blob: 1524861e58f9ee576adf4b4a6fefca50f32cfb04 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/concurrentMarkThread.hpp"
#include "gc/g1/g1Allocator.inline.hpp"
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1RootProcessor.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/g1StringDedup.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
class VerifyRootsClosure: public OopClosure {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyRootsClosure(VerifyOption vo) :
_g1h(G1CollectedHeap::heap()),
_vo(vo),
_failures(false) { }
bool failures() { return _failures; }
template <class T> void do_oop_nv(T* p) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (_g1h->is_obj_dead_cond(obj, _vo)) {
Log(gc, verify) log;
log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
if (_vo == VerifyOption_G1UseMarkWord) {
log.error(" Mark word: " PTR_FORMAT, p2i(obj->mark()));
}
ResourceMark rm;
LogStream ls(log.error());
obj->print_on(&ls);
_failures = true;
}
}
}
void do_oop(oop* p) { do_oop_nv(p); }
void do_oop(narrowOop* p) { do_oop_nv(p); }
};
class G1VerifyCodeRootOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
OopClosure* _root_cl;
nmethod* _nm;
VerifyOption _vo;
bool _failures;
template <class T> void do_oop_work(T* p) {
// First verify that this root is live
_root_cl->do_oop(p);
if (!G1VerifyHeapRegionCodeRoots) {
// We're not verifying the code roots attached to heap region.
return;
}
// Don't check the code roots during marking verification in a full GC
if (_vo == VerifyOption_G1UseMarkWord) {
return;
}
// Now verify that the current nmethod (which contains p) is
// in the code root list of the heap region containing the
// object referenced by p.
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
// Now fetch the region containing the object
HeapRegion* hr = _g1h->heap_region_containing(obj);
HeapRegionRemSet* hrrs = hr->rem_set();
// Verify that the strong code root list for this region
// contains the nmethod
if (!hrrs->strong_code_roots_list_contains(_nm)) {
log_error(gc, verify)("Code root location " PTR_FORMAT " "
"from nmethod " PTR_FORMAT " not in strong "
"code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
_failures = true;
}
}
}
public:
G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
_g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
void set_nmethod(nmethod* nm) { _nm = nm; }
bool failures() { return _failures; }
};
class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
G1VerifyCodeRootOopClosure* _oop_cl;
public:
G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
_oop_cl(oop_cl) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
_oop_cl->set_nmethod(nm);
nm->oops_do(_oop_cl);
}
}
};
class YoungRefCounterClosure : public OopClosure {
G1CollectedHeap* _g1h;
int _count;
public:
YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } }
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
int count() { return _count; }
void reset_count() { _count = 0; };
};
class VerifyKlassClosure: public KlassClosure {
YoungRefCounterClosure _young_ref_counter_closure;
OopClosure *_oop_closure;
public:
VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
void do_klass(Klass* k) {
k->oops_do(_oop_closure);
_young_ref_counter_closure.reset_count();
k->oops_do(&_young_ref_counter_closure);
if (_young_ref_counter_closure.count() > 0) {
guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
}
}
};
class VerifyLivenessOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
VerifyOption _vo;
public:
VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
_g1h(g1h), _vo(vo)
{ }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
"Dead object referenced by a not dead object");
}
};
class VerifyObjsInRegionClosure: public ObjectClosure {
private:
G1CollectedHeap* _g1h;
size_t _live_bytes;
HeapRegion *_hr;
VerifyOption _vo;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
: _live_bytes(0), _hr(hr), _vo(vo) {
_g1h = G1CollectedHeap::heap();
}
void do_object(oop o) {
VerifyLivenessOopClosure isLive(_g1h, _vo);
assert(o != NULL, "Huh?");
if (!_g1h->is_obj_dead_cond(o, _vo)) {
// If the object is alive according to the mark word,
// then verify that the marking information agrees.
// Note we can't verify the contra-positive of the
// above: if the object is dead (according to the mark
// word), it may not be marked, or may have been marked
// but has since became dead, or may have been allocated
// since the last marking.
if (_vo == VerifyOption_G1UseMarkWord) {
guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
}
o->oop_iterate_no_header(&isLive);
if (!_hr->obj_allocated_since_prev_marking(o)) {
size_t obj_size = o->size(); // Make sure we don't overflow
_live_bytes += (obj_size * HeapWordSize);
}
}
}
size_t live_bytes() { return _live_bytes; }
};
class VerifyArchiveOopClosure: public OopClosure {
public:
VerifyArchiveOopClosure(HeapRegion *hr) { }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj == NULL || G1ArchiveAllocator::is_archive_object(obj),
"Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
p2i(p), p2i(obj));
}
};
class VerifyArchiveRegionClosure: public ObjectClosure {
public:
VerifyArchiveRegionClosure(HeapRegion *hr) { }
// Verify that all object pointers are to archive regions.
void do_object(oop o) {
VerifyArchiveOopClosure checkOop(NULL);
assert(o != NULL, "Should not be here for NULL oops");
o->oop_iterate_no_header(&checkOop);
}
};
class VerifyRegionClosure: public HeapRegionClosure {
private:
bool _par;
VerifyOption _vo;
bool _failures;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyRegionClosure(bool par, VerifyOption vo)
: _par(par),
_vo(vo),
_failures(false) {}
bool failures() {
return _failures;
}
bool doHeapRegion(HeapRegion* r) {
// For archive regions, verify there are no heap pointers to
// non-pinned regions. For all others, verify liveness info.
if (r->is_archive()) {
VerifyArchiveRegionClosure verify_oop_pointers(r);
r->object_iterate(&verify_oop_pointers);
return true;
}
if (!r->is_continues_humongous()) {
bool failures = false;
r->verify(_vo, &failures);
if (failures) {
_failures = true;
} else if (!r->is_starts_humongous()) {
VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
r->object_iterate(&not_dead_yet_cl);
if (_vo != VerifyOption_G1UseNextMarking) {
if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
log_error(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
_failures = true;
}
} else {
// When vo == UseNextMarking we cannot currently do a sanity
// check on the live bytes as the calculation has not been
// finalized yet.
}
}
}
return false; // stop the region iteration if we hit a failure
}
};
// This is the task used for parallel verification of the heap regions
class G1ParVerifyTask: public AbstractGangTask {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
HeapRegionClaimer _hrclaimer;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
AbstractGangTask("Parallel verify task"),
_g1h(g1h),
_vo(vo),
_failures(false),
_hrclaimer(g1h->workers()->active_workers()) {}
bool failures() {
return _failures;
}
void work(uint worker_id) {
HandleMark hm;
VerifyRegionClosure blk(true, _vo);
_g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
if (blk.failures()) {
_failures = true;
}
}
};
void G1HeapVerifier::verify(VerifyOption vo) {
if (!SafepointSynchronize::is_at_safepoint()) {
log_info(gc, verify)("Skipping verification. Not at safepoint.");
}
assert(Thread::current()->is_VM_thread(),
"Expected to be executed serially by the VM thread at this point");
log_debug(gc, verify)("Roots");
VerifyRootsClosure rootsCl(vo);
VerifyKlassClosure klassCl(_g1h, &rootsCl);
CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
// We apply the relevant closures to all the oops in the
// system dictionary, class loader data graph, the string table
// and the nmethods in the code cache.
G1VerifyCodeRootOopClosure codeRootsCl(_g1h, &rootsCl, vo);
G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
{
G1RootProcessor root_processor(_g1h, 1);
root_processor.process_all_roots(&rootsCl,
&cldCl,
&blobsCl);
}
bool failures = rootsCl.failures() || codeRootsCl.failures();
if (vo != VerifyOption_G1UseMarkWord) {
// If we're verifying during a full GC then the region sets
// will have been torn down at the start of the GC. Therefore
// verifying the region sets will fail. So we only verify
// the region sets when not in a full GC.
log_debug(gc, verify)("HeapRegionSets");
verify_region_sets();
}
log_debug(gc, verify)("HeapRegions");
if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
G1ParVerifyTask task(_g1h, vo);
_g1h->workers()->run_task(&task);
if (task.failures()) {
failures = true;
}
} else {
VerifyRegionClosure blk(false, vo);
_g1h->heap_region_iterate(&blk);
if (blk.failures()) {
failures = true;
}
}
if (G1StringDedup::is_enabled()) {
log_debug(gc, verify)("StrDedup");
G1StringDedup::verify();
}
if (failures) {
log_error(gc, verify)("Heap after failed verification:");
// It helps to have the per-region information in the output to
// help us track down what went wrong. This is why we call
// print_extended_on() instead of print_on().
Log(gc, verify) log;
ResourceMark rm;
LogStream ls(log.error());
_g1h->print_extended_on(&ls);
}
guarantee(!failures, "there should not have been any failures");
}
// Heap region set verification
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
HeapRegionSet* _old_set;
HeapRegionSet* _humongous_set;
HeapRegionManager* _hrm;
public:
uint _old_count;
uint _humongous_count;
uint _free_count;
VerifyRegionListsClosure(HeapRegionSet* old_set,
HeapRegionSet* humongous_set,
HeapRegionManager* hrm) :
_old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
_old_count(), _humongous_count(), _free_count(){ }
bool doHeapRegion(HeapRegion* hr) {
if (hr->is_young()) {
// TODO
} else if (hr->is_humongous()) {
assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
_humongous_count++;
} else if (hr->is_empty()) {
assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
_free_count++;
} else if (hr->is_old()) {
assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
_old_count++;
} else {
// There are no other valid region types. Check for one invalid
// one we can identify: pinned without old or humongous set.
assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
ShouldNotReachHere();
}
return false;
}
void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
}
};
void G1HeapVerifier::verify_region_sets() {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
// First, check the explicit lists.
_g1h->_hrm.verify();
{
// Given that a concurrent operation might be adding regions to
// the secondary free list we have to take the lock before
// verifying it.
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
_g1h->_secondary_free_list.verify_list();
}
// If a concurrent region freeing operation is in progress it will
// be difficult to correctly attributed any free regions we come
// across to the correct free list given that they might belong to
// one of several (free_list, secondary_free_list, any local lists,
// etc.). So, if that's the case we will skip the rest of the
// verification operation. Alternatively, waiting for the concurrent
// operation to complete will have a non-trivial effect on the GC's
// operation (no concurrent operation will last longer than the
// interval between two calls to verification) and it might hide
// any issues that we would like to catch during testing.
if (_g1h->free_regions_coming()) {
return;
}
// Make sure we append the secondary_free_list on the free_list so
// that all free regions we will come across can be safely
// attributed to the free_list.
_g1h->append_secondary_free_list_if_not_empty_with_lock();
// Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap.
VerifyRegionListsClosure cl(&_g1h->_old_set, &_g1h->_humongous_set, &_g1h->_hrm);
_g1h->heap_region_iterate(&cl);
cl.verify_counts(&_g1h->_old_set, &_g1h->_humongous_set, &_g1h->_hrm);
}
void G1HeapVerifier::prepare_for_verify() {
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
_g1h->ensure_parsability(false);
}
}
double G1HeapVerifier::verify(bool guard, const char* msg) {
double verify_time_ms = 0.0;
if (guard && _g1h->total_collections() >= VerifyGCStartAt) {
double verify_start = os::elapsedTime();
HandleMark hm; // Discard invalid handles created during verification
prepare_for_verify();
Universe::verify(VerifyOption_G1UsePrevMarking, msg);
verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
}
return verify_time_ms;
}
void G1HeapVerifier::verify_before_gc() {
double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
_g1h->g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}
void G1HeapVerifier::verify_after_gc() {
double verify_time_ms = verify(VerifyAfterGC, "After GC");
_g1h->g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
G1HeapVerifier* _verifier;
G1SATBCardTableModRefBS* _ct_bs;
public:
G1VerifyCardTableCleanup(G1HeapVerifier* verifier, G1SATBCardTableModRefBS* ct_bs)
: _verifier(verifier), _ct_bs(ct_bs) { }
virtual bool doHeapRegion(HeapRegion* r) {
if (r->is_survivor()) {
_verifier->verify_dirty_region(r);
} else {
_verifier->verify_not_dirty_region(r);
}
return false;
}
};
void G1HeapVerifier::verify_card_table_cleanup() {
if (G1VerifyCTCleanup || VerifyAfterGC) {
G1VerifyCardTableCleanup cleanup_verifier(this, _g1h->g1_barrier_set());
_g1h->heap_region_iterate(&cleanup_verifier);
}
}
void G1HeapVerifier::verify_not_dirty_region(HeapRegion* hr) {
// All of the region should be clean.
G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
MemRegion mr(hr->bottom(), hr->end());
ct_bs->verify_not_dirty_region(mr);
}
void G1HeapVerifier::verify_dirty_region(HeapRegion* hr) {
// We cannot guarantee that [bottom(),end()] is dirty. Threads
// dirty allocated blocks as they allocate them. The thread that
// retires each region and replaces it with a new one will do a
// maximal allocation to fill in [pre_dummy_top(),end()] but will
// not dirty that area (one less thing to have to do while holding
// a lock). So we can only verify that [bottom(),pre_dummy_top()]
// is dirty.
G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
MemRegion mr(hr->bottom(), hr->pre_dummy_top());
if (hr->is_young()) {
ct_bs->verify_g1_young_region(mr);
} else {
ct_bs->verify_dirty_region(mr);
}
}
class G1VerifyDirtyYoungListClosure : public HeapRegionClosure {
private:
G1HeapVerifier* _verifier;
public:
G1VerifyDirtyYoungListClosure(G1HeapVerifier* verifier) : HeapRegionClosure(), _verifier(verifier) { }
virtual bool doHeapRegion(HeapRegion* r) {
_verifier->verify_dirty_region(r);
return false;
}
};
void G1HeapVerifier::verify_dirty_young_regions() {
G1VerifyDirtyYoungListClosure cl(this);
_g1h->collection_set()->iterate(&cl);
}
bool G1HeapVerifier::verify_no_bits_over_tams(const char* bitmap_name, G1CMBitMapRO* bitmap,
HeapWord* tams, HeapWord* end) {
guarantee(tams <= end,
"tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
if (result < end) {
log_error(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
log_error(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
return false;
}
return true;
}
bool G1HeapVerifier::verify_bitmaps(const char* caller, HeapRegion* hr) {
G1CMBitMapRO* prev_bitmap = _g1h->concurrent_mark()->prevMarkBitMap();
G1CMBitMapRO* next_bitmap = (G1CMBitMapRO*) _g1h->concurrent_mark()->nextMarkBitMap();
HeapWord* bottom = hr->bottom();
HeapWord* ptams = hr->prev_top_at_mark_start();
HeapWord* ntams = hr->next_top_at_mark_start();
HeapWord* end = hr->end();
bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
bool res_n = true;
// We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
// we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
// if we happen to be in that state.
if (_g1h->collector_state()->mark_in_progress() || !_g1h->_cmThread->in_progress()) {
res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
}
if (!res_p || !res_n) {
log_error(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
log_error(gc, verify)("#### Caller: %s", caller);
return false;
}
return true;
}
void G1HeapVerifier::check_bitmaps(const char* caller, HeapRegion* hr) {
if (!G1VerifyBitmaps) return;
guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}
class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
const char* _caller;
G1HeapVerifier* _verifier;
bool _failures;
public:
G1VerifyBitmapClosure(const char* caller, G1HeapVerifier* verifier) :
_caller(caller), _verifier(verifier), _failures(false) { }
bool failures() { return _failures; }
virtual bool doHeapRegion(HeapRegion* hr) {
bool result = _verifier->verify_bitmaps(_caller, hr);
if (!result) {
_failures = true;
}
return false;
}
};
void G1HeapVerifier::check_bitmaps(const char* caller) {
if (!G1VerifyBitmaps) return;
G1VerifyBitmapClosure cl(caller, this);
_g1h->heap_region_iterate(&cl);
guarantee(!cl.failures(), "bitmap verification");
}
class G1CheckCSetFastTableClosure : public HeapRegionClosure {
private:
bool _failures;
public:
G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
virtual bool doHeapRegion(HeapRegion* hr) {
uint i = hr->hrm_index();
InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
if (hr->is_humongous()) {
if (hr->in_collection_set()) {
log_error(gc, verify)("## humongous region %u in CSet", i);
_failures = true;
return true;
}
if (cset_state.is_in_cset()) {
log_error(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
if (hr->is_continues_humongous() && cset_state.is_humongous()) {
log_error(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
} else {
if (cset_state.is_humongous()) {
log_error(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
if (hr->in_collection_set() != cset_state.is_in_cset()) {
log_error(gc, verify)("## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->in_collection_set(), cset_state.value(), i);
_failures = true;
return true;
}
if (cset_state.is_in_cset()) {
if (hr->is_young() != (cset_state.is_young())) {
log_error(gc, verify)("## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->is_young(), cset_state.value(), i);
_failures = true;
return true;
}
if (hr->is_old() != (cset_state.is_old())) {
log_error(gc, verify)("## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->is_old(), cset_state.value(), i);
_failures = true;
return true;
}
}
}
return false;
}
bool failures() const { return _failures; }
};
bool G1HeapVerifier::check_cset_fast_test() {
G1CheckCSetFastTableClosure cl;
_g1h->_hrm.iterate(&cl);
return !cl.failures();
}
#endif // PRODUCT