blob: c97ff6675a2315218b4260cde1071139df82816f [file] [log] [blame]
/*
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_SHAREDHEAP_HPP
#define SHARE_VM_MEMORY_SHAREDHEAP_HPP
#include "gc_interface/collectedHeap.hpp"
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "memory/generation.hpp"
#include "memory/permGen.hpp"
// A "SharedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
class PermGen;
class Generation;
class BarrierSet;
class GenRemSet;
class Space;
class SpaceClosure;
class OopClosure;
class OopsInGenClosure;
class ObjectClosure;
class SubTasksDone;
class WorkGang;
class FlexibleWorkGang;
class CollectorPolicy;
class KlassHandle;
// Note on use of FlexibleWorkGang's for GC.
// There are three places where task completion is determined.
// In
// 1) ParallelTaskTerminator::offer_termination() where _n_threads
// must be set to the correct value so that count of workers that
// have offered termination will exactly match the number
// working on the task. Tasks such as those derived from GCTask
// use ParallelTaskTerminator's. Tasks that want load balancing
// by work stealing use this method to gauge completion.
// 2) SubTasksDone has a variable _n_threads that is used in
// all_tasks_completed() to determine completion. all_tasks_complete()
// counts the number of tasks that have been done and then reset
// the SubTasksDone so that it can be used again. When the number of
// tasks is set to the number of GC workers, then _n_threads must
// be set to the number of active GC workers. G1CollectedHeap,
// HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
// This seems too many.
// 3) SequentialSubTasksDone has an _n_threads that is used in
// a way similar to SubTasksDone and has the same dependency on the
// number of active GC workers. CompactibleFreeListSpace and Space
// have SequentialSubTasksDone's.
// Example of using SubTasksDone and SequentialSubTasksDone
// G1CollectedHeap::g1_process_strong_roots() calls
// process_strong_roots(false, // no scoping; this is parallel code
// collecting_perm_gen, so,
// &buf_scan_non_heap_roots,
// &eager_scan_code_roots,
// &buf_scan_perm);
// which delegates to SharedHeap::process_strong_roots() and uses
// SubTasksDone* _process_strong_tasks to claim tasks.
// process_strong_roots() calls
// rem_set()->younger_refs_iterate(perm_gen(), perm_blk);
// to scan the card table and which eventually calls down into
// CardTableModRefBS::par_non_clean_card_iterate_work(). This method
// uses SequentialSubTasksDone* _pst to claim tasks.
// Both SubTasksDone and SequentialSubTasksDone call their method
// all_tasks_completed() to count the number of GC workers that have
// finished their work. That logic is "when all the workers are
// finished the tasks are finished".
//
// The pattern that appears in the code is to set _n_threads
// to a value > 1 before a task that you would like executed in parallel
// and then to set it to 0 after that task has completed. A value of
// 0 is a "special" value in set_n_threads() which translates to
// setting _n_threads to 1.
//
// Some code uses _n_terminiation to decide if work should be done in
// parallel. The notorious possibly_parallel_oops_do() in threads.cpp
// is an example of such code. Look for variable "is_par" for other
// examples.
//
// The active_workers is not reset to 0 after a parallel phase. It's
// value may be used in later phases and in one instance at least
// (the parallel remark) it has to be used (the parallel remark depends
// on the partitioning done in the previous parallel scavenge).
class SharedHeap : public CollectedHeap {
friend class VMStructs;
friend class VM_GC_Operation;
friend class VM_CGC_Operation;
private:
// For claiming strong_roots tasks.
SubTasksDone* _process_strong_tasks;
protected:
// There should be only a single instance of "SharedHeap" in a program.
// This is enforced with the protected constructor below, which will also
// set the static pointer "_sh" to that instance.
static SharedHeap* _sh;
// All heaps contain a "permanent generation." This is some ways
// similar to a generation in a generational system, in other ways not.
// See the "PermGen" class.
PermGen* _perm_gen;
// and the Gen Remembered Set, at least one good enough to scan the perm
// gen.
GenRemSet* _rem_set;
// A gc policy, controls global gc resource issues
CollectorPolicy *_collector_policy;
// See the discussion below, in the specification of the reader function
// for this variable.
int _strong_roots_parity;
// If we're doing parallel GC, use this gang of threads.
FlexibleWorkGang* _workers;
// Full initialization is done in a concrete subtype's "initialize"
// function.
SharedHeap(CollectorPolicy* policy_);
// Returns true if the calling thread holds the heap lock,
// or the calling thread is a par gc thread and the heap_lock is held
// by the vm thread doing a gc operation.
bool heap_lock_held_for_gc();
// True if the heap_lock is held by the a non-gc thread invoking a gc
// operation.
bool _thread_holds_heap_lock_for_gc;
public:
static SharedHeap* heap() { return _sh; }
CollectorPolicy *collector_policy() const { return _collector_policy; }
void set_barrier_set(BarrierSet* bs);
SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
// Does operations required after initialization has been done.
virtual void post_initialize();
// Initialization of ("weak") reference processing support
virtual void ref_processing_init();
void set_perm(PermGen* perm_gen) { _perm_gen = perm_gen; }
// This function returns the "GenRemSet" object that allows us to scan
// generations; at least the perm gen, possibly more in a fully
// generational heap.
GenRemSet* rem_set() { return _rem_set; }
// These function return the "permanent" generation, in which
// reflective objects are allocated and stored. Two versions, the second
// of which returns the view of the perm gen as a generation.
PermGen* perm() const { return _perm_gen; }
Generation* perm_gen() const { return _perm_gen->as_gen(); }
// Iteration functions.
void oop_iterate(OopClosure* cl) = 0;
// Same as above, restricted to a memory region.
virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
// Iterate over all objects allocated since the last collection, calling
// "cl->do_object" on each. The heap must have been initialized properly
// to support this function, or else this call will fail.
virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
// Iterate over all spaces in use in the heap, in an undefined order.
virtual void space_iterate(SpaceClosure* cl) = 0;
// A SharedHeap will contain some number of spaces. This finds the
// space whose reserved area contains the given address, or else returns
// NULL.
virtual Space* space_containing(const void* addr) const = 0;
bool no_gc_in_progress() { return !is_gc_active(); }
// Some collectors will perform "process_strong_roots" in parallel.
// Such a call will involve claiming some fine-grained tasks, such as
// scanning of threads. To make this process simpler, we provide the
// "strong_roots_parity()" method. Collectors that start parallel tasks
// whose threads invoke "process_strong_roots" must
// call "change_strong_roots_parity" in sequential code starting such a
// task. (This also means that a parallel thread may only call
// process_strong_roots once.)
//
// For calls to process_strong_roots by sequential code, the parity is
// updated automatically.
//
// The idea is that objects representing fine-grained tasks, such as
// threads, will contain a "parity" field. A task will is claimed in the
// current "process_strong_roots" call only if its parity field is the
// same as the "strong_roots_parity"; task claiming is accomplished by
// updating the parity field to the strong_roots_parity with a CAS.
//
// If the client meats this spec, then strong_roots_parity() will have
// the following properties:
// a) to return a different value than was returned before the last
// call to change_strong_roots_parity, and
// c) to never return a distinguished value (zero) with which such
// task-claiming variables may be initialized, to indicate "never
// claimed".
private:
void change_strong_roots_parity();
public:
int strong_roots_parity() { return _strong_roots_parity; }
// Call these in sequential code around process_strong_roots.
// strong_roots_prologue calls change_strong_roots_parity, if
// parallel tasks are enabled.
class StrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
public:
StrongRootsScope(SharedHeap* outer, bool activate = true);
~StrongRootsScope();
};
friend class StrongRootsScope;
enum ScanningOption {
SO_None = 0x0,
SO_AllClasses = 0x1,
SO_SystemClasses = 0x2,
SO_Strings = 0x4,
SO_CodeCache = 0x8
};
FlexibleWorkGang* workers() const { return _workers; }
// Invoke the "do_oop" method the closure "roots" on all root locations.
// If "collecting_perm_gen" is false, then roots that may only contain
// references to permGen objects are not scanned; instead, in that case,
// the "perm_blk" closure is applied to all outgoing refs in the
// permanent generation. The "so" argument determines which of roots
// the closure is applied to:
// "SO_None" does none;
// "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
// "SO_SystemClasses" to all the "system" classes and loaders;
// "SO_Strings" applies the closure to all entries in StringTable;
// "SO_CodeCache" applies the closure to all elements of the CodeCache.
void process_strong_roots(bool activate_scope,
bool collecting_perm_gen,
ScanningOption so,
OopClosure* roots,
CodeBlobClosure* code_roots,
OopsInGenClosure* perm_blk);
// Apply "blk" to all the weak roots of the system. These include
// JNI weak roots, the code cache, system dictionary, symbol table,
// string table.
void process_weak_roots(OopClosure* root_closure,
CodeBlobClosure* code_roots,
OopClosure* non_root_closure);
// The functions below are helper functions that a subclass of
// "SharedHeap" can use in the implementation of its virtual
// functions.
public:
// Do anything common to GC's.
virtual void gc_prologue(bool full) = 0;
virtual void gc_epilogue(bool full) = 0;
// Sets the number of parallel threads that will be doing tasks
// (such as process strong roots) subsequently.
virtual void set_par_threads(uint t);
int n_termination();
void set_n_termination(int t);
//
// New methods from CollectedHeap
//
size_t permanent_capacity() const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->capacity();
}
size_t permanent_used() const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->used();
}
VirtualSpaceSummary create_perm_gen_space_summary() {
HeapWord* start = perm_gen()->reserved().start();
return VirtualSpaceSummary(start, (HeapWord*)((uintptr_t)start + perm_gen()->capacity()), perm_gen()->reserved().end());
}
bool is_in_permanent(const void *p) const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->is_in_reserved(p);
}
// Different from is_in_permanent in that is_in_permanent
// only checks if p is in the reserved area of the heap
// and this checks to see if it in the commited area.
// This is typically used by things like the forte stackwalker
// during verification of suspicious frame values.
bool is_permanent(const void *p) const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->is_in(p);
}
HeapWord* permanent_mem_allocate(size_t size) {
assert(perm_gen(), "NULL perm gen");
return _perm_gen->mem_allocate(size);
}
void permanent_oop_iterate(OopClosure* cl) {
assert(perm_gen(), "NULL perm gen");
_perm_gen->oop_iterate(cl);
}
void permanent_object_iterate(ObjectClosure* cl) {
assert(perm_gen(), "NULL perm gen");
_perm_gen->object_iterate(cl);
}
// Some utilities.
void print_size_transition(outputStream* out,
size_t bytes_before,
size_t bytes_after,
size_t capacity);
};
#endif // SHARE_VM_MEMORY_SHAREDHEAP_HPP