blob: 8d4b7f94713a2f269128e5d39f9dfbdebdf5a8b4 [file] [log] [blame]
/*
* Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef OS_LINUX_OS_LINUX_HPP
#define OS_LINUX_OS_LINUX_HPP
// Linux_OS defines the interface to Linux operating systems
// Information about the protection of the page at address '0' on this os.
static bool zero_page_read_protected() { return true; }
class Linux {
friend class CgroupSubsystem;
friend class os;
friend class OSContainer;
friend class TestReserveMemorySpecial;
static bool libjsig_is_loaded; // libjsig that interposes sigaction(),
// __sigaction(), signal() is loaded
static struct sigaction *(*get_signal_action)(int);
static void check_signal_handler(int sig);
static int (*_pthread_getcpuclockid)(pthread_t, clockid_t *);
static int (*_pthread_setname_np)(pthread_t, const char*);
static address _initial_thread_stack_bottom;
static uintptr_t _initial_thread_stack_size;
static const char *_glibc_version;
static const char *_libpthread_version;
static bool _supports_fast_thread_cpu_time;
static GrowableArray<int>* _cpu_to_node;
static GrowableArray<int>* _nindex_to_node;
protected:
static julong _physical_memory;
static pthread_t _main_thread;
static int _page_size;
static julong available_memory();
static julong physical_memory() { return _physical_memory; }
static void set_physical_memory(julong phys_mem) { _physical_memory = phys_mem; }
static int active_processor_count();
static void initialize_system_info();
static int commit_memory_impl(char* addr, size_t bytes, bool exec);
static int commit_memory_impl(char* addr, size_t bytes,
size_t alignment_hint, bool exec);
static void set_glibc_version(const char *s) { _glibc_version = s; }
static void set_libpthread_version(const char *s) { _libpthread_version = s; }
static void rebuild_cpu_to_node_map();
static void rebuild_nindex_to_node_map();
static GrowableArray<int>* cpu_to_node() { return _cpu_to_node; }
static GrowableArray<int>* nindex_to_node() { return _nindex_to_node; }
static size_t find_large_page_size();
static size_t setup_large_page_size();
static bool setup_large_page_type(size_t page_size);
static bool transparent_huge_pages_sanity_check(bool warn, size_t pages_size);
static bool hugetlbfs_sanity_check(bool warn, size_t page_size);
static char* reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec);
static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec);
static char* reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec);
static char* reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec);
static bool release_memory_special_impl(char* base, size_t bytes);
static bool release_memory_special_shm(char* base, size_t bytes);
static bool release_memory_special_huge_tlbfs(char* base, size_t bytes);
static void print_full_memory_info(outputStream* st);
static void print_container_info(outputStream* st);
static void print_steal_info(outputStream* st);
static void print_distro_info(outputStream* st);
static void print_libversion_info(outputStream* st);
static void print_proc_sys_info(outputStream* st);
static void print_ld_preload_file(outputStream* st);
static void print_uptime_info(outputStream* st);
public:
struct CPUPerfTicks {
uint64_t used;
uint64_t usedKernel;
uint64_t total;
uint64_t steal;
bool has_steal_ticks;
};
// which_logical_cpu=-1 returns accumulated ticks for all cpus.
static bool get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu);
static bool _stack_is_executable;
static void *dlopen_helper(const char *name, char *ebuf, int ebuflen);
static void *dll_load_in_vmthread(const char *name, char *ebuf, int ebuflen);
static void init_thread_fpu_state();
static int get_fpu_control_word();
static void set_fpu_control_word(int fpu_control);
static pthread_t main_thread(void) { return _main_thread; }
// returns kernel thread id (similar to LWP id on Solaris), which can be
// used to access /proc
static pid_t gettid();
static void hotspot_sigmask(Thread* thread);
static address initial_thread_stack_bottom(void) { return _initial_thread_stack_bottom; }
static uintptr_t initial_thread_stack_size(void) { return _initial_thread_stack_size; }
static int page_size(void) { return _page_size; }
static void set_page_size(int val) { _page_size = val; }
static address ucontext_get_pc(const ucontext_t* uc);
static void ucontext_set_pc(ucontext_t* uc, address pc);
static intptr_t* ucontext_get_sp(const ucontext_t* uc);
static intptr_t* ucontext_get_fp(const ucontext_t* uc);
// For Analyzer Forte AsyncGetCallTrace profiling support:
//
// This interface should be declared in os_linux_i486.hpp, but
// that file provides extensions to the os class and not the
// Linux class.
static ExtendedPC fetch_frame_from_ucontext(Thread* thread, const ucontext_t* uc,
intptr_t** ret_sp, intptr_t** ret_fp);
static bool get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr);
// This boolean allows users to forward their own non-matching signals
// to JVM_handle_linux_signal, harmlessly.
static bool signal_handlers_are_installed;
static int get_our_sigflags(int);
static void set_our_sigflags(int, int);
static void signal_sets_init();
static void install_signal_handlers();
static void set_signal_handler(int, bool);
static sigset_t* unblocked_signals();
static sigset_t* vm_signals();
// For signal-chaining
static struct sigaction *get_chained_signal_action(int sig);
static bool chained_handler(int sig, siginfo_t* siginfo, void* context);
// GNU libc and libpthread version strings
static const char *glibc_version() { return _glibc_version; }
static const char *libpthread_version() { return _libpthread_version; }
static void libpthread_init();
static void sched_getcpu_init();
static bool libnuma_init();
static void* libnuma_dlsym(void* handle, const char* name);
// libnuma v2 (libnuma_1.2) symbols
static void* libnuma_v2_dlsym(void* handle, const char* name);
// Return default guard size for the specified thread type
static size_t default_guard_size(os::ThreadType thr_type);
static void capture_initial_stack(size_t max_size);
// Stack overflow handling
static bool manually_expand_stack(JavaThread * t, address addr);
// fast POSIX clocks support
static void fast_thread_clock_init(void);
static int pthread_getcpuclockid(pthread_t tid, clockid_t *clock_id) {
return _pthread_getcpuclockid ? _pthread_getcpuclockid(tid, clock_id) : -1;
}
static bool supports_fast_thread_cpu_time() {
return _supports_fast_thread_cpu_time;
}
static jlong fast_thread_cpu_time(clockid_t clockid);
// Stack repair handling
// none present
private:
static void numa_init();
static void expand_stack_to(address bottom);
typedef int (*sched_getcpu_func_t)(void);
typedef int (*numa_node_to_cpus_func_t)(int node, unsigned long *buffer, int bufferlen);
typedef int (*numa_max_node_func_t)(void);
typedef int (*numa_num_configured_nodes_func_t)(void);
typedef int (*numa_available_func_t)(void);
typedef int (*numa_tonode_memory_func_t)(void *start, size_t size, int node);
typedef void (*numa_interleave_memory_func_t)(void *start, size_t size, unsigned long *nodemask);
typedef void (*numa_interleave_memory_v2_func_t)(void *start, size_t size, struct bitmask* mask);
typedef struct bitmask* (*numa_get_membind_func_t)(void);
typedef struct bitmask* (*numa_get_interleave_mask_func_t)(void);
typedef long (*numa_move_pages_func_t)(int pid, unsigned long count, void **pages, const int *nodes, int *status, int flags);
typedef void (*numa_set_bind_policy_func_t)(int policy);
typedef int (*numa_bitmask_isbitset_func_t)(struct bitmask *bmp, unsigned int n);
typedef int (*numa_distance_func_t)(int node1, int node2);
static sched_getcpu_func_t _sched_getcpu;
static numa_node_to_cpus_func_t _numa_node_to_cpus;
static numa_max_node_func_t _numa_max_node;
static numa_num_configured_nodes_func_t _numa_num_configured_nodes;
static numa_available_func_t _numa_available;
static numa_tonode_memory_func_t _numa_tonode_memory;
static numa_interleave_memory_func_t _numa_interleave_memory;
static numa_interleave_memory_v2_func_t _numa_interleave_memory_v2;
static numa_set_bind_policy_func_t _numa_set_bind_policy;
static numa_bitmask_isbitset_func_t _numa_bitmask_isbitset;
static numa_distance_func_t _numa_distance;
static numa_get_membind_func_t _numa_get_membind;
static numa_get_interleave_mask_func_t _numa_get_interleave_mask;
static numa_move_pages_func_t _numa_move_pages;
static unsigned long* _numa_all_nodes;
static struct bitmask* _numa_all_nodes_ptr;
static struct bitmask* _numa_nodes_ptr;
static struct bitmask* _numa_interleave_bitmask;
static struct bitmask* _numa_membind_bitmask;
static void set_sched_getcpu(sched_getcpu_func_t func) { _sched_getcpu = func; }
static void set_numa_node_to_cpus(numa_node_to_cpus_func_t func) { _numa_node_to_cpus = func; }
static void set_numa_max_node(numa_max_node_func_t func) { _numa_max_node = func; }
static void set_numa_num_configured_nodes(numa_num_configured_nodes_func_t func) { _numa_num_configured_nodes = func; }
static void set_numa_available(numa_available_func_t func) { _numa_available = func; }
static void set_numa_tonode_memory(numa_tonode_memory_func_t func) { _numa_tonode_memory = func; }
static void set_numa_interleave_memory(numa_interleave_memory_func_t func) { _numa_interleave_memory = func; }
static void set_numa_interleave_memory_v2(numa_interleave_memory_v2_func_t func) { _numa_interleave_memory_v2 = func; }
static void set_numa_set_bind_policy(numa_set_bind_policy_func_t func) { _numa_set_bind_policy = func; }
static void set_numa_bitmask_isbitset(numa_bitmask_isbitset_func_t func) { _numa_bitmask_isbitset = func; }
static void set_numa_distance(numa_distance_func_t func) { _numa_distance = func; }
static void set_numa_get_membind(numa_get_membind_func_t func) { _numa_get_membind = func; }
static void set_numa_get_interleave_mask(numa_get_interleave_mask_func_t func) { _numa_get_interleave_mask = func; }
static void set_numa_move_pages(numa_move_pages_func_t func) { _numa_move_pages = func; }
static void set_numa_all_nodes(unsigned long* ptr) { _numa_all_nodes = ptr; }
static void set_numa_all_nodes_ptr(struct bitmask **ptr) { _numa_all_nodes_ptr = (ptr == NULL ? NULL : *ptr); }
static void set_numa_nodes_ptr(struct bitmask **ptr) { _numa_nodes_ptr = (ptr == NULL ? NULL : *ptr); }
static void set_numa_interleave_bitmask(struct bitmask* ptr) { _numa_interleave_bitmask = ptr ; }
static void set_numa_membind_bitmask(struct bitmask* ptr) { _numa_membind_bitmask = ptr ; }
static int sched_getcpu_syscall(void);
enum NumaAllocationPolicy{
NotInitialized,
Membind,
Interleave
};
static NumaAllocationPolicy _current_numa_policy;
public:
static int sched_getcpu() { return _sched_getcpu != NULL ? _sched_getcpu() : -1; }
static int numa_node_to_cpus(int node, unsigned long *buffer, int bufferlen) {
return _numa_node_to_cpus != NULL ? _numa_node_to_cpus(node, buffer, bufferlen) : -1;
}
static int numa_max_node() { return _numa_max_node != NULL ? _numa_max_node() : -1; }
static int numa_num_configured_nodes() {
return _numa_num_configured_nodes != NULL ? _numa_num_configured_nodes() : -1;
}
static int numa_available() { return _numa_available != NULL ? _numa_available() : -1; }
static int numa_tonode_memory(void *start, size_t size, int node) {
return _numa_tonode_memory != NULL ? _numa_tonode_memory(start, size, node) : -1;
}
static bool is_running_in_interleave_mode() {
return _current_numa_policy == Interleave;
}
static void set_configured_numa_policy(NumaAllocationPolicy numa_policy) {
_current_numa_policy = numa_policy;
}
static NumaAllocationPolicy identify_numa_policy() {
for (int node = 0; node <= Linux::numa_max_node(); node++) {
if (Linux::_numa_bitmask_isbitset(Linux::_numa_interleave_bitmask, node)) {
return Interleave;
}
}
return Membind;
}
static void numa_interleave_memory(void *start, size_t size) {
// Prefer v2 API
if (_numa_interleave_memory_v2 != NULL) {
if (is_running_in_interleave_mode()) {
_numa_interleave_memory_v2(start, size, _numa_interleave_bitmask);
} else if (_numa_membind_bitmask != NULL) {
_numa_interleave_memory_v2(start, size, _numa_membind_bitmask);
}
} else if (_numa_interleave_memory != NULL) {
_numa_interleave_memory(start, size, _numa_all_nodes);
}
}
static void numa_set_bind_policy(int policy) {
if (_numa_set_bind_policy != NULL) {
_numa_set_bind_policy(policy);
}
}
static int numa_distance(int node1, int node2) {
return _numa_distance != NULL ? _numa_distance(node1, node2) : -1;
}
static long numa_move_pages(int pid, unsigned long count, void **pages, const int *nodes, int *status, int flags) {
return _numa_move_pages != NULL ? _numa_move_pages(pid, count, pages, nodes, status, flags) : -1;
}
static int get_node_by_cpu(int cpu_id);
static int get_existing_num_nodes();
// Check if numa node is configured (non-zero memory node).
static bool is_node_in_configured_nodes(unsigned int n) {
if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) {
return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n);
} else
return false;
}
// Check if numa node exists in the system (including zero memory nodes).
static bool is_node_in_existing_nodes(unsigned int n) {
if (_numa_bitmask_isbitset != NULL && _numa_nodes_ptr != NULL) {
return _numa_bitmask_isbitset(_numa_nodes_ptr, n);
} else if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) {
// Not all libnuma API v2 implement numa_nodes_ptr, so it's not possible
// to trust the API version for checking its absence. On the other hand,
// numa_nodes_ptr found in libnuma 2.0.9 and above is the only way to get
// a complete view of all numa nodes in the system, hence numa_nodes_ptr
// is used to handle CPU and nodes on architectures (like PowerPC) where
// there can exist nodes with CPUs but no memory or vice-versa and the
// nodes may be non-contiguous. For most of the architectures, like
// x86_64, numa_node_ptr presents the same node set as found in
// numa_all_nodes_ptr so it's possible to use numa_all_nodes_ptr as a
// substitute.
return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n);
} else
return false;
}
// Check if node is in bound node set.
static bool is_node_in_bound_nodes(int node) {
if (_numa_bitmask_isbitset != NULL) {
if (is_running_in_interleave_mode()) {
return _numa_bitmask_isbitset(_numa_interleave_bitmask, node);
} else {
return _numa_membind_bitmask != NULL ? _numa_bitmask_isbitset(_numa_membind_bitmask, node) : false;
}
}
return false;
}
// Check if bound to only one numa node.
// Returns true if bound to a single numa node, otherwise returns false.
static bool is_bound_to_single_node() {
int nodes = 0;
struct bitmask* bmp = NULL;
unsigned int node = 0;
unsigned int highest_node_number = 0;
if (_numa_get_membind != NULL && _numa_max_node != NULL && _numa_bitmask_isbitset != NULL) {
bmp = _numa_get_membind();
highest_node_number = _numa_max_node();
} else {
return false;
}
for (node = 0; node <= highest_node_number; node++) {
if (_numa_bitmask_isbitset(bmp, node)) {
nodes++;
}
}
if (nodes == 1) {
return true;
} else {
return false;
}
}
};
#endif // OS_LINUX_OS_LINUX_HPP