2$$constant);
__ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
%}
ins_pipe(pipe_cmp_branch);
%}
// Test bits
instruct cmpL_and(cmpOp cmp, iRegL op1, immL op2, immL0 op3, rFlagsReg cr) %{
match(Set cr (CmpL (AndL op1 op2) op3));
predicate(Assembler::operand_valid_for_logical_immediate
(/*is_32*/false, n->in(1)->in(2)->get_long()));
ins_cost(INSN_COST);
format %{ "tst $op1, $op2 # long" %}
ins_encode %{
__ tst($op1$$Register, $op2$$constant);
%}
ins_pipe(ialu_reg_reg);
%}
instruct cmpI_and(cmpOp cmp, iRegIorL2I op1, immI op2, immI0 op3, rFlagsReg cr) %{
match(Set cr (CmpI (AndI op1 op2) op3));
predicate(Assembler::operand_valid_for_logical_immediate
(/*is_32*/true, n->in(1)->in(2)->get_int()));
ins_cost(INSN_COST);
format %{ "tst $op1, $op2 # int" %}
ins_encode %{
__ tstw($op1$$Register, $op2$$constant);
%}
ins_pipe(ialu_reg_reg);
%}
instruct cmpL_and_reg(cmpOp cmp, iRegL op1, iRegL op2, immL0 op3, rFlagsReg cr) %{
match(Set cr (CmpL (AndL op1 op2) op3));
ins_cost(INSN_COST);
format %{ "tst $op1, $op2 # long" %}
ins_encode %{
__ tst($op1$$Register, $op2$$Register);
%}
ins_pipe(ialu_reg_reg);
%}
instruct cmpI_and_reg(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, immI0 op3, rFlagsReg cr) %{
match(Set cr (CmpI (AndI op1 op2) op3));
ins_cost(INSN_COST);
format %{ "tstw $op1, $op2 # int" %}
ins_encode %{
__ tstw($op1$$Register, $op2$$Register);
%}
ins_pipe(ialu_reg_reg);
%}
// Conditional Far Branch
// Conditional Far Branch Unsigned
// TODO: fixme
// counted loop end branch near
instruct branchLoopEnd(cmpOp cmp, rFlagsReg cr, label lbl)
%{
match(CountedLoopEnd cmp cr);
effect(USE lbl);
ins_cost(BRANCH_COST);
// short variant.
// ins_short_branch(1);
format %{ "b$cmp $lbl \t// counted loop end" %}
ins_encode(aarch64_enc_br_con(cmp, lbl));
ins_pipe(pipe_branch);
%}
// counted loop end branch near Unsigned
instruct branchLoopEndU(cmpOpU cmp, rFlagsRegU cr, label lbl)
%{
match(CountedLoopEnd cmp cr);
effect(USE lbl);
ins_cost(BRANCH_COST);
// short variant.
// ins_short_branch(1);
format %{ "b$cmp $lbl \t// counted loop end unsigned" %}
ins_encode(aarch64_enc_br_conU(cmp, lbl));
ins_pipe(pipe_branch);
%}
// counted loop end branch far
// counted loop end branch far unsigned
// TODO: fixme
// ============================================================================
// inlined locking and unlocking
instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2)
%{
match(Set cr (FastLock object box));
effect(TEMP tmp, TEMP tmp2);
// TODO
// identify correct cost
ins_cost(5 * INSN_COST);
format %{ "fastlock $object,$box\t! kills $tmp,$tmp2" %}
ins_encode(aarch64_enc_fast_lock(object, box, tmp, tmp2));
ins_pipe(pipe_serial);
%}
instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2)
%{
match(Set cr (FastUnlock object box));
effect(TEMP tmp, TEMP tmp2);
ins_cost(5 * INSN_COST);
format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2" %}
ins_encode(aarch64_enc_fast_unlock(object, box, tmp, tmp2));
ins_pipe(pipe_serial);
%}
// ============================================================================
// Safepoint Instructions
// TODO
// provide a near and far version of this code
instruct safePoint(iRegP poll)
%{
match(SafePoint poll);
format %{
"ldrw zr, [$poll]\t# Safepoint: poll for GC"
%}
ins_encode %{
__ read_polling_page(as_Register($poll$$reg), relocInfo::poll_type);
%}
ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
%}
// ============================================================================
// Procedure Call/Return Instructions
// Call Java Static Instruction
instruct CallStaticJavaDirect(method meth)
%{
match(CallStaticJava);
effect(USE meth);
ins_cost(CALL_COST);
format %{ "call,static $meth \t// ==> " %}
ins_encode( aarch64_enc_java_static_call(meth),
aarch64_enc_call_epilog );
ins_pipe(pipe_class_call);
%}
// TO HERE
// Call Java Dynamic Instruction
instruct CallDynamicJavaDirect(method meth)
%{
match(CallDynamicJava);
effect(USE meth);
ins_cost(CALL_COST);
format %{ "CALL,dynamic $meth \t// ==> " %}
ins_encode( aarch64_enc_java_dynamic_call(meth),
aarch64_enc_call_epilog );
ins_pipe(pipe_class_call);
%}
// Call Runtime Instruction
instruct CallRuntimeDirect(method meth)
%{
match(CallRuntime);
effect(USE meth);
ins_cost(CALL_COST);
format %{ "CALL, runtime $meth" %}
ins_encode( aarch64_enc_java_to_runtime(meth) );
ins_pipe(pipe_class_call);
%}
// Call Runtime Instruction
instruct CallLeafDirect(method meth)
%{
match(CallLeaf);
effect(USE meth);
ins_cost(CALL_COST);
format %{ "CALL, runtime leaf $meth" %}
ins_encode( aarch64_enc_java_to_runtime(meth) );
ins_pipe(pipe_class_call);
%}
// Call Runtime Instruction
instruct CallLeafNoFPDirect(method meth)
%{
match(CallLeafNoFP);
effect(USE meth);
ins_cost(CALL_COST);
format %{ "CALL, runtime leaf nofp $meth" %}
ins_encode( aarch64_enc_java_to_runtime(meth) );
ins_pipe(pipe_class_call);
%}
// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(iRegPNoSp jump_target, inline_cache_RegP method_oop)
%{
match(TailCall jump_target method_oop);
ins_cost(CALL_COST);
format %{ "br $jump_target\t# $method_oop holds method oop" %}
ins_encode(aarch64_enc_tail_call(jump_target));
ins_pipe(pipe_class_call);
%}
instruct TailjmpInd(iRegPNoSp jump_target, iRegP_R0 ex_oop)
%{
match(TailJump jump_target ex_oop);
ins_cost(CALL_COST);
format %{ "br $jump_target\t# $ex_oop holds exception oop" %}
ins_encode(aarch64_enc_tail_jmp(jump_target));
ins_pipe(pipe_class_call);
%}
// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler. No code emitted.
// TODO check
// should ex_oop be in r0? intel uses rax, ppc cannot use r0 so uses rarg1
instruct CreateException(iRegP_R0 ex_oop)
%{
match(Set ex_oop (CreateEx));
format %{ " -- \t// exception oop; no code emitted" %}
size(0);
ins_encode( /*empty*/ );
ins_pipe(pipe_class_empty);
%}
// Rethrow exception: The exception oop will come in the first
// argument position. Then JUMP (not call) to the rethrow stub code.
instruct RethrowException() %{
match(Rethrow);
ins_cost(CALL_COST);
format %{ "b rethrow_stub" %}
ins_encode( aarch64_enc_rethrow() );
ins_pipe(pipe_class_call);
%}
// Return Instruction
// epilog node loads ret address into lr as part of frame pop
instruct Ret()
%{
match(Return);
format %{ "ret\t// return register" %}
ins_encode( aarch64_enc_ret() );
ins_pipe(pipe_branch);
%}
// Die now.
instruct ShouldNotReachHere() %{
match(Halt);
ins_cost(CALL_COST);
format %{ "ShouldNotReachHere" %}
ins_encode %{
// TODO
// implement proper trap call here
__ brk(999);
%}
ins_pipe(pipe_class_default);
%}
// ============================================================================
// Partial Subtype Check
//
// superklass array for an instance of the superklass. Set a hidden
// internal cache on a hit (cache is checked with exposed code in
// gen_subtype_check()). Return NZ for a miss or zero for a hit. The
// encoding ALSO sets flags.
instruct partialSubtypeCheck(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, rFlagsReg cr)
%{
match(Set result (PartialSubtypeCheck sub super));
effect(KILL cr, KILL temp);
ins_cost(1100); // slightly larger than the next version
format %{ "partialSubtypeCheck $result, $sub, $super" %}
ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result));
opcode(0x1); // Force zero of result reg on hit
ins_pipe(pipe_class_memory);
%}
instruct partialSubtypeCheckVsZero(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, immP0 zero, rFlagsReg cr)
%{
match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
effect(KILL temp, KILL result);
ins_cost(1100); // slightly larger than the next version
format %{ "partialSubtypeCheck $result, $sub, $super == 0" %}
ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result));
opcode(0x0); // Don't zero result reg on hit
ins_pipe(pipe_class_memory);
%}
instruct string_compareU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
iRegI_R0 result, iRegP_R10 tmp1, rFlagsReg cr)
%{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %}
ins_encode %{
// Count is in 8-bit bytes; non-Compact chars are 16 bits.
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register, $result$$Register,
$tmp1$$Register,
fnoreg, fnoreg, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_compareL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
iRegI_R0 result, iRegP_R10 tmp1, rFlagsReg cr)
%{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %}
ins_encode %{
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register, $result$$Register,
$tmp1$$Register,
fnoreg, fnoreg, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_compareUL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
iRegI_R0 result, vRegD vtmp1, vRegD vtmp2, iRegP_R10 tmp1, rFlagsReg cr)
%{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP vtmp1, TEMP vtmp2, KILL cr);
format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %}
ins_encode %{
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register, $result$$Register,
$tmp1$$Register,
$vtmp1$$FloatRegister, $vtmp2$$FloatRegister, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_compareLU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
iRegI_R0 result, vRegD vtmp1, vRegD vtmp2, iRegP_R10 tmp1, rFlagsReg cr)
%{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP vtmp1, TEMP vtmp2, KILL cr);
format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %}
ins_encode %{
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register, $result$$Register,
$tmp1$$Register,
$vtmp1$$FloatRegister, $vtmp2$$FloatRegister, StrIntrinsicNode::LU);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexofUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %}
ins_encode %{
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
-1, $result$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexofLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %}
ins_encode %{
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
-1, $result$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexofUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %}
ins_encode %{
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
-1, $result$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexofLU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LU);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LU)" %}
ins_encode %{
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
-1, $result$$Register, StrIntrinsicNode::LU);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexof_conUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
immI_le_4 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %}
ins_encode %{
int icnt2 = (int)$int_cnt2$$constant;
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, zr,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
icnt2, $result$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexof_conLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
immI_le_4 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %}
ins_encode %{
int icnt2 = (int)$int_cnt2$$constant;
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, zr,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
icnt2, $result$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexof_conUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
immI_1 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %}
ins_encode %{
int icnt2 = (int)$int_cnt2$$constant;
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, zr,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
icnt2, $result$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexof_conLU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
immI_1 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
iRegI tmp3, iRegI tmp4, rFlagsReg cr)
%{
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LU);
match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LU)" %}
ins_encode %{
int icnt2 = (int)$int_cnt2$$constant;
__ string_indexof($str1$$Register, $str2$$Register,
$cnt1$$Register, zr,
$tmp1$$Register, $tmp2$$Register,
$tmp3$$Register, $tmp4$$Register,
icnt2, $result$$Register, StrIntrinsicNode::LU);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_indexofU_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
iRegI_R0 result, iRegI tmp1, iRegI tmp2,
iRegI tmp3, rFlagsReg cr)
%{
match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result" %}
ins_encode %{
__ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
$result$$Register, $tmp1$$Register, $tmp2$$Register,
$tmp3$$Register);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
iRegI_R0 result, rFlagsReg cr)
%{
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
format %{ "String Equals $str1,$str2,$cnt -> $result" %}
ins_encode %{
// Count is in 8-bit bytes; non-Compact chars are 16 bits.
__ arrays_equals($str1$$Register, $str2$$Register,
$result$$Register, $cnt$$Register,
1, /*is_string*/true);
%}
ins_pipe(pipe_class_memory);
%}
instruct string_equalsU(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
iRegI_R0 result, rFlagsReg cr)
%{
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
format %{ "String Equals $str1,$str2,$cnt -> $result" %}
ins_encode %{
// Count is in 8-bit bytes; non-Compact chars are 16 bits.
__ asrw($cnt$$Register, $cnt$$Register, 1);
__ arrays_equals($str1$$Register, $str2$$Register,
$result$$Register, $cnt$$Register,
2, /*is_string*/true);
%}
ins_pipe(pipe_class_memory);
%}
instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
iRegP_R10 tmp, rFlagsReg cr)
%{
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (AryEq ary1 ary2));
effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, KILL cr);
format %{ "Array Equals $ary1,ary2 -> $result // KILL $tmp" %}
ins_encode %{
__ arrays_equals($ary1$$Register, $ary2$$Register,
$result$$Register, $tmp$$Register,
1, /*is_string*/false);
%}
ins_pipe(pipe_class_memory);
%}
instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
iRegP_R10 tmp, rFlagsReg cr)
%{
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (AryEq ary1 ary2));
effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, KILL cr);
format %{ "Array Equals $ary1,ary2 -> $result // KILL $tmp" %}
ins_encode %{
__ arrays_equals($ary1$$Register, $ary2$$Register,
$result$$Register, $tmp$$Register,
2, /*is_string*/false);
%}
ins_pipe(pipe_class_memory);
%}
// fast char[] to byte[] compression
instruct string_compress(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
vRegD_V0 tmp1, vRegD_V1 tmp2,
vRegD_V2 tmp3, vRegD_V3 tmp4,
iRegI_R0 result, rFlagsReg cr)
%{
match(Set result (StrCompressedCopy src (Binary dst len)));
effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
format %{ "String Compress $src,$dst -> $result // KILL R1, R2, R3, R4" %}
ins_encode %{
__ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
$tmp1$$FloatRegister, $tmp2$$FloatRegister,
$tmp3$$FloatRegister, $tmp4$$FloatRegister,
$result$$Register);
%}
ins_pipe( pipe_slow );
%}
// fast byte[] to char[] inflation
instruct string_inflate(Universe dummy, iRegP_R0 src, iRegP_R1 dst, iRegI_R2 len,
vRegD tmp1, vRegD tmp2, vRegD tmp3, iRegP_R3 tmp4, rFlagsReg cr)
%{
match(Set dummy (StrInflatedCopy src (Binary dst len)));
effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
format %{ "String Inflate $src,$dst // KILL $tmp1, $tmp2" %}
ins_encode %{
__ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
$tmp1$$FloatRegister, $tmp2$$FloatRegister, $tmp3$$FloatRegister, $tmp4$$Register);
%}
ins_pipe(pipe_class_memory);
%}
// encode char[] to byte[] in ISO_8859_1
instruct encode_iso_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
vRegD_V0 Vtmp1, vRegD_V1 Vtmp2,
vRegD_V2 Vtmp3, vRegD_V3 Vtmp4,
iRegI_R0 result, rFlagsReg cr)
%{
match(Set result (EncodeISOArray src (Binary dst len)));
effect(USE_KILL src, USE_KILL dst, USE_KILL len,
KILL Vtmp1, KILL Vtmp2, KILL Vtmp3, KILL Vtmp4, KILL cr);
format %{ "Encode array $src,$dst,$len -> $result" %}
ins_encode %{
__ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
$result$$Register, $Vtmp1$$FloatRegister, $Vtmp2$$FloatRegister,
$Vtmp3$$FloatRegister, $Vtmp4$$FloatRegister);
%}
ins_pipe( pipe_class_memory );
%}
// ============================================================================
// This name is KNOWN by the ADLC and cannot be changed.
// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
// for this guy.
instruct tlsLoadP(thread_RegP dst)
%{
match(Set dst (ThreadLocal));
ins_cost(0);
format %{ " -- \t// $dst=Thread::current(), empty" %}
size(0);
ins_encode( /*empty*/ );
ins_pipe(pipe_class_empty);
%}
// ====================VECTOR INSTRUCTIONS=====================================
// Load vector (32 bits)
instruct loadV4(vecD dst, vmem4 mem)
%{
predicate(n->as_LoadVector()->memory_size() == 4);
match(Set dst (LoadVector mem));
ins_cost(4 * INSN_COST);
format %{ "ldrs $dst,$mem\t# vector (32 bits)" %}
ins_encode( aarch64_enc_ldrvS(dst, mem) );
ins_pipe(vload_reg_mem64);
%}
// Load vector (64 bits)
instruct loadV8(vecD dst, vmem8 mem)
%{
predicate(n->as_LoadVector()->memory_size() == 8);
match(Set dst (LoadVector mem));
ins_cost(4 * INSN_COST);
format %{ "ldrd $dst,$mem\t# vector (64 bits)" %}
ins_encode( aarch64_enc_ldrvD(dst, mem) );
ins_pipe(vload_reg_mem64);
%}
// Load Vector (128 bits)
instruct loadV16(vecX dst, vmem16 mem)
%{
predicate(n->as_LoadVector()->memory_size() == 16);
match(Set dst (LoadVector mem));
ins_cost(4 * INSN_COST);
format %{ "ldrq $dst,$mem\t# vector (128 bits)" %}
ins_encode( aarch64_enc_ldrvQ(dst, mem) );
ins_pipe(vload_reg_mem128);
%}
// Store Vector (32 bits)
instruct storeV4(vecD src, vmem4 mem)
%{
predicate(n->as_StoreVector()->memory_size() == 4);
match(Set mem (StoreVector mem src));
ins_cost(4 * INSN_COST);
format %{ "strs $mem,$src\t# vector (32 bits)" %}
ins_encode( aarch64_enc_strvS(src, mem) );
ins_pipe(vstore_reg_mem64);
%}
// Store Vector (64 bits)
instruct storeV8(vecD src, vmem8 mem)
%{
predicate(n->as_StoreVector()->memory_size() == 8);
match(Set mem (StoreVector mem src));
ins_cost(4 * INSN_COST);
format %{ "strd $mem,$src\t# vector (64 bits)" %}
ins_encode( aarch64_enc_strvD(src, mem) );
ins_pipe(vstore_reg_mem64);
%}
// Store Vector (128 bits)
instruct storeV16(vecX src, vmem16 mem)
%{
predicate(n->as_StoreVector()->memory_size() == 16);
match(Set mem (StoreVector mem src));
ins_cost(4 * INSN_COST);
format %{ "strq $mem,$src\t# vector (128 bits)" %}
ins_encode( aarch64_enc_strvQ(src, mem) );
ins_pipe(vstore_reg_mem128);
%}
instruct replicate8B(vecD dst, iRegIorL2I src)
%{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (ReplicateB src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (8B)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T8B, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg64);
%}
instruct replicate16B(vecX dst, iRegIorL2I src)
%{
predicate(n->as_Vector()->length() == 16);
match(Set dst (ReplicateB src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (16B)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T16B, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg128);
%}
instruct replicate8B_imm(vecD dst, immI con)
%{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (ReplicateB con));
ins_cost(INSN_COST);
format %{ "movi $dst, $con\t# vector(8B)" %}
ins_encode %{
__ mov(as_FloatRegister($dst$$reg), __ T8B, $con$$constant & 0xff);
%}
ins_pipe(vmovi_reg_imm64);
%}
instruct replicate16B_imm(vecX dst, immI con)
%{
predicate(n->as_Vector()->length() == 16);
match(Set dst (ReplicateB con));
ins_cost(INSN_COST);
format %{ "movi $dst, $con\t# vector(16B)" %}
ins_encode %{
__ mov(as_FloatRegister($dst$$reg), __ T16B, $con$$constant & 0xff);
%}
ins_pipe(vmovi_reg_imm128);
%}
instruct replicate4S(vecD dst, iRegIorL2I src)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (ReplicateS src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (4S)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T4H, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg64);
%}
instruct replicate8S(vecX dst, iRegIorL2I src)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (ReplicateS src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (8S)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T8H, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg128);
%}
instruct replicate4S_imm(vecD dst, immI con)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (ReplicateS con));
ins_cost(INSN_COST);
format %{ "movi $dst, $con\t# vector(4H)" %}
ins_encode %{
__ mov(as_FloatRegister($dst$$reg), __ T4H, $con$$constant & 0xffff);
%}
ins_pipe(vmovi_reg_imm64);
%}
instruct replicate8S_imm(vecX dst, immI con)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (ReplicateS con));
ins_cost(INSN_COST);
format %{ "movi $dst, $con\t# vector(8H)" %}
ins_encode %{
__ mov(as_FloatRegister($dst$$reg), __ T8H, $con$$constant & 0xffff);
%}
ins_pipe(vmovi_reg_imm128);
%}
instruct replicate2I(vecD dst, iRegIorL2I src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateI src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (2I)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T2S, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg64);
%}
instruct replicate4I(vecX dst, iRegIorL2I src)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (ReplicateI src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (4I)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T4S, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg128);
%}
instruct replicate2I_imm(vecD dst, immI con)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateI con));
ins_cost(INSN_COST);
format %{ "movi $dst, $con\t# vector(2I)" %}
ins_encode %{
__ mov(as_FloatRegister($dst$$reg), __ T2S, $con$$constant);
%}
ins_pipe(vmovi_reg_imm64);
%}
instruct replicate4I_imm(vecX dst, immI con)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (ReplicateI con));
ins_cost(INSN_COST);
format %{ "movi $dst, $con\t# vector(4I)" %}
ins_encode %{
__ mov(as_FloatRegister($dst$$reg), __ T4S, $con$$constant);
%}
ins_pipe(vmovi_reg_imm128);
%}
instruct replicate2L(vecX dst, iRegL src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateL src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (2L)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T2D, as_Register($src$$reg));
%}
ins_pipe(vdup_reg_reg128);
%}
instruct replicate2L_zero(vecX dst, immI0 zero)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateI zero));
ins_cost(INSN_COST);
format %{ "movi $dst, $zero\t# vector(4I)" %}
ins_encode %{
__ eor(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg));
%}
ins_pipe(vmovi_reg_imm128);
%}
instruct replicate2F(vecD dst, vRegF src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateF src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (2F)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg));
%}
ins_pipe(vdup_reg_freg64);
%}
instruct replicate4F(vecX dst, vRegF src)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (ReplicateF src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (4F)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg));
%}
ins_pipe(vdup_reg_freg128);
%}
instruct replicate2D(vecX dst, vRegD src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateD src));
ins_cost(INSN_COST);
format %{ "dup $dst, $src\t# vector (2D)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg));
%}
ins_pipe(vdup_reg_dreg128);
%}
// ====================REDUCTION ARITHMETIC====================================
instruct reduce_add2I(iRegINoSp dst, iRegIorL2I src1, vecD src2, iRegI tmp, iRegI tmp2)
%{
match(Set dst (AddReductionVI src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP tmp2);
format %{ "umov $tmp, $src2, S, 0\n\t"
"umov $tmp2, $src2, S, 1\n\t"
"addw $dst, $src1, $tmp\n\t"
"addw $dst, $dst, $tmp2\t add reduction2i"
%}
ins_encode %{
__ umov($tmp$$Register, as_FloatRegister($src2$$reg), __ S, 0);
__ umov($tmp2$$Register, as_FloatRegister($src2$$reg), __ S, 1);
__ addw($dst$$Register, $src1$$Register, $tmp$$Register);
__ addw($dst$$Register, $dst$$Register, $tmp2$$Register);
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_add4I(iRegINoSp dst, iRegIorL2I src1, vecX src2, vecX tmp, iRegI tmp2)
%{
match(Set dst (AddReductionVI src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP tmp2);
format %{ "addv $tmp, T4S, $src2\n\t"
"umov $tmp2, $tmp, S, 0\n\t"
"addw $dst, $tmp2, $src1\t add reduction4i"
%}
ins_encode %{
__ addv(as_FloatRegister($tmp$$reg), __ T4S,
as_FloatRegister($src2$$reg));
__ umov($tmp2$$Register, as_FloatRegister($tmp$$reg), __ S, 0);
__ addw($dst$$Register, $tmp2$$Register, $src1$$Register);
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_mul2I(iRegINoSp dst, iRegIorL2I src1, vecD src2, iRegI tmp)
%{
match(Set dst (MulReductionVI src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "umov $tmp, $src2, S, 0\n\t"
"mul $dst, $tmp, $src1\n\t"
"umov $tmp, $src2, S, 1\n\t"
"mul $dst, $tmp, $dst\t mul reduction2i\n\t"
%}
ins_encode %{
__ umov($tmp$$Register, as_FloatRegister($src2$$reg), __ S, 0);
__ mul($dst$$Register, $tmp$$Register, $src1$$Register);
__ umov($tmp$$Register, as_FloatRegister($src2$$reg), __ S, 1);
__ mul($dst$$Register, $tmp$$Register, $dst$$Register);
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_mul4I(iRegINoSp dst, iRegIorL2I src1, vecX src2, vecX tmp, iRegI tmp2)
%{
match(Set dst (MulReductionVI src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP tmp2, TEMP dst);
format %{ "ins $tmp, $src2, 0, 1\n\t"
"mul $tmp, $tmp, $src2\n\t"
"umov $tmp2, $tmp, S, 0\n\t"
"mul $dst, $tmp2, $src1\n\t"
"umov $tmp2, $tmp, S, 1\n\t"
"mul $dst, $tmp2, $dst\t mul reduction4i\n\t"
%}
ins_encode %{
__ ins(as_FloatRegister($tmp$$reg), __ D,
as_FloatRegister($src2$$reg), 0, 1);
__ mulv(as_FloatRegister($tmp$$reg), __ T2S,
as_FloatRegister($tmp$$reg), as_FloatRegister($src2$$reg));
__ umov($tmp2$$Register, as_FloatRegister($tmp$$reg), __ S, 0);
__ mul($dst$$Register, $tmp2$$Register, $src1$$Register);
__ umov($tmp2$$Register, as_FloatRegister($tmp$$reg), __ S, 1);
__ mul($dst$$Register, $tmp2$$Register, $dst$$Register);
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_add2F(vRegF dst, vRegF src1, vecD src2, vecD tmp)
%{
match(Set dst (AddReductionVF src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "fadds $dst, $src1, $src2\n\t"
"ins $tmp, S, $src2, 0, 1\n\t"
"fadds $dst, $dst, $tmp\t add reduction2f"
%}
ins_encode %{
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 1);
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_add4F(vRegF dst, vRegF src1, vecX src2, vecX tmp)
%{
match(Set dst (AddReductionVF src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "fadds $dst, $src1, $src2\n\t"
"ins $tmp, S, $src2, 0, 1\n\t"
"fadds $dst, $dst, $tmp\n\t"
"ins $tmp, S, $src2, 0, 2\n\t"
"fadds $dst, $dst, $tmp\n\t"
"ins $tmp, S, $src2, 0, 3\n\t"
"fadds $dst, $dst, $tmp\t add reduction4f"
%}
ins_encode %{
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 1);
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 2);
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 3);
__ fadds(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_mul2F(vRegF dst, vRegF src1, vecD src2, vecD tmp)
%{
match(Set dst (MulReductionVF src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "fmuls $dst, $src1, $src2\n\t"
"ins $tmp, S, $src2, 0, 1\n\t"
"fmuls $dst, $dst, $tmp\t add reduction4f"
%}
ins_encode %{
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 1);
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_mul4F(vRegF dst, vRegF src1, vecX src2, vecX tmp)
%{
match(Set dst (MulReductionVF src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "fmuls $dst, $src1, $src2\n\t"
"ins $tmp, S, $src2, 0, 1\n\t"
"fmuls $dst, $dst, $tmp\n\t"
"ins $tmp, S, $src2, 0, 2\n\t"
"fmuls $dst, $dst, $tmp\n\t"
"ins $tmp, S, $src2, 0, 3\n\t"
"fmuls $dst, $dst, $tmp\t add reduction4f"
%}
ins_encode %{
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 1);
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 2);
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ S,
as_FloatRegister($src2$$reg), 0, 3);
__ fmuls(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_add2D(vRegD dst, vRegD src1, vecX src2, vecX tmp)
%{
match(Set dst (AddReductionVD src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "faddd $dst, $src1, $src2\n\t"
"ins $tmp, D, $src2, 0, 1\n\t"
"faddd $dst, $dst, $tmp\t add reduction2d"
%}
ins_encode %{
__ faddd(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ D,
as_FloatRegister($src2$$reg), 0, 1);
__ faddd(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
%}
ins_pipe(pipe_class_default);
%}
instruct reduce_mul2D(vRegD dst, vRegD src1, vecX src2, vecX tmp)
%{
match(Set dst (MulReductionVD src1 src2));
ins_cost(INSN_COST);
effect(TEMP tmp, TEMP dst);
format %{ "fmuld $dst, $src1, $src2\n\t"
"ins $tmp, D, $src2, 0, 1\n\t"
"fmuld $dst, $dst, $tmp\t add reduction2d"
%}
ins_encode %{
__ fmuld(as_FloatRegister($dst$$reg),
as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
__ ins(as_FloatRegister($tmp$$reg), __ D,
as_FloatRegister($src2$$reg), 0, 1);
__ fmuld(as_FloatRegister($dst$$reg),
as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
%}
ins_pipe(pipe_class_default);
%}
// ====================VECTOR ARITHMETIC=======================================
// --------------------------------- ADD --------------------------------------
instruct vadd8B(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (AddVB src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (8B)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop64);
%}
instruct vadd16B(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 16);
match(Set dst (AddVB src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (16B)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vadd4S(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (AddVS src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (4H)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop64);
%}
instruct vadd8S(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (AddVS src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (8H)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vadd2I(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (AddVI src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop64);
%}
instruct vadd4I(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (AddVI src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vadd2L(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (AddVL src1 src2));
ins_cost(INSN_COST);
format %{ "addv $dst,$src1,$src2\t# vector (2L)" %}
ins_encode %{
__ addv(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vadd2F(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (AddVF src1 src2));
ins_cost(INSN_COST);
format %{ "fadd $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ fadd(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop_fp64);
%}
instruct vadd4F(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (AddVF src1 src2));
ins_cost(INSN_COST);
format %{ "fadd $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ fadd(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop_fp128);
%}
instruct vadd2D(vecX dst, vecX src1, vecX src2)
%{
match(Set dst (AddVD src1 src2));
ins_cost(INSN_COST);
format %{ "fadd $dst,$src1,$src2\t# vector (2D)" %}
ins_encode %{
__ fadd(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop_fp128);
%}
// --------------------------------- SUB --------------------------------------
instruct vsub8B(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (SubVB src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (8B)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop64);
%}
instruct vsub16B(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 16);
match(Set dst (SubVB src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (16B)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vsub4S(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (SubVS src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (4H)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop64);
%}
instruct vsub8S(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (SubVS src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (8H)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vsub2I(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (SubVI src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop64);
%}
instruct vsub4I(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (SubVI src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vsub2L(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (SubVL src1 src2));
ins_cost(INSN_COST);
format %{ "subv $dst,$src1,$src2\t# vector (2L)" %}
ins_encode %{
__ subv(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop128);
%}
instruct vsub2F(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (SubVF src1 src2));
ins_cost(INSN_COST);
format %{ "fsub $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ fsub(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop_fp64);
%}
instruct vsub4F(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (SubVF src1 src2));
ins_cost(INSN_COST);
format %{ "fsub $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ fsub(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop_fp128);
%}
instruct vsub2D(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (SubVD src1 src2));
ins_cost(INSN_COST);
format %{ "fsub $dst,$src1,$src2\t# vector (2D)" %}
ins_encode %{
__ fsub(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vdop_fp128);
%}
// --------------------------------- MUL --------------------------------------
instruct vmul4S(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (MulVS src1 src2));
ins_cost(INSN_COST);
format %{ "mulv $dst,$src1,$src2\t# vector (4H)" %}
ins_encode %{
__ mulv(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmul64);
%}
instruct vmul8S(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (MulVS src1 src2));
ins_cost(INSN_COST);
format %{ "mulv $dst,$src1,$src2\t# vector (8H)" %}
ins_encode %{
__ mulv(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmul128);
%}
instruct vmul2I(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (MulVI src1 src2));
ins_cost(INSN_COST);
format %{ "mulv $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ mulv(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmul64);
%}
instruct vmul4I(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (MulVI src1 src2));
ins_cost(INSN_COST);
format %{ "mulv $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ mulv(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmul128);
%}
instruct vmul2F(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (MulVF src1 src2));
ins_cost(INSN_COST);
format %{ "fmul $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ fmul(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmuldiv_fp64);
%}
instruct vmul4F(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (MulVF src1 src2));
ins_cost(INSN_COST);
format %{ "fmul $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ fmul(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmuldiv_fp128);
%}
instruct vmul2D(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (MulVD src1 src2));
ins_cost(INSN_COST);
format %{ "fmul $dst,$src1,$src2\t# vector (2D)" %}
ins_encode %{
__ fmul(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmuldiv_fp128);
%}
// --------------------------------- MLA --------------------------------------
instruct vmla4S(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (AddVS dst (MulVS src1 src2)));
ins_cost(INSN_COST);
format %{ "mlav $dst,$src1,$src2\t# vector (4H)" %}
ins_encode %{
__ mlav(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla64);
%}
instruct vmla8S(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (AddVS dst (MulVS src1 src2)));
ins_cost(INSN_COST);
format %{ "mlav $dst,$src1,$src2\t# vector (8H)" %}
ins_encode %{
__ mlav(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla128);
%}
instruct vmla2I(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (AddVI dst (MulVI src1 src2)));
ins_cost(INSN_COST);
format %{ "mlav $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ mlav(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla64);
%}
instruct vmla4I(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (AddVI dst (MulVI src1 src2)));
ins_cost(INSN_COST);
format %{ "mlav $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ mlav(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla128);
%}
// --------------------------------- MLS --------------------------------------
instruct vmls4S(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (SubVS dst (MulVS src1 src2)));
ins_cost(INSN_COST);
format %{ "mlsv $dst,$src1,$src2\t# vector (4H)" %}
ins_encode %{
__ mlsv(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla64);
%}
instruct vmls8S(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 8);
match(Set dst (SubVS dst (MulVS src1 src2)));
ins_cost(INSN_COST);
format %{ "mlsv $dst,$src1,$src2\t# vector (8H)" %}
ins_encode %{
__ mlsv(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla128);
%}
instruct vmls2I(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (SubVI dst (MulVI src1 src2)));
ins_cost(INSN_COST);
format %{ "mlsv $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ mlsv(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla64);
%}
instruct vmls4I(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (SubVI dst (MulVI src1 src2)));
ins_cost(INSN_COST);
format %{ "mlsv $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ mlsv(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmla128);
%}
// --------------------------------- DIV --------------------------------------
instruct vdiv2F(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (DivVF src1 src2));
ins_cost(INSN_COST);
format %{ "fdiv $dst,$src1,$src2\t# vector (2S)" %}
ins_encode %{
__ fdiv(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmuldiv_fp64);
%}
instruct vdiv4F(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (DivVF src1 src2));
ins_cost(INSN_COST);
format %{ "fdiv $dst,$src1,$src2\t# vector (4S)" %}
ins_encode %{
__ fdiv(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmuldiv_fp128);
%}
instruct vdiv2D(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (DivVD src1 src2));
ins_cost(INSN_COST);
format %{ "fdiv $dst,$src1,$src2\t# vector (2D)" %}
ins_encode %{
__ fdiv(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vmuldiv_fp128);
%}
// --------------------------------- SQRT -------------------------------------
instruct vsqrt2D(vecX dst, vecX src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (SqrtVD src));
format %{ "fsqrt $dst, $src\t# vector (2D)" %}
ins_encode %{
__ fsqrt(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg));
%}
ins_pipe(vsqrt_fp128);
%}
// --------------------------------- ABS --------------------------------------
instruct vabs2F(vecD dst, vecD src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (AbsVF src));
ins_cost(INSN_COST * 3);
format %{ "fabs $dst,$src\t# vector (2S)" %}
ins_encode %{
__ fabs(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg));
%}
ins_pipe(vunop_fp64);
%}
instruct vabs4F(vecX dst, vecX src)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (AbsVF src));
ins_cost(INSN_COST * 3);
format %{ "fabs $dst,$src\t# vector (4S)" %}
ins_encode %{
__ fabs(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg));
%}
ins_pipe(vunop_fp128);
%}
instruct vabs2D(vecX dst, vecX src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (AbsVD src));
ins_cost(INSN_COST * 3);
format %{ "fabs $dst,$src\t# vector (2D)" %}
ins_encode %{
__ fabs(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg));
%}
ins_pipe(vunop_fp128);
%}
// --------------------------------- NEG --------------------------------------
instruct vneg2F(vecD dst, vecD src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (NegVF src));
ins_cost(INSN_COST * 3);
format %{ "fneg $dst,$src\t# vector (2S)" %}
ins_encode %{
__ fneg(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg));
%}
ins_pipe(vunop_fp64);
%}
instruct vneg4F(vecX dst, vecX src)
%{
predicate(n->as_Vector()->length() == 4);
match(Set dst (NegVF src));
ins_cost(INSN_COST * 3);
format %{ "fneg $dst,$src\t# vector (4S)" %}
ins_encode %{
__ fneg(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg));
%}
ins_pipe(vunop_fp128);
%}
instruct vneg2D(vecX dst, vecX src)
%{
predicate(n->as_Vector()->length() == 2);
match(Set dst (NegVD src));
ins_cost(INSN_COST * 3);
format %{ "fneg $dst,$src\t# vector (2D)" %}
ins_encode %{
__ fneg(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg));
%}
ins_pipe(vunop_fp128);
%}
// --------------------------------- AND --------------------------------------
instruct vand8B(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length_in_bytes() == 4 ||
n->as_Vector()->length_in_bytes() == 8);
match(Set dst (AndV src1 src2));
ins_cost(INSN_COST);
format %{ "and $dst,$src1,$src2\t# vector (8B)" %}
ins_encode %{
__ andr(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vlogical64);
%}
instruct vand16B(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length_in_bytes() == 16);
match(Set dst (AndV src1 src2));
ins_cost(INSN_COST);
format %{ "and $dst,$src1,$src2\t# vector (16B)" %}
ins_encode %{
__ andr(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vlogical128);
%}
// --------------------------------- OR ---------------------------------------
instruct vor8B(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length_in_bytes() == 4 ||
n->as_Vector()->length_in_bytes() == 8);
match(Set dst (OrV src1 src2));
ins_cost(INSN_COST);
format %{ "and $dst,$src1,$src2\t# vector (8B)" %}
ins_encode %{
__ orr(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vlogical64);
%}
instruct vor16B(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length_in_bytes() == 16);
match(Set dst (OrV src1 src2));
ins_cost(INSN_COST);
format %{ "orr $dst,$src1,$src2\t# vector (16B)" %}
ins_encode %{
__ orr(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vlogical128);
%}
// --------------------------------- XOR --------------------------------------
instruct vxor8B(vecD dst, vecD src1, vecD src2)
%{
predicate(n->as_Vector()->length_in_bytes() == 4 ||
n->as_Vector()->length_in_bytes() == 8);
match(Set dst (XorV src1 src2));
ins_cost(INSN_COST);
format %{ "xor $dst,$src1,$src2\t# vector (8B)" %}
ins_encode %{
__ eor(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vlogical64);
%}
instruct vxor16B(vecX dst, vecX src1, vecX src2)
%{
predicate(n->as_Vector()->length_in_bytes() == 16);
match(Set dst (XorV src1 src2));
ins_cost(INSN_COST);
format %{ "xor $dst,$src1,$src2\t# vector (16B)" %}
ins_encode %{
__ eor(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src1$$reg),
as_FloatRegister($src2$$reg));
%}
ins_pipe(vlogical128);
%}
// ------------------------------ Shift ---------------------------------------
instruct vshiftcntL(vecX dst, iRegIorL2I cnt) %{
match(Set dst (LShiftCntV cnt));
format %{ "dup $dst, $cnt\t# shift count (vecX)" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T16B, as_Register($cnt$$reg));
%}
ins_pipe(vdup_reg_reg128);
%}
// Right shifts on aarch64 SIMD are implemented as left shift by -ve amount
instruct vshiftcntR(vecX dst, iRegIorL2I cnt) %{
match(Set dst (RShiftCntV cnt));
format %{ "dup $dst, $cnt\t# shift count (vecX)\n\tneg $dst, $dst\t T16B" %}
ins_encode %{
__ dup(as_FloatRegister($dst$$reg), __ T16B, as_Register($cnt$$reg));
__ negr(as_FloatRegister($dst$$reg), __ T16B, as_FloatRegister($dst$$reg));
%}
ins_pipe(vdup_reg_reg128);
%}
instruct vsll8B(vecD dst, vecD src, vecX shift) %{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (LShiftVB src shift));
match(Set dst (RShiftVB src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (8B)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift64);
%}
instruct vsll16B(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 16);
match(Set dst (LShiftVB src shift));
match(Set dst (RShiftVB src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (16B)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsrl8B(vecD dst, vecD src, vecX shift) %{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (URShiftVB src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (8B)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift64);
%}
instruct vsrl16B(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 16);
match(Set dst (URShiftVB src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (16B)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsll8B_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (LShiftVB src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (8B)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 8) {
__ eor(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ shl(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg), sh);
}
%}
ins_pipe(vshift64_imm);
%}
instruct vsll16B_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 16);
match(Set dst (LShiftVB src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (16B)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 8) {
__ eor(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ shl(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg), sh);
}
%}
ins_pipe(vshift128_imm);
%}
instruct vsra8B_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (RShiftVB src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (8B)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 8) sh = 7;
sh = -sh & 7;
__ sshr(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg), sh);
%}
ins_pipe(vshift64_imm);
%}
instruct vsra16B_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 16);
match(Set dst (RShiftVB src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (16B)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 8) sh = 7;
sh = -sh & 7;
__ sshr(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg), sh);
%}
ins_pipe(vshift128_imm);
%}
instruct vsrl8B_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 4 ||
n->as_Vector()->length() == 8);
match(Set dst (URShiftVB src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (8B)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 8) {
__ eor(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ ushr(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg), -sh & 7);
}
%}
ins_pipe(vshift64_imm);
%}
instruct vsrl16B_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 16);
match(Set dst (URShiftVB src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (16B)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 8) {
__ eor(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ ushr(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg), -sh & 7);
}
%}
ins_pipe(vshift128_imm);
%}
instruct vsll4S(vecD dst, vecD src, vecX shift) %{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (LShiftVS src shift));
match(Set dst (RShiftVS src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (4H)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift64);
%}
instruct vsll8S(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 8);
match(Set dst (LShiftVS src shift));
match(Set dst (RShiftVS src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (8H)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsrl4S(vecD dst, vecD src, vecX shift) %{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (URShiftVS src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (4H)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift64);
%}
instruct vsrl8S(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 8);
match(Set dst (URShiftVS src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (8H)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsll4S_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (LShiftVS src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (4H)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 16) {
__ eor(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ shl(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src$$reg), sh);
}
%}
ins_pipe(vshift64_imm);
%}
instruct vsll8S_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 8);
match(Set dst (LShiftVS src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (8H)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 16) {
__ eor(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ shl(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src$$reg), sh);
}
%}
ins_pipe(vshift128_imm);
%}
instruct vsra4S_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (RShiftVS src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (4H)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 16) sh = 15;
sh = -sh & 15;
__ sshr(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src$$reg), sh);
%}
ins_pipe(vshift64_imm);
%}
instruct vsra8S_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 8);
match(Set dst (RShiftVS src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (8H)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 16) sh = 15;
sh = -sh & 15;
__ sshr(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src$$reg), sh);
%}
ins_pipe(vshift128_imm);
%}
instruct vsrl4S_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 2 ||
n->as_Vector()->length() == 4);
match(Set dst (URShiftVS src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (4H)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 16) {
__ eor(as_FloatRegister($dst$$reg), __ T8B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ ushr(as_FloatRegister($dst$$reg), __ T4H,
as_FloatRegister($src$$reg), -sh & 15);
}
%}
ins_pipe(vshift64_imm);
%}
instruct vsrl8S_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 8);
match(Set dst (URShiftVS src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (8H)" %}
ins_encode %{
int sh = (int)$shift$$constant & 31;
if (sh >= 16) {
__ eor(as_FloatRegister($dst$$reg), __ T16B,
as_FloatRegister($src$$reg),
as_FloatRegister($src$$reg));
} else {
__ ushr(as_FloatRegister($dst$$reg), __ T8H,
as_FloatRegister($src$$reg), -sh & 15);
}
%}
ins_pipe(vshift128_imm);
%}
instruct vsll2I(vecD dst, vecD src, vecX shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (LShiftVI src shift));
match(Set dst (RShiftVI src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (2S)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift64);
%}
instruct vsll4I(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 4);
match(Set dst (LShiftVI src shift));
match(Set dst (RShiftVI src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (4S)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsrl2I(vecD dst, vecD src, vecX shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (URShiftVI src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (2S)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift64);
%}
instruct vsrl4I(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 4);
match(Set dst (URShiftVI src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (4S)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsll2I_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (LShiftVI src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (2S)" %}
ins_encode %{
__ shl(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg),
(int)$shift$$constant & 31);
%}
ins_pipe(vshift64_imm);
%}
instruct vsll4I_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 4);
match(Set dst (LShiftVI src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (4S)" %}
ins_encode %{
__ shl(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg),
(int)$shift$$constant & 31);
%}
ins_pipe(vshift128_imm);
%}
instruct vsra2I_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (RShiftVI src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (2S)" %}
ins_encode %{
__ sshr(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg),
-(int)$shift$$constant & 31);
%}
ins_pipe(vshift64_imm);
%}
instruct vsra4I_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 4);
match(Set dst (RShiftVI src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (4S)" %}
ins_encode %{
__ sshr(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg),
-(int)$shift$$constant & 31);
%}
ins_pipe(vshift128_imm);
%}
instruct vsrl2I_imm(vecD dst, vecD src, immI shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (URShiftVI src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (2S)" %}
ins_encode %{
__ ushr(as_FloatRegister($dst$$reg), __ T2S,
as_FloatRegister($src$$reg),
-(int)$shift$$constant & 31);
%}
ins_pipe(vshift64_imm);
%}
instruct vsrl4I_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 4);
match(Set dst (URShiftVI src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (4S)" %}
ins_encode %{
__ ushr(as_FloatRegister($dst$$reg), __ T4S,
as_FloatRegister($src$$reg),
-(int)$shift$$constant & 31);
%}
ins_pipe(vshift128_imm);
%}
instruct vsll2L(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (LShiftVL src shift));
match(Set dst (RShiftVL src shift));
ins_cost(INSN_COST);
format %{ "sshl $dst,$src,$shift\t# vector (2D)" %}
ins_encode %{
__ sshl(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsrl2L(vecX dst, vecX src, vecX shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (URShiftVL src shift));
ins_cost(INSN_COST);
format %{ "ushl $dst,$src,$shift\t# vector (2D)" %}
ins_encode %{
__ ushl(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg),
as_FloatRegister($shift$$reg));
%}
ins_pipe(vshift128);
%}
instruct vsll2L_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (LShiftVL src shift));
ins_cost(INSN_COST);
format %{ "shl $dst, $src, $shift\t# vector (2D)" %}
ins_encode %{
__ shl(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg),
(int)$shift$$constant & 63);
%}
ins_pipe(vshift128_imm);
%}
instruct vsra2L_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (RShiftVL src shift));
ins_cost(INSN_COST);
format %{ "sshr $dst, $src, $shift\t# vector (2D)" %}
ins_encode %{
__ sshr(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg),
-(int)$shift$$constant & 63);
%}
ins_pipe(vshift128_imm);
%}
instruct vsrl2L_imm(vecX dst, vecX src, immI shift) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (URShiftVL src shift));
ins_cost(INSN_COST);
format %{ "ushr $dst, $src, $shift\t# vector (2D)" %}
ins_encode %{
__ ushr(as_FloatRegister($dst$$reg), __ T2D,
as_FloatRegister($src$$reg),
-(int)$shift$$constant & 63);
%}
ins_pipe(vshift128_imm);
%}
//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// peepmatch ( root_instr_name [preceding_instruction]* );
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
// [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser. An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == RAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(iRegINoSp dst, iRegI src)
// %{
// match(Set dst (CopyI src));
// %}
//
// instruct incI_iReg(iRegINoSp dst, immI1 src, rFlagsReg cr)
// %{
// match(Set dst (AddI dst src));
// effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
// // increment preceeded by register-register move
// peepmatch ( incI_iReg movI );
// // require that the destination register of the increment
// // match the destination register of the move
// peepconstraint ( 0.dst == 1.dst );
// // construct a replacement instruction that sets
// // the destination to ( move's source register + one )
// peepreplace ( leaI_iReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// Implementation no longer uses movX instructions since
// machine-independent system no longer uses CopyX nodes.
//
// peephole
// %{
// peepmatch (incI_iReg movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (decI_iReg movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (addI_iReg_imm movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (incL_iReg movL);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (decL_iReg movL);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (addL_iReg_imm movL);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (addP_iReg_imm movP);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaP_iReg_imm(0.dst 1.src 0.src));
// %}
// // Change load of spilled value to only a spill
// instruct storeI(memory mem, iRegI src)
// %{
// match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(iRegINoSp dst, memory mem)
// %{
// match(Set dst (LoadI mem));
// %}
//
//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
// Local Variables:
// mode: c++
// End: