blob: 0c35250b3eaf936355a0a49a60442d7d43b55c0d [file] [log] [blame]
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateInterpreter.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "interpreter/templateTable.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/timerTrace.hpp"
#ifndef CC_INTERP
# define __ _masm->
void TemplateInterpreter::initialize() {
if (_code != NULL) return;
// assertions
assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
"dispatch table too small");
AbstractInterpreter::initialize();
TemplateTable::initialize();
// generate interpreter
{ ResourceMark rm;
TraceTime timer("Interpreter generation", TRACETIME_LOG(Info, startuptime));
int code_size = InterpreterCodeSize;
NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space
_code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
"Interpreter");
TemplateInterpreterGenerator g(_code);
// Free the unused memory not occupied by the interpreter and the stubs
_code->deallocate_unused_tail();
}
if (PrintInterpreter) {
ResourceMark rm;
print();
}
// initialize dispatch table
_active_table = _normal_table;
}
//------------------------------------------------------------------------------------------------------------------------
// Implementation of EntryPoint
EntryPoint::EntryPoint() {
assert(number_of_states == 10, "check the code below");
_entry[btos] = NULL;
_entry[ztos] = NULL;
_entry[ctos] = NULL;
_entry[stos] = NULL;
_entry[atos] = NULL;
_entry[itos] = NULL;
_entry[ltos] = NULL;
_entry[ftos] = NULL;
_entry[dtos] = NULL;
_entry[vtos] = NULL;
}
EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
assert(number_of_states == 10, "check the code below");
_entry[btos] = bentry;
_entry[ztos] = zentry;
_entry[ctos] = centry;
_entry[stos] = sentry;
_entry[atos] = aentry;
_entry[itos] = ientry;
_entry[ltos] = lentry;
_entry[ftos] = fentry;
_entry[dtos] = dentry;
_entry[vtos] = ventry;
}
void EntryPoint::set_entry(TosState state, address entry) {
assert(0 <= state && state < number_of_states, "state out of bounds");
_entry[state] = entry;
}
address EntryPoint::entry(TosState state) const {
assert(0 <= state && state < number_of_states, "state out of bounds");
return _entry[state];
}
void EntryPoint::print() {
tty->print("[");
for (int i = 0; i < number_of_states; i++) {
if (i > 0) tty->print(", ");
tty->print(INTPTR_FORMAT, p2i(_entry[i]));
}
tty->print("]");
}
bool EntryPoint::operator == (const EntryPoint& y) {
int i = number_of_states;
while (i-- > 0) {
if (_entry[i] != y._entry[i]) return false;
}
return true;
}
//------------------------------------------------------------------------------------------------------------------------
// Implementation of DispatchTable
EntryPoint DispatchTable::entry(int i) const {
assert(0 <= i && i < length, "index out of bounds");
return
EntryPoint(
_table[btos][i],
_table[ztos][i],
_table[ctos][i],
_table[stos][i],
_table[atos][i],
_table[itos][i],
_table[ltos][i],
_table[ftos][i],
_table[dtos][i],
_table[vtos][i]
);
}
void DispatchTable::set_entry(int i, EntryPoint& entry) {
assert(0 <= i && i < length, "index out of bounds");
assert(number_of_states == 10, "check the code below");
_table[btos][i] = entry.entry(btos);
_table[ztos][i] = entry.entry(ztos);
_table[ctos][i] = entry.entry(ctos);
_table[stos][i] = entry.entry(stos);
_table[atos][i] = entry.entry(atos);
_table[itos][i] = entry.entry(itos);
_table[ltos][i] = entry.entry(ltos);
_table[ftos][i] = entry.entry(ftos);
_table[dtos][i] = entry.entry(dtos);
_table[vtos][i] = entry.entry(vtos);
}
bool DispatchTable::operator == (DispatchTable& y) {
int i = length;
while (i-- > 0) {
EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
if (!(entry(i) == t)) return false;
}
return true;
}
address TemplateInterpreter::_remove_activation_entry = NULL;
address TemplateInterpreter::_remove_activation_preserving_args_entry = NULL;
address TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
address TemplateInterpreter::_throw_ArrayStoreException_entry = NULL;
address TemplateInterpreter::_throw_ArithmeticException_entry = NULL;
address TemplateInterpreter::_throw_ClassCastException_entry = NULL;
address TemplateInterpreter::_throw_NullPointerException_entry = NULL;
address TemplateInterpreter::_throw_StackOverflowError_entry = NULL;
address TemplateInterpreter::_throw_exception_entry = NULL;
#ifndef PRODUCT
EntryPoint TemplateInterpreter::_trace_code;
#endif // !PRODUCT
EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
EntryPoint TemplateInterpreter::_earlyret_entry;
EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
address TemplateInterpreter::_deopt_reexecute_return_entry;
EntryPoint TemplateInterpreter::_safept_entry;
address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
DispatchTable TemplateInterpreter::_active_table;
DispatchTable TemplateInterpreter::_normal_table;
DispatchTable TemplateInterpreter::_safept_table;
address TemplateInterpreter::_wentry_point[DispatchTable::length];
//------------------------------------------------------------------------------------------------------------------------
// Entry points
/**
* Returns the return entry table for the given invoke bytecode.
*/
address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_invokestatic:
case Bytecodes::_invokespecial:
case Bytecodes::_invokevirtual:
case Bytecodes::_invokehandle:
return Interpreter::invoke_return_entry_table();
case Bytecodes::_invokeinterface:
return Interpreter::invokeinterface_return_entry_table();
case Bytecodes::_invokedynamic:
return Interpreter::invokedynamic_return_entry_table();
default:
fatal("invalid bytecode: %s", Bytecodes::name(code));
return NULL;
}
}
/**
* Returns the return entry address for the given top-of-stack state and bytecode.
*/
address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
const int index = TosState_as_index(state);
switch (code) {
case Bytecodes::_invokestatic:
case Bytecodes::_invokespecial:
case Bytecodes::_invokevirtual:
case Bytecodes::_invokehandle:
return _invoke_return_entry[index];
case Bytecodes::_invokeinterface:
return _invokeinterface_return_entry[index];
case Bytecodes::_invokedynamic:
return _invokedynamic_return_entry[index];
default:
assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code));
address entry = _return_entry[length].entry(state);
vmassert(entry != NULL, "unsupported return entry requested, length=%d state=%d", length, index);
return entry;
}
}
address TemplateInterpreter::deopt_entry(TosState state, int length) {
guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
address entry = _deopt_entry[length].entry(state);
vmassert(entry != NULL, "unsupported deopt entry requested, length=%d state=%d", length, TosState_as_index(state));
return entry;
}
//------------------------------------------------------------------------------------------------------------------------
// Suport for invokes
int TemplateInterpreter::TosState_as_index(TosState state) {
assert( state < number_of_states , "Invalid state in TosState_as_index");
assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
return (int)state;
}
//------------------------------------------------------------------------------------------------------------------------
// Safepoint suppport
static inline void copy_table(address* from, address* to, int size) {
// Copy non-overlapping tables. The copy has to occur word wise for MT safety.
while (size-- > 0) *to++ = *from++;
}
void TemplateInterpreter::notice_safepoints() {
if (!_notice_safepoints) {
log_debug(interpreter, safepoint)("switching active_table to safept_table.");
// switch to safepoint dispatch table
_notice_safepoints = true;
copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
} else {
log_debug(interpreter, safepoint)("active_table is already safept_table; "
"notice_safepoints() call is no-op.");
}
}
// switch from the dispatch table which notices safepoints back to the
// normal dispatch table. So that we can notice single stepping points,
// keep the safepoint dispatch table if we are single stepping in JVMTI.
// Note that the should_post_single_step test is exactly as fast as the
// JvmtiExport::_enabled test and covers both cases.
void TemplateInterpreter::ignore_safepoints() {
if (_notice_safepoints) {
if (!JvmtiExport::should_post_single_step()) {
log_debug(interpreter, safepoint)("switching active_table to normal_table.");
// switch to normal dispatch table
_notice_safepoints = false;
copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
} else {
log_debug(interpreter, safepoint)("single stepping is still active; "
"ignoring ignore_safepoints() call.");
}
} else {
log_debug(interpreter, safepoint)("active_table is already normal_table; "
"ignore_safepoints() call is no-op.");
}
}
//------------------------------------------------------------------------------------------------------------------------
// Deoptimization support
// If deoptimization happens, this function returns the point of next bytecode to continue execution
address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
}
// If deoptimization happens, this function returns the point where the interpreter reexecutes
// the bytecode.
// Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
// that do not return "Interpreter::deopt_entry(vtos, 0)"
address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
assert(method->contains(bcp), "just checkin'");
Bytecodes::Code code = Bytecodes::code_at(method, bcp);
if (code == Bytecodes::_return_register_finalizer) {
// This is used for deopt during registration of finalizers
// during Object.<init>. We simply need to resume execution at
// the standard return vtos bytecode to pop the frame normally.
// reexecuting the real bytecode would cause double registration
// of the finalizable object.
return Interpreter::deopt_reexecute_return_entry();
} else {
return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
}
}
// If deoptimization happens, the interpreter should reexecute this bytecode.
// This function mainly helps the compilers to set up the reexecute bit.
bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
if (code == Bytecodes::_return) {
//Yes, we consider Bytecodes::_return as a special case of reexecution
return true;
} else {
return AbstractInterpreter::bytecode_should_reexecute(code);
}
}
InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) {
return (InterpreterCodelet*)_code->stub_containing(pc);
}
#endif // !CC_INTERP