blob: 8de4750d4ac1e1dc496b79ebbd6e2979a7d028c1 [file] [log] [blame]
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.code;
import java.lang.ref.SoftReference;
import java.util.*;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.jvm.ClassReader;
import com.sun.tools.javac.code.Attribute.RetentionPolicy;
import com.sun.tools.javac.code.Lint.LintCategory;
import com.sun.tools.javac.comp.Check;
import static com.sun.tools.javac.code.Scope.*;
import static com.sun.tools.javac.code.Type.*;
import static com.sun.tools.javac.code.TypeTags.*;
import static com.sun.tools.javac.code.Symbol.*;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.BoundKind.*;
import static com.sun.tools.javac.util.ListBuffer.lb;
/**
* Utility class containing various operations on types.
*
* <p>Unless other names are more illustrative, the following naming
* conventions should be observed in this file:
*
* <dl>
* <dt>t</dt>
* <dd>If the first argument to an operation is a type, it should be named t.</dd>
* <dt>s</dt>
* <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
* <dt>ts</dt>
* <dd>If an operations takes a list of types, the first should be named ts.</dd>
* <dt>ss</dt>
* <dd>A second list of types should be named ss.</dd>
* </dl>
*
* <p><b>This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.</b>
*/
public class Types {
protected static final Context.Key<Types> typesKey =
new Context.Key<Types>();
final Symtab syms;
final JavacMessages messages;
final Names names;
final boolean allowBoxing;
final ClassReader reader;
final Source source;
final Check chk;
List<Warner> warnStack = List.nil();
final Name capturedName;
// <editor-fold defaultstate="collapsed" desc="Instantiating">
public static Types instance(Context context) {
Types instance = context.get(typesKey);
if (instance == null)
instance = new Types(context);
return instance;
}
protected Types(Context context) {
context.put(typesKey, this);
syms = Symtab.instance(context);
names = Names.instance(context);
allowBoxing = Source.instance(context).allowBoxing();
reader = ClassReader.instance(context);
source = Source.instance(context);
chk = Check.instance(context);
capturedName = names.fromString("<captured wildcard>");
messages = JavacMessages.instance(context);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="upperBound">
/**
* The "rvalue conversion".<br>
* The upper bound of most types is the type
* itself. Wildcards, on the other hand have upper
* and lower bounds.
* @param t a type
* @return the upper bound of the given type
*/
public Type upperBound(Type t) {
return upperBound.visit(t);
}
// where
private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
@Override
public Type visitWildcardType(WildcardType t, Void ignored) {
if (t.isSuperBound())
return t.bound == null ? syms.objectType : t.bound.bound;
else
return visit(t.type);
}
@Override
public Type visitCapturedType(CapturedType t, Void ignored) {
return visit(t.bound);
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="lowerBound">
/**
* The "lvalue conversion".<br>
* The lower bound of most types is the type
* itself. Wildcards, on the other hand have upper
* and lower bounds.
* @param t a type
* @return the lower bound of the given type
*/
public Type lowerBound(Type t) {
return lowerBound.visit(t);
}
// where
private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
@Override
public Type visitWildcardType(WildcardType t, Void ignored) {
return t.isExtendsBound() ? syms.botType : visit(t.type);
}
@Override
public Type visitCapturedType(CapturedType t, Void ignored) {
return visit(t.getLowerBound());
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isUnbounded">
/**
* Checks that all the arguments to a class are unbounded
* wildcards or something else that doesn't make any restrictions
* on the arguments. If a class isUnbounded, a raw super- or
* subclass can be cast to it without a warning.
* @param t a type
* @return true iff the given type is unbounded or raw
*/
public boolean isUnbounded(Type t) {
return isUnbounded.visit(t);
}
// where
private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
public Boolean visitType(Type t, Void ignored) {
return true;
}
@Override
public Boolean visitClassType(ClassType t, Void ignored) {
List<Type> parms = t.tsym.type.allparams();
List<Type> args = t.allparams();
while (parms.nonEmpty()) {
WildcardType unb = new WildcardType(syms.objectType,
BoundKind.UNBOUND,
syms.boundClass,
(TypeVar)parms.head);
if (!containsType(args.head, unb))
return false;
parms = parms.tail;
args = args.tail;
}
return true;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="asSub">
/**
* Return the least specific subtype of t that starts with symbol
* sym. If none exists, return null. The least specific subtype
* is determined as follows:
*
* <p>If there is exactly one parameterized instance of sym that is a
* subtype of t, that parameterized instance is returned.<br>
* Otherwise, if the plain type or raw type `sym' is a subtype of
* type t, the type `sym' itself is returned. Otherwise, null is
* returned.
*/
public Type asSub(Type t, Symbol sym) {
return asSub.visit(t, sym);
}
// where
private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
public Type visitType(Type t, Symbol sym) {
return null;
}
@Override
public Type visitClassType(ClassType t, Symbol sym) {
if (t.tsym == sym)
return t;
Type base = asSuper(sym.type, t.tsym);
if (base == null)
return null;
ListBuffer<Type> from = new ListBuffer<Type>();
ListBuffer<Type> to = new ListBuffer<Type>();
try {
adapt(base, t, from, to);
} catch (AdaptFailure ex) {
return null;
}
Type res = subst(sym.type, from.toList(), to.toList());
if (!isSubtype(res, t))
return null;
ListBuffer<Type> openVars = new ListBuffer<Type>();
for (List<Type> l = sym.type.allparams();
l.nonEmpty(); l = l.tail)
if (res.contains(l.head) && !t.contains(l.head))
openVars.append(l.head);
if (openVars.nonEmpty()) {
if (t.isRaw()) {
// The subtype of a raw type is raw
res = erasure(res);
} else {
// Unbound type arguments default to ?
List<Type> opens = openVars.toList();
ListBuffer<Type> qs = new ListBuffer<Type>();
for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
}
res = subst(res, opens, qs.toList());
}
}
return res;
}
@Override
public Type visitErrorType(ErrorType t, Symbol sym) {
return t;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isConvertible">
/**
* Is t a subtype of or convertiable via boxing/unboxing
* convertions to s?
*/
public boolean isConvertible(Type t, Type s, Warner warn) {
boolean tPrimitive = t.isPrimitive();
boolean sPrimitive = s.isPrimitive();
if (tPrimitive == sPrimitive) {
checkUnsafeVarargsConversion(t, s, warn);
return isSubtypeUnchecked(t, s, warn);
}
if (!allowBoxing) return false;
return tPrimitive
? isSubtype(boxedClass(t).type, s)
: isSubtype(unboxedType(t), s);
}
//where
private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
if (t.tag != ARRAY || isReifiable(t)) return;
ArrayType from = (ArrayType)t;
boolean shouldWarn = false;
switch (s.tag) {
case ARRAY:
ArrayType to = (ArrayType)s;
shouldWarn = from.isVarargs() &&
!to.isVarargs() &&
!isReifiable(from);
break;
case CLASS:
shouldWarn = from.isVarargs() &&
isSubtype(from, s);
break;
}
if (shouldWarn) {
warn.warn(LintCategory.VARARGS);
}
}
/**
* Is t a subtype of or convertiable via boxing/unboxing
* convertions to s?
*/
public boolean isConvertible(Type t, Type s) {
return isConvertible(t, s, Warner.noWarnings);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isSubtype">
/**
* Is t an unchecked subtype of s?
*/
public boolean isSubtypeUnchecked(Type t, Type s) {
return isSubtypeUnchecked(t, s, Warner.noWarnings);
}
/**
* Is t an unchecked subtype of s?
*/
public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
if (t.tag == ARRAY && s.tag == ARRAY) {
if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
return isSameType(elemtype(t), elemtype(s));
} else {
ArrayType from = (ArrayType)t;
ArrayType to = (ArrayType)s;
if (from.isVarargs() &&
!to.isVarargs() &&
!isReifiable(from)) {
warn.warn(LintCategory.VARARGS);
}
return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
}
} else if (isSubtype(t, s)) {
return true;
}
else if (t.tag == TYPEVAR) {
return isSubtypeUnchecked(t.getUpperBound(), s, warn);
}
else if (s.tag == UNDETVAR) {
UndetVar uv = (UndetVar)s;
if (uv.inst != null)
return isSubtypeUnchecked(t, uv.inst, warn);
}
else if (!s.isRaw()) {
Type t2 = asSuper(t, s.tsym);
if (t2 != null && t2.isRaw()) {
if (isReifiable(s))
warn.silentWarn(LintCategory.UNCHECKED);
else
warn.warn(LintCategory.UNCHECKED);
return true;
}
}
return false;
}
/**
* Is t a subtype of s?<br>
* (not defined for Method and ForAll types)
*/
final public boolean isSubtype(Type t, Type s) {
return isSubtype(t, s, true);
}
final public boolean isSubtypeNoCapture(Type t, Type s) {
return isSubtype(t, s, false);
}
public boolean isSubtype(Type t, Type s, boolean capture) {
if (t == s)
return true;
if (s.tag >= firstPartialTag)
return isSuperType(s, t);
if (s.isCompound()) {
for (Type s2 : interfaces(s).prepend(supertype(s))) {
if (!isSubtype(t, s2, capture))
return false;
}
return true;
}
Type lower = lowerBound(s);
if (s != lower)
return isSubtype(capture ? capture(t) : t, lower, false);
return isSubtype.visit(capture ? capture(t) : t, s);
}
// where
private TypeRelation isSubtype = new TypeRelation()
{
public Boolean visitType(Type t, Type s) {
switch (t.tag) {
case BYTE: case CHAR:
return (t.tag == s.tag ||
t.tag + 2 <= s.tag && s.tag <= DOUBLE);
case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
return t.tag <= s.tag && s.tag <= DOUBLE;
case BOOLEAN: case VOID:
return t.tag == s.tag;
case TYPEVAR:
return isSubtypeNoCapture(t.getUpperBound(), s);
case BOT:
return
s.tag == BOT || s.tag == CLASS ||
s.tag == ARRAY || s.tag == TYPEVAR;
case NONE:
return false;
default:
throw new AssertionError("isSubtype " + t.tag);
}
}
private Set<TypePair> cache = new HashSet<TypePair>();
private boolean containsTypeRecursive(Type t, Type s) {
TypePair pair = new TypePair(t, s);
if (cache.add(pair)) {
try {
return containsType(t.getTypeArguments(),
s.getTypeArguments());
} finally {
cache.remove(pair);
}
} else {
return containsType(t.getTypeArguments(),
rewriteSupers(s).getTypeArguments());
}
}
private Type rewriteSupers(Type t) {
if (!t.isParameterized())
return t;
ListBuffer<Type> from = lb();
ListBuffer<Type> to = lb();
adaptSelf(t, from, to);
if (from.isEmpty())
return t;
ListBuffer<Type> rewrite = lb();
boolean changed = false;
for (Type orig : to.toList()) {
Type s = rewriteSupers(orig);
if (s.isSuperBound() && !s.isExtendsBound()) {
s = new WildcardType(syms.objectType,
BoundKind.UNBOUND,
syms.boundClass);
changed = true;
} else if (s != orig) {
s = new WildcardType(upperBound(s),
BoundKind.EXTENDS,
syms.boundClass);
changed = true;
}
rewrite.append(s);
}
if (changed)
return subst(t.tsym.type, from.toList(), rewrite.toList());
else
return t;
}
@Override
public Boolean visitClassType(ClassType t, Type s) {
Type sup = asSuper(t, s.tsym);
return sup != null
&& sup.tsym == s.tsym
// You're not allowed to write
// Vector<Object> vec = new Vector<String>();
// But with wildcards you can write
// Vector<? extends Object> vec = new Vector<String>();
// which means that subtype checking must be done
// here instead of same-type checking (via containsType).
&& (!s.isParameterized() || containsTypeRecursive(s, sup))
&& isSubtypeNoCapture(sup.getEnclosingType(),
s.getEnclosingType());
}
@Override
public Boolean visitArrayType(ArrayType t, Type s) {
if (s.tag == ARRAY) {
if (t.elemtype.tag <= lastBaseTag)
return isSameType(t.elemtype, elemtype(s));
else
return isSubtypeNoCapture(t.elemtype, elemtype(s));
}
if (s.tag == CLASS) {
Name sname = s.tsym.getQualifiedName();
return sname == names.java_lang_Object
|| sname == names.java_lang_Cloneable
|| sname == names.java_io_Serializable;
}
return false;
}
@Override
public Boolean visitUndetVar(UndetVar t, Type s) {
//todo: test against origin needed? or replace with substitution?
if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
return true;
if (t.inst != null)
return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
t.hibounds = t.hibounds.prepend(s);
return true;
}
@Override
public Boolean visitErrorType(ErrorType t, Type s) {
return true;
}
};
/**
* Is t a subtype of every type in given list `ts'?<br>
* (not defined for Method and ForAll types)<br>
* Allows unchecked conversions.
*/
public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
if (!isSubtypeUnchecked(t, l.head, warn))
return false;
return true;
}
/**
* Are corresponding elements of ts subtypes of ss? If lists are
* of different length, return false.
*/
public boolean isSubtypes(List<Type> ts, List<Type> ss) {
while (ts.tail != null && ss.tail != null
/*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
isSubtype(ts.head, ss.head)) {
ts = ts.tail;
ss = ss.tail;
}
return ts.tail == null && ss.tail == null;
/*inlined: ts.isEmpty() && ss.isEmpty();*/
}
/**
* Are corresponding elements of ts subtypes of ss, allowing
* unchecked conversions? If lists are of different length,
* return false.
**/
public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
while (ts.tail != null && ss.tail != null
/*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
isSubtypeUnchecked(ts.head, ss.head, warn)) {
ts = ts.tail;
ss = ss.tail;
}
return ts.tail == null && ss.tail == null;
/*inlined: ts.isEmpty() && ss.isEmpty();*/
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isSuperType">
/**
* Is t a supertype of s?
*/
public boolean isSuperType(Type t, Type s) {
switch (t.tag) {
case ERROR:
return true;
case UNDETVAR: {
UndetVar undet = (UndetVar)t;
if (t == s ||
undet.qtype == s ||
s.tag == ERROR ||
s.tag == BOT) return true;
if (undet.inst != null)
return isSubtype(s, undet.inst);
undet.lobounds = undet.lobounds.prepend(s);
return true;
}
default:
return isSubtype(s, t);
}
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isSameType">
/**
* Are corresponding elements of the lists the same type? If
* lists are of different length, return false.
*/
public boolean isSameTypes(List<Type> ts, List<Type> ss) {
while (ts.tail != null && ss.tail != null
/*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
isSameType(ts.head, ss.head)) {
ts = ts.tail;
ss = ss.tail;
}
return ts.tail == null && ss.tail == null;
/*inlined: ts.isEmpty() && ss.isEmpty();*/
}
/**
* Is t the same type as s?
*/
public boolean isSameType(Type t, Type s) {
return isSameType.visit(t, s);
}
// where
private TypeRelation isSameType = new TypeRelation() {
public Boolean visitType(Type t, Type s) {
if (t == s)
return true;
if (s.tag >= firstPartialTag)
return visit(s, t);
switch (t.tag) {
case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
return t.tag == s.tag;
case TYPEVAR: {
if (s.tag == TYPEVAR) {
//type-substitution does not preserve type-var types
//check that type var symbols and bounds are indeed the same
return t.tsym == s.tsym &&
visit(t.getUpperBound(), s.getUpperBound());
}
else {
//special case for s == ? super X, where upper(s) = u
//check that u == t, where u has been set by Type.withTypeVar
return s.isSuperBound() &&
!s.isExtendsBound() &&
visit(t, upperBound(s));
}
}
default:
throw new AssertionError("isSameType " + t.tag);
}
}
@Override
public Boolean visitWildcardType(WildcardType t, Type s) {
if (s.tag >= firstPartialTag)
return visit(s, t);
else
return false;
}
@Override
public Boolean visitClassType(ClassType t, Type s) {
if (t == s)
return true;
if (s.tag >= firstPartialTag)
return visit(s, t);
if (s.isSuperBound() && !s.isExtendsBound())
return visit(t, upperBound(s)) && visit(t, lowerBound(s));
if (t.isCompound() && s.isCompound()) {
if (!visit(supertype(t), supertype(s)))
return false;
HashSet<SingletonType> set = new HashSet<SingletonType>();
for (Type x : interfaces(t))
set.add(new SingletonType(x));
for (Type x : interfaces(s)) {
if (!set.remove(new SingletonType(x)))
return false;
}
return (set.isEmpty());
}
return t.tsym == s.tsym
&& visit(t.getEnclosingType(), s.getEnclosingType())
&& containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
}
@Override
public Boolean visitArrayType(ArrayType t, Type s) {
if (t == s)
return true;
if (s.tag >= firstPartialTag)
return visit(s, t);
return s.tag == ARRAY
&& containsTypeEquivalent(t.elemtype, elemtype(s));
}
@Override
public Boolean visitMethodType(MethodType t, Type s) {
// isSameType for methods does not take thrown
// exceptions into account!
return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
}
@Override
public Boolean visitPackageType(PackageType t, Type s) {
return t == s;
}
@Override
public Boolean visitForAll(ForAll t, Type s) {
if (s.tag != FORALL)
return false;
ForAll forAll = (ForAll)s;
return hasSameBounds(t, forAll)
&& visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
}
@Override
public Boolean visitUndetVar(UndetVar t, Type s) {
if (s.tag == WILDCARD)
// FIXME, this might be leftovers from before capture conversion
return false;
if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
return true;
if (t.inst != null)
return visit(t.inst, s);
t.inst = fromUnknownFun.apply(s);
for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
if (!isSubtype(l.head, t.inst))
return false;
}
for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
if (!isSubtype(t.inst, l.head))
return false;
}
return true;
}
@Override
public Boolean visitErrorType(ErrorType t, Type s) {
return true;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
/**
* A mapping that turns all unknown types in this type to fresh
* unknown variables.
*/
public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
public Type apply(Type t) {
if (t.tag == UNKNOWN) return new UndetVar(t);
else return t.map(this);
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Contains Type">
public boolean containedBy(Type t, Type s) {
switch (t.tag) {
case UNDETVAR:
if (s.tag == WILDCARD) {
UndetVar undetvar = (UndetVar)t;
WildcardType wt = (WildcardType)s;
switch(wt.kind) {
case UNBOUND: //similar to ? extends Object
case EXTENDS: {
Type bound = upperBound(s);
// We should check the new upper bound against any of the
// undetvar's lower bounds.
for (Type t2 : undetvar.lobounds) {
if (!isSubtype(t2, bound))
return false;
}
undetvar.hibounds = undetvar.hibounds.prepend(bound);
break;
}
case SUPER: {
Type bound = lowerBound(s);
// We should check the new lower bound against any of the
// undetvar's lower bounds.
for (Type t2 : undetvar.hibounds) {
if (!isSubtype(bound, t2))
return false;
}
undetvar.lobounds = undetvar.lobounds.prepend(bound);
break;
}
}
return true;
} else {
return isSameType(t, s);
}
case ERROR:
return true;
default:
return containsType(s, t);
}
}
boolean containsType(List<Type> ts, List<Type> ss) {
while (ts.nonEmpty() && ss.nonEmpty()
&& containsType(ts.head, ss.head)) {
ts = ts.tail;
ss = ss.tail;
}
return ts.isEmpty() && ss.isEmpty();
}
/**
* Check if t contains s.
*
* <p>T contains S if:
*
* <p>{@code L(T) <: L(S) && U(S) <: U(T)}
*
* <p>This relation is only used by ClassType.isSubtype(), that
* is,
*
* <p>{@code C<S> <: C<T> if T contains S.}
*
* <p>Because of F-bounds, this relation can lead to infinite
* recursion. Thus we must somehow break that recursion. Notice
* that containsType() is only called from ClassType.isSubtype().
* Since the arguments have already been checked against their
* bounds, we know:
*
* <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
*
* <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
*
* @param t a type
* @param s a type
*/
public boolean containsType(Type t, Type s) {
return containsType.visit(t, s);
}
// where
private TypeRelation containsType = new TypeRelation() {
private Type U(Type t) {
while (t.tag == WILDCARD) {
WildcardType w = (WildcardType)t;
if (w.isSuperBound())
return w.bound == null ? syms.objectType : w.bound.bound;
else
t = w.type;
}
return t;
}
private Type L(Type t) {
while (t.tag == WILDCARD) {
WildcardType w = (WildcardType)t;
if (w.isExtendsBound())
return syms.botType;
else
t = w.type;
}
return t;
}
public Boolean visitType(Type t, Type s) {
if (s.tag >= firstPartialTag)
return containedBy(s, t);
else
return isSameType(t, s);
}
// void debugContainsType(WildcardType t, Type s) {
// System.err.println();
// System.err.format(" does %s contain %s?%n", t, s);
// System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
// upperBound(s), s, t, U(t),
// t.isSuperBound()
// || isSubtypeNoCapture(upperBound(s), U(t)));
// System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
// L(t), t, s, lowerBound(s),
// t.isExtendsBound()
// || isSubtypeNoCapture(L(t), lowerBound(s)));
// System.err.println();
// }
@Override
public Boolean visitWildcardType(WildcardType t, Type s) {
if (s.tag >= firstPartialTag)
return containedBy(s, t);
else {
// debugContainsType(t, s);
return isSameWildcard(t, s)
|| isCaptureOf(s, t)
|| ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
(t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
}
}
@Override
public Boolean visitUndetVar(UndetVar t, Type s) {
if (s.tag != WILDCARD)
return isSameType(t, s);
else
return false;
}
@Override
public Boolean visitErrorType(ErrorType t, Type s) {
return true;
}
};
public boolean isCaptureOf(Type s, WildcardType t) {
if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
return false;
return isSameWildcard(t, ((CapturedType)s).wildcard);
}
public boolean isSameWildcard(WildcardType t, Type s) {
if (s.tag != WILDCARD)
return false;
WildcardType w = (WildcardType)s;
return w.kind == t.kind && w.type == t.type;
}
public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
while (ts.nonEmpty() && ss.nonEmpty()
&& containsTypeEquivalent(ts.head, ss.head)) {
ts = ts.tail;
ss = ss.tail;
}
return ts.isEmpty() && ss.isEmpty();
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isCastable">
public boolean isCastable(Type t, Type s) {
return isCastable(t, s, Warner.noWarnings);
}
/**
* Is t is castable to s?<br>
* s is assumed to be an erased type.<br>
* (not defined for Method and ForAll types).
*/
public boolean isCastable(Type t, Type s, Warner warn) {
if (t == s)
return true;
if (t.isPrimitive() != s.isPrimitive())
return allowBoxing && (isConvertible(t, s, warn) || isConvertible(s, t, warn));
if (warn != warnStack.head) {
try {
warnStack = warnStack.prepend(warn);
checkUnsafeVarargsConversion(t, s, warn);
return isCastable.visit(t,s);
} finally {
warnStack = warnStack.tail;
}
} else {
return isCastable.visit(t,s);
}
}
// where
private TypeRelation isCastable = new TypeRelation() {
public Boolean visitType(Type t, Type s) {
if (s.tag == ERROR)
return true;
switch (t.tag) {
case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
case DOUBLE:
return s.tag <= DOUBLE;
case BOOLEAN:
return s.tag == BOOLEAN;
case VOID:
return false;
case BOT:
return isSubtype(t, s);
default:
throw new AssertionError();
}
}
@Override
public Boolean visitWildcardType(WildcardType t, Type s) {
return isCastable(upperBound(t), s, warnStack.head);
}
@Override
public Boolean visitClassType(ClassType t, Type s) {
if (s.tag == ERROR || s.tag == BOT)
return true;
if (s.tag == TYPEVAR) {
if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
warnStack.head.warn(LintCategory.UNCHECKED);
return true;
} else {
return false;
}
}
if (t.isCompound()) {
Warner oldWarner = warnStack.head;
warnStack.head = Warner.noWarnings;
if (!visit(supertype(t), s))
return false;
for (Type intf : interfaces(t)) {
if (!visit(intf, s))
return false;
}
if (warnStack.head.hasLint(LintCategory.UNCHECKED))
oldWarner.warn(LintCategory.UNCHECKED);
return true;
}
if (s.isCompound()) {
// call recursively to reuse the above code
return visitClassType((ClassType)s, t);
}
if (s.tag == CLASS || s.tag == ARRAY) {
boolean upcast;
if ((upcast = isSubtype(erasure(t), erasure(s)))
|| isSubtype(erasure(s), erasure(t))) {
if (!upcast && s.tag == ARRAY) {
if (!isReifiable(s))
warnStack.head.warn(LintCategory.UNCHECKED);
return true;
} else if (s.isRaw()) {
return true;
} else if (t.isRaw()) {
if (!isUnbounded(s))
warnStack.head.warn(LintCategory.UNCHECKED);
return true;
}
// Assume |a| <: |b|
final Type a = upcast ? t : s;
final Type b = upcast ? s : t;
final boolean HIGH = true;
final boolean LOW = false;
final boolean DONT_REWRITE_TYPEVARS = false;
Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
Type lowSub = asSub(bLow, aLow.tsym);
Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
if (highSub == null) {
final boolean REWRITE_TYPEVARS = true;
aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
lowSub = asSub(bLow, aLow.tsym);
highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
}
if (highSub != null) {
if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
}
if (!disjointTypes(aHigh.allparams(), highSub.allparams())
&& !disjointTypes(aHigh.allparams(), lowSub.allparams())
&& !disjointTypes(aLow.allparams(), highSub.allparams())
&& !disjointTypes(aLow.allparams(), lowSub.allparams())) {
if (upcast ? giveWarning(a, b) :
giveWarning(b, a))
warnStack.head.warn(LintCategory.UNCHECKED);
return true;
}
}
if (isReifiable(s))
return isSubtypeUnchecked(a, b);
else
return isSubtypeUnchecked(a, b, warnStack.head);
}
// Sidecast
if (s.tag == CLASS) {
if ((s.tsym.flags() & INTERFACE) != 0) {
return ((t.tsym.flags() & FINAL) == 0)
? sideCast(t, s, warnStack.head)
: sideCastFinal(t, s, warnStack.head);
} else if ((t.tsym.flags() & INTERFACE) != 0) {
return ((s.tsym.flags() & FINAL) == 0)
? sideCast(t, s, warnStack.head)
: sideCastFinal(t, s, warnStack.head);
} else {
// unrelated class types
return false;
}
}
}
return false;
}
@Override
public Boolean visitArrayType(ArrayType t, Type s) {
switch (s.tag) {
case ERROR:
case BOT:
return true;
case TYPEVAR:
if (isCastable(s, t, Warner.noWarnings)) {
warnStack.head.warn(LintCategory.UNCHECKED);
return true;
} else {
return false;
}
case CLASS:
return isSubtype(t, s);
case ARRAY:
if (elemtype(t).tag <= lastBaseTag ||
elemtype(s).tag <= lastBaseTag) {
return elemtype(t).tag == elemtype(s).tag;
} else {
return visit(elemtype(t), elemtype(s));
}
default:
return false;
}
}
@Override
public Boolean visitTypeVar(TypeVar t, Type s) {
switch (s.tag) {
case ERROR:
case BOT:
return true;
case TYPEVAR:
if (isSubtype(t, s)) {
return true;
} else if (isCastable(t.bound, s, Warner.noWarnings)) {
warnStack.head.warn(LintCategory.UNCHECKED);
return true;
} else {
return false;
}
default:
return isCastable(t.bound, s, warnStack.head);
}
}
@Override
public Boolean visitErrorType(ErrorType t, Type s) {
return true;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="disjointTypes">
public boolean disjointTypes(List<Type> ts, List<Type> ss) {
while (ts.tail != null && ss.tail != null) {
if (disjointType(ts.head, ss.head)) return true;
ts = ts.tail;
ss = ss.tail;
}
return false;
}
/**
* Two types or wildcards are considered disjoint if it can be
* proven that no type can be contained in both. It is
* conservative in that it is allowed to say that two types are
* not disjoint, even though they actually are.
*
* The type C<X> is castable to C<Y> exactly if X and Y are not
* disjoint.
*/
public boolean disjointType(Type t, Type s) {
return disjointType.visit(t, s);
}
// where
private TypeRelation disjointType = new TypeRelation() {
private Set<TypePair> cache = new HashSet<TypePair>();
public Boolean visitType(Type t, Type s) {
if (s.tag == WILDCARD)
return visit(s, t);
else
return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
}
private boolean isCastableRecursive(Type t, Type s) {
TypePair pair = new TypePair(t, s);
if (cache.add(pair)) {
try {
return Types.this.isCastable(t, s);
} finally {
cache.remove(pair);
}
} else {
return true;
}
}
private boolean notSoftSubtypeRecursive(Type t, Type s) {
TypePair pair = new TypePair(t, s);
if (cache.add(pair)) {
try {
return Types.this.notSoftSubtype(t, s);
} finally {
cache.remove(pair);
}
} else {
return false;
}
}
@Override
public Boolean visitWildcardType(WildcardType t, Type s) {
if (t.isUnbound())
return false;
if (s.tag != WILDCARD) {
if (t.isExtendsBound())
return notSoftSubtypeRecursive(s, t.type);
else // isSuperBound()
return notSoftSubtypeRecursive(t.type, s);
}
if (s.isUnbound())
return false;
if (t.isExtendsBound()) {
if (s.isExtendsBound())
return !isCastableRecursive(t.type, upperBound(s));
else if (s.isSuperBound())
return notSoftSubtypeRecursive(lowerBound(s), t.type);
} else if (t.isSuperBound()) {
if (s.isExtendsBound())
return notSoftSubtypeRecursive(t.type, upperBound(s));
}
return false;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
/**
* Returns the lower bounds of the formals of a method.
*/
public List<Type> lowerBoundArgtypes(Type t) {
return map(t.getParameterTypes(), lowerBoundMapping);
}
private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
public Type apply(Type t) {
return lowerBound(t);
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
/**
* This relation answers the question: is impossible that
* something of type `t' can be a subtype of `s'? This is
* different from the question "is `t' not a subtype of `s'?"
* when type variables are involved: Integer is not a subtype of T
* where <T extends Number> but it is not true that Integer cannot
* possibly be a subtype of T.
*/
public boolean notSoftSubtype(Type t, Type s) {
if (t == s) return false;
if (t.tag == TYPEVAR) {
TypeVar tv = (TypeVar) t;
return !isCastable(tv.bound,
relaxBound(s),
Warner.noWarnings);
}
if (s.tag != WILDCARD)
s = upperBound(s);
return !isSubtype(t, relaxBound(s));
}
private Type relaxBound(Type t) {
if (t.tag == TYPEVAR) {
while (t.tag == TYPEVAR)
t = t.getUpperBound();
t = rewriteQuantifiers(t, true, true);
}
return t;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isReifiable">
public boolean isReifiable(Type t) {
return isReifiable.visit(t);
}
// where
private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
public Boolean visitType(Type t, Void ignored) {
return true;
}
@Override
public Boolean visitClassType(ClassType t, Void ignored) {
if (t.isCompound())
return false;
else {
if (!t.isParameterized())
return true;
for (Type param : t.allparams()) {
if (!param.isUnbound())
return false;
}
return true;
}
}
@Override
public Boolean visitArrayType(ArrayType t, Void ignored) {
return visit(t.elemtype);
}
@Override
public Boolean visitTypeVar(TypeVar t, Void ignored) {
return false;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Array Utils">
public boolean isArray(Type t) {
while (t.tag == WILDCARD)
t = upperBound(t);
return t.tag == ARRAY;
}
/**
* The element type of an array.
*/
public Type elemtype(Type t) {
switch (t.tag) {
case WILDCARD:
return elemtype(upperBound(t));
case ARRAY:
return ((ArrayType)t).elemtype;
case FORALL:
return elemtype(((ForAll)t).qtype);
case ERROR:
return t;
default:
return null;
}
}
public Type elemtypeOrType(Type t) {
Type elemtype = elemtype(t);
return elemtype != null ?
elemtype :
t;
}
/**
* Mapping to take element type of an arraytype
*/
private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
public Type apply(Type t) { return elemtype(t); }
};
/**
* The number of dimensions of an array type.
*/
public int dimensions(Type t) {
int result = 0;
while (t.tag == ARRAY) {
result++;
t = elemtype(t);
}
return result;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="asSuper">
/**
* Return the (most specific) base type of t that starts with the
* given symbol. If none exists, return null.
*
* @param t a type
* @param sym a symbol
*/
public Type asSuper(Type t, Symbol sym) {
return asSuper.visit(t, sym);
}
// where
private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
public Type visitType(Type t, Symbol sym) {
return null;
}
@Override
public Type visitClassType(ClassType t, Symbol sym) {
if (t.tsym == sym)
return t;
Type st = supertype(t);
if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
Type x = asSuper(st, sym);
if (x != null)
return x;
}
if ((sym.flags() & INTERFACE) != 0) {
for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
Type x = asSuper(l.head, sym);
if (x != null)
return x;
}
}
return null;
}
@Override
public Type visitArrayType(ArrayType t, Symbol sym) {
return isSubtype(t, sym.type) ? sym.type : null;
}
@Override
public Type visitTypeVar(TypeVar t, Symbol sym) {
if (t.tsym == sym)
return t;
else
return asSuper(t.bound, sym);
}
@Override
public Type visitErrorType(ErrorType t, Symbol sym) {
return t;
}
};
/**
* Return the base type of t or any of its outer types that starts
* with the given symbol. If none exists, return null.
*
* @param t a type
* @param sym a symbol
*/
public Type asOuterSuper(Type t, Symbol sym) {
switch (t.tag) {
case CLASS:
do {
Type s = asSuper(t, sym);
if (s != null) return s;
t = t.getEnclosingType();
} while (t.tag == CLASS);
return null;
case ARRAY:
return isSubtype(t, sym.type) ? sym.type : null;
case TYPEVAR:
return asSuper(t, sym);
case ERROR:
return t;
default:
return null;
}
}
/**
* Return the base type of t or any of its enclosing types that
* starts with the given symbol. If none exists, return null.
*
* @param t a type
* @param sym a symbol
*/
public Type asEnclosingSuper(Type t, Symbol sym) {
switch (t.tag) {
case CLASS:
do {
Type s = asSuper(t, sym);
if (s != null) return s;
Type outer = t.getEnclosingType();
t = (outer.tag == CLASS) ? outer :
(t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
Type.noType;
} while (t.tag == CLASS);
return null;
case ARRAY:
return isSubtype(t, sym.type) ? sym.type : null;
case TYPEVAR:
return asSuper(t, sym);
case ERROR:
return t;
default:
return null;
}
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="memberType">
/**
* The type of given symbol, seen as a member of t.
*
* @param t a type
* @param sym a symbol
*/
public Type memberType(Type t, Symbol sym) {
return (sym.flags() & STATIC) != 0
? sym.type
: memberType.visit(t, sym);
}
// where
private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
public Type visitType(Type t, Symbol sym) {
return sym.type;
}
@Override
public Type visitWildcardType(WildcardType t, Symbol sym) {
return memberType(upperBound(t), sym);
}
@Override
public Type visitClassType(ClassType t, Symbol sym) {
Symbol owner = sym.owner;
long flags = sym.flags();
if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
Type base = asOuterSuper(t, owner);
//if t is an intersection type T = CT & I1 & I2 ... & In
//its supertypes CT, I1, ... In might contain wildcards
//so we need to go through capture conversion
base = t.isCompound() ? capture(base) : base;
if (base != null) {
List<Type> ownerParams = owner.type.allparams();
List<Type> baseParams = base.allparams();
if (ownerParams.nonEmpty()) {
if (baseParams.isEmpty()) {
// then base is a raw type
return erasure(sym.type);
} else {
return subst(sym.type, ownerParams, baseParams);
}
}
}
}
return sym.type;
}
@Override
public Type visitTypeVar(TypeVar t, Symbol sym) {
return memberType(t.bound, sym);
}
@Override
public Type visitErrorType(ErrorType t, Symbol sym) {
return t;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isAssignable">
public boolean isAssignable(Type t, Type s) {
return isAssignable(t, s, Warner.noWarnings);
}
/**
* Is t assignable to s?<br>
* Equivalent to subtype except for constant values and raw
* types.<br>
* (not defined for Method and ForAll types)
*/
public boolean isAssignable(Type t, Type s, Warner warn) {
if (t.tag == ERROR)
return true;
if (t.tag <= INT && t.constValue() != null) {
int value = ((Number)t.constValue()).intValue();
switch (s.tag) {
case BYTE:
if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
return true;
break;
case CHAR:
if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
return true;
break;
case SHORT:
if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
return true;
break;
case INT:
return true;
case CLASS:
switch (unboxedType(s).tag) {
case BYTE:
case CHAR:
case SHORT:
return isAssignable(t, unboxedType(s), warn);
}
break;
}
}
return isConvertible(t, s, warn);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="erasure">
/**
* The erasure of t {@code |t|} -- the type that results when all
* type parameters in t are deleted.
*/
public Type erasure(Type t) {
return erasure(t, false);
}
//where
private Type erasure(Type t, boolean recurse) {
if (t.tag <= lastBaseTag)
return t; /* fast special case */
else
return erasure.visit(t, recurse);
}
// where
private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
public Type visitType(Type t, Boolean recurse) {
if (t.tag <= lastBaseTag)
return t; /*fast special case*/
else
return t.map(recurse ? erasureRecFun : erasureFun);
}
@Override
public Type visitWildcardType(WildcardType t, Boolean recurse) {
return erasure(upperBound(t), recurse);
}
@Override
public Type visitClassType(ClassType t, Boolean recurse) {
Type erased = t.tsym.erasure(Types.this);
if (recurse) {
erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
}
return erased;
}
@Override
public Type visitTypeVar(TypeVar t, Boolean recurse) {
return erasure(t.bound, recurse);
}
@Override
public Type visitErrorType(ErrorType t, Boolean recurse) {
return t;
}
};
private Mapping erasureFun = new Mapping ("erasure") {
public Type apply(Type t) { return erasure(t); }
};
private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
public Type apply(Type t) { return erasureRecursive(t); }
};
public List<Type> erasure(List<Type> ts) {
return Type.map(ts, erasureFun);
}
public Type erasureRecursive(Type t) {
return erasure(t, true);
}
public List<Type> erasureRecursive(List<Type> ts) {
return Type.map(ts, erasureRecFun);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="makeCompoundType">
/**
* Make a compound type from non-empty list of types
*
* @param bounds the types from which the compound type is formed
* @param supertype is objectType if all bounds are interfaces,
* null otherwise.
*/
public Type makeCompoundType(List<Type> bounds,
Type supertype) {
ClassSymbol bc =
new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
Type.moreInfo
? names.fromString(bounds.toString())
: names.empty,
syms.noSymbol);
if (bounds.head.tag == TYPEVAR)
// error condition, recover
bc.erasure_field = syms.objectType;
else
bc.erasure_field = erasure(bounds.head);
bc.members_field = new Scope(bc);
ClassType bt = (ClassType)bc.type;
bt.allparams_field = List.nil();
if (supertype != null) {
bt.supertype_field = supertype;
bt.interfaces_field = bounds;
} else {
bt.supertype_field = bounds.head;
bt.interfaces_field = bounds.tail;
}
Assert.check(bt.supertype_field.tsym.completer != null
|| !bt.supertype_field.isInterface(),
bt.supertype_field);
return bt;
}
/**
* Same as {@link #makeCompoundType(List,Type)}, except that the
* second parameter is computed directly. Note that this might
* cause a symbol completion. Hence, this version of
* makeCompoundType may not be called during a classfile read.
*/
public Type makeCompoundType(List<Type> bounds) {
Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
supertype(bounds.head) : null;
return makeCompoundType(bounds, supertype);
}
/**
* A convenience wrapper for {@link #makeCompoundType(List)}; the
* arguments are converted to a list and passed to the other
* method. Note that this might cause a symbol completion.
* Hence, this version of makeCompoundType may not be called
* during a classfile read.
*/
public Type makeCompoundType(Type bound1, Type bound2) {
return makeCompoundType(List.of(bound1, bound2));
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="supertype">
public Type supertype(Type t) {
return supertype.visit(t);
}
// where
private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
public Type visitType(Type t, Void ignored) {
// A note on wildcards: there is no good way to
// determine a supertype for a super bounded wildcard.
return null;
}
@Override
public Type visitClassType(ClassType t, Void ignored) {
if (t.supertype_field == null) {
Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
// An interface has no superclass; its supertype is Object.
if (t.isInterface())
supertype = ((ClassType)t.tsym.type).supertype_field;
if (t.supertype_field == null) {
List<Type> actuals = classBound(t).allparams();
List<Type> formals = t.tsym.type.allparams();
if (t.hasErasedSupertypes()) {
t.supertype_field = erasureRecursive(supertype);
} else if (formals.nonEmpty()) {
t.supertype_field = subst(supertype, formals, actuals);
}
else {
t.supertype_field = supertype;
}
}
}
return t.supertype_field;
}
/**
* The supertype is always a class type. If the type
* variable's bounds start with a class type, this is also
* the supertype. Otherwise, the supertype is
* java.lang.Object.
*/
@Override
public Type visitTypeVar(TypeVar t, Void ignored) {
if (t.bound.tag == TYPEVAR ||
(!t.bound.isCompound() && !t.bound.isInterface())) {
return t.bound;
} else {
return supertype(t.bound);
}
}
@Override
public Type visitArrayType(ArrayType t, Void ignored) {
if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
return arraySuperType();
else
return new ArrayType(supertype(t.elemtype), t.tsym);
}
@Override
public Type visitErrorType(ErrorType t, Void ignored) {
return t;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="interfaces">
/**
* Return the interfaces implemented by this class.
*/
public List<Type> interfaces(Type t) {
return interfaces.visit(t);
}
// where
private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
public List<Type> visitType(Type t, Void ignored) {
return List.nil();
}
@Override
public List<Type> visitClassType(ClassType t, Void ignored) {
if (t.interfaces_field == null) {
List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
if (t.interfaces_field == null) {
// If t.interfaces_field is null, then t must
// be a parameterized type (not to be confused
// with a generic type declaration).
// Terminology:
// Parameterized type: List<String>
// Generic type declaration: class List<E> { ... }
// So t corresponds to List<String> and
// t.tsym.type corresponds to List<E>.
// The reason t must be parameterized type is
// that completion will happen as a side
// effect of calling
// ClassSymbol.getInterfaces. Since
// t.interfaces_field is null after
// completion, we can assume that t is not the
// type of a class/interface declaration.
Assert.check(t != t.tsym.type, t);
List<Type> actuals = t.allparams();
List<Type> formals = t.tsym.type.allparams();
if (t.hasErasedSupertypes()) {
t.interfaces_field = erasureRecursive(interfaces);
} else if (formals.nonEmpty()) {
t.interfaces_field =
upperBounds(subst(interfaces, formals, actuals));
}
else {
t.interfaces_field = interfaces;
}
}
}
return t.interfaces_field;
}
@Override
public List<Type> visitTypeVar(TypeVar t, Void ignored) {
if (t.bound.isCompound())
return interfaces(t.bound);
if (t.bound.isInterface())
return List.of(t.bound);
return List.nil();
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
public boolean isDerivedRaw(Type t) {
Boolean result = isDerivedRawCache.get(t);
if (result == null) {
result = isDerivedRawInternal(t);
isDerivedRawCache.put(t, result);
}
return result;
}
public boolean isDerivedRawInternal(Type t) {
if (t.isErroneous())
return false;
return
t.isRaw() ||
supertype(t) != null && isDerivedRaw(supertype(t)) ||
isDerivedRaw(interfaces(t));
}
public boolean isDerivedRaw(List<Type> ts) {
List<Type> l = ts;
while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
return l.nonEmpty();
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="setBounds">
/**
* Set the bounds field of the given type variable to reflect a
* (possibly multiple) list of bounds.
* @param t a type variable
* @param bounds the bounds, must be nonempty
* @param supertype is objectType if all bounds are interfaces,
* null otherwise.
*/
public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
if (bounds.tail.isEmpty())
t.bound = bounds.head;
else
t.bound = makeCompoundType(bounds, supertype);
t.rank_field = -1;
}
/**
* Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
* third parameter is computed directly, as follows: if all
* all bounds are interface types, the computed supertype is Object,
* otherwise the supertype is simply left null (in this case, the supertype
* is assumed to be the head of the bound list passed as second argument).
* Note that this check might cause a symbol completion. Hence, this version of
* setBounds may not be called during a classfile read.
*/
public void setBounds(TypeVar t, List<Type> bounds) {
Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
syms.objectType : null;
setBounds(t, bounds, supertype);
t.rank_field = -1;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="getBounds">
/**
* Return list of bounds of the given type variable.
*/
public List<Type> getBounds(TypeVar t) {
if (t.bound.isErroneous() || !t.bound.isCompound())
return List.of(t.bound);
else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
return interfaces(t).prepend(supertype(t));
else
// No superclass was given in bounds.
// In this case, supertype is Object, erasure is first interface.
return interfaces(t);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="classBound">
/**
* If the given type is a (possibly selected) type variable,
* return the bounding class of this type, otherwise return the
* type itself.
*/
public Type classBound(Type t) {
return classBound.visit(t);
}
// where
private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
public Type visitType(Type t, Void ignored) {
return t;
}
@Override
public Type visitClassType(ClassType t, Void ignored) {
Type outer1 = classBound(t.getEnclosingType());
if (outer1 != t.getEnclosingType())
return new ClassType(outer1, t.getTypeArguments(), t.tsym);
else
return t;
}
@Override
public Type visitTypeVar(TypeVar t, Void ignored) {
return classBound(supertype(t));
}
@Override
public Type visitErrorType(ErrorType t, Void ignored) {
return t;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
/**
* Returns true iff the first signature is a <em>sub
* signature</em> of the other. This is <b>not</b> an equivalence
* relation.
*
* @see "The Java Language Specification, Third Ed. (8.4.2)."
* @see #overrideEquivalent(Type t, Type s)
* @param t first signature (possibly raw).
* @param s second signature (could be subjected to erasure).
* @return true if t is a sub signature of s.
*/
public boolean isSubSignature(Type t, Type s) {
return isSubSignature(t, s, true);
}
public boolean isSubSignature(Type t, Type s, boolean strict) {
return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
}
/**
* Returns true iff these signatures are related by <em>override
* equivalence</em>. This is the natural extension of
* isSubSignature to an equivalence relation.
*
* @see "The Java Language Specification, Third Ed. (8.4.2)."
* @see #isSubSignature(Type t, Type s)
* @param t a signature (possible raw, could be subjected to
* erasure).
* @param s a signature (possible raw, could be subjected to
* erasure).
* @return true if either argument is a sub signature of the other.
*/
public boolean overrideEquivalent(Type t, Type s) {
return hasSameArgs(t, s) ||
hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
}
// <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
class ImplementationCache {
private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
class Entry {
final MethodSymbol cachedImpl;
final Filter<Symbol> implFilter;
final boolean checkResult;
final int prevMark;
public Entry(MethodSymbol cachedImpl,
Filter<Symbol> scopeFilter,
boolean checkResult,
int prevMark) {
this.cachedImpl = cachedImpl;
this.implFilter = scopeFilter;
this.checkResult = checkResult;
this.prevMark = prevMark;
}
boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
return this.implFilter == scopeFilter &&
this.checkResult == checkResult &&
this.prevMark == mark;
}
}
MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
if (cache == null) {
cache = new HashMap<TypeSymbol, Entry>();
_map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
}
Entry e = cache.get(origin);
CompoundScope members = membersClosure(origin.type);
if (e == null ||
!e.matches(implFilter, checkResult, members.getMark())) {
MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
return impl;
}
else {
return e.cachedImpl;
}
}
private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
while (t.tag == TYPEVAR)
t = t.getUpperBound();
TypeSymbol c = t.tsym;
for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
e.scope != null;
e = e.next(implFilter)) {
if (e.sym != null &&
e.sym.overrides(ms, origin, Types.this, checkResult))
return (MethodSymbol)e.sym;
}
}
return null;
}
}
private ImplementationCache implCache = new ImplementationCache();
public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
return implCache.get(ms, origin, checkResult, implFilter);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
public CompoundScope membersClosure(Type site) {
return membersClosure.visit(site);
}
UnaryVisitor<CompoundScope> membersClosure = new UnaryVisitor<CompoundScope>() {
public CompoundScope visitType(Type t, Void s) {
return null;
}
@Override
public CompoundScope visitClassType(ClassType t, Void s) {
ClassSymbol csym = (ClassSymbol)t.tsym;
if (csym.membersClosure == null) {
CompoundScope membersClosure = new CompoundScope(csym);
for (Type i : interfaces(t)) {
membersClosure.addSubScope(visit(i));
}
membersClosure.addSubScope(visit(supertype(t)));
membersClosure.addSubScope(csym.members());
csym.membersClosure = membersClosure;
}
return csym.membersClosure;
}
@Override
public CompoundScope visitTypeVar(TypeVar t, Void s) {
return visit(t.getUpperBound());
}
};
// </editor-fold>
/**
* Does t have the same arguments as s? It is assumed that both
* types are (possibly polymorphic) method types. Monomorphic
* method types "have the same arguments", if their argument lists
* are equal. Polymorphic method types "have the same arguments",
* if they have the same arguments after renaming all type
* variables of one to corresponding type variables in the other,
* where correspondence is by position in the type parameter list.
*/
public boolean hasSameArgs(Type t, Type s) {
return hasSameArgs(t, s, true);
}
public boolean hasSameArgs(Type t, Type s, boolean strict) {
return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
}
private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
return hasSameArgs.visit(t, s);
}
// where
private class HasSameArgs extends TypeRelation {
boolean strict;
public HasSameArgs(boolean strict) {
this.strict = strict;
}
public Boolean visitType(Type t, Type s) {
throw new AssertionError();
}
@Override
public Boolean visitMethodType(MethodType t, Type s) {
return s.tag == METHOD
&& containsTypeEquivalent(t.argtypes, s.getParameterTypes());
}
@Override
public Boolean visitForAll(ForAll t, Type s) {
if (s.tag != FORALL)
return strict ? false : visitMethodType(t.asMethodType(), s);
ForAll forAll = (ForAll)s;
return hasSameBounds(t, forAll)
&& visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
}
@Override
public Boolean visitErrorType(ErrorType t, Type s) {
return false;
}
};
TypeRelation hasSameArgs_strict = new HasSameArgs(true);
TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="subst">
public List<Type> subst(List<Type> ts,
List<Type> from,
List<Type> to) {
return new Subst(from, to).subst(ts);
}
/**
* Substitute all occurrences of a type in `from' with the
* corresponding type in `to' in 't'. Match lists `from' and `to'
* from the right: If lists have different length, discard leading
* elements of the longer list.
*/
public Type subst(Type t, List<Type> from, List<Type> to) {
return new Subst(from, to).subst(t);
}
private class Subst extends UnaryVisitor<Type> {
List<Type> from;
List<Type> to;
public Subst(List<Type> from, List<Type> to) {
int fromLength = from.length();
int toLength = to.length();
while (fromLength > toLength) {
fromLength--;
from = from.tail;
}
while (fromLength < toLength) {
toLength--;
to = to.tail;
}
this.from = from;
this.to = to;
}
Type subst(Type t) {
if (from.tail == null)
return t;
else
return visit(t);
}
List<Type> subst(List<Type> ts) {
if (from.tail == null)
return ts;
boolean wild = false;
if (ts.nonEmpty() && from.nonEmpty()) {
Type head1 = subst(ts.head);
List<Type> tail1 = subst(ts.tail);
if (head1 != ts.head || tail1 != ts.tail)
return tail1.prepend(head1);
}
return ts;
}
public Type visitType(Type t, Void ignored) {
return t;
}
@Override
public Type visitMethodType(MethodType t, Void ignored) {
List<Type> argtypes = subst(t.argtypes);
Type restype = subst(t.restype);
List<Type> thrown = subst(t.thrown);
if (argtypes == t.argtypes &&
restype == t.restype &&
thrown == t.thrown)
return t;
else
return new MethodType(argtypes, restype, thrown, t.tsym);
}
@Override
public Type visitTypeVar(TypeVar t, Void ignored) {
for (List<Type> from = this.from, to = this.to;
from.nonEmpty();
from = from.tail, to = to.tail) {
if (t == from.head) {
return to.head.withTypeVar(t);
}
}
return t;
}
@Override
public Type visitClassType(ClassType t, Void ignored) {
if (!t.isCompound()) {
List<Type> typarams = t.getTypeArguments();
List<Type> typarams1 = subst(typarams);
Type outer = t.getEnclosingType();
Type outer1 = subst(outer);
if (typarams1 == typarams && outer1 == outer)
return t;
else
return new ClassType(outer1, typarams1, t.tsym);
} else {
Type st = subst(supertype(t));
List<Type> is = upperBounds(subst(interfaces(t)));
if (st == supertype(t) && is == interfaces(t))
return t;
else
return makeCompoundType(is.prepend(st));
}
}
@Override
public Type visitWildcardType(WildcardType t, Void ignored) {
Type bound = t.type;
if (t.kind != BoundKind.UNBOUND)
bound = subst(bound);
if (bound == t.type) {
return t;
} else {
if (t.isExtendsBound() && bound.isExtendsBound())
bound = upperBound(bound);
return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
}
}
@Override
public Type visitArrayType(ArrayType t, Void ignored) {
Type elemtype = subst(t.elemtype);
if (elemtype == t.elemtype)
return t;
else
return new ArrayType(upperBound(elemtype), t.tsym);
}
@Override
public Type visitForAll(ForAll t, Void ignored) {
if (Type.containsAny(to, t.tvars)) {
//perform alpha-renaming of free-variables in 't'
//if 'to' types contain variables that are free in 't'
List<Type> freevars = newInstances(t.tvars);
t = new ForAll(freevars,
Types.this.subst(t.qtype, t.tvars, freevars));
}
List<Type> tvars1 = substBounds(t.tvars, from, to);
Type qtype1 = subst(t.qtype);
if (tvars1 == t.tvars && qtype1 == t.qtype) {
return t;
} else if (tvars1 == t.tvars) {
return new ForAll(tvars1, qtype1);
} else {
return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
}
}
@Override
public Type visitErrorType(ErrorType t, Void ignored) {
return t;
}
}
public List<Type> substBounds(List<Type> tvars,
List<Type> from,
List<Type> to) {
if (tvars.isEmpty())
return tvars;
ListBuffer<Type> newBoundsBuf = lb();
boolean changed = false;
// calculate new bounds
for (Type t : tvars) {
TypeVar tv = (TypeVar) t;
Type bound = subst(tv.bound, from, to);
if (bound != tv.bound)
changed = true;
newBoundsBuf.append(bound);
}
if (!changed)
return tvars;
ListBuffer<Type> newTvars = lb();
// create new type variables without bounds
for (Type t : tvars) {
newTvars.append(new TypeVar(t.tsym, null, syms.botType));
}
// the new bounds should use the new type variables in place
// of the old
List<Type> newBounds = newBoundsBuf.toList();
from = tvars;
to = newTvars.toList();
for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
newBounds.head = subst(newBounds.head, from, to);
}
newBounds = newBoundsBuf.toList();
// set the bounds of new type variables to the new bounds
for (Type t : newTvars.toList()) {
TypeVar tv = (TypeVar) t;
tv.bound = newBounds.head;
newBounds = newBounds.tail;
}
return newTvars.toList();
}
public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
Type bound1 = subst(t.bound, from, to);
if (bound1 == t.bound)
return t;
else {
// create new type variable without bounds
TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
// the new bound should use the new type variable in place
// of the old
tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
return tv;
}
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="hasSameBounds">
/**
* Does t have the same bounds for quantified variables as s?
*/
boolean hasSameBounds(ForAll t, ForAll s) {
List<Type> l1 = t.tvars;
List<Type> l2 = s.tvars;
while (l1.nonEmpty() && l2.nonEmpty() &&
isSameType(l1.head.getUpperBound(),
subst(l2.head.getUpperBound(),
s.tvars,
t.tvars))) {
l1 = l1.tail;
l2 = l2.tail;
}
return l1.isEmpty() && l2.isEmpty();
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="newInstances">
/** Create new vector of type variables from list of variables
* changing all recursive bounds from old to new list.
*/
public List<Type> newInstances(List<Type> tvars) {
List<Type> tvars1 = Type.map(tvars, newInstanceFun);
for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
TypeVar tv = (TypeVar) l.head;
tv.bound = subst(tv.bound, tvars, tvars1);
}
return tvars1;
}
static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
};
// </editor-fold>
public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
return original.accept(methodWithParameters, newParams);
}
// where
private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
public Type visitType(Type t, List<Type> newParams) {
throw new IllegalArgumentException("Not a method type: " + t);
}
public Type visitMethodType(MethodType t, List<Type> newParams) {
return new MethodType(newParams, t.restype, t.thrown, t.tsym);
}
public Type visitForAll(ForAll t, List<Type> newParams) {
return new ForAll(t.tvars, t.qtype.accept(this, newParams));
}
};
public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
return original.accept(methodWithThrown, newThrown);
}
// where
private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
public Type visitType(Type t, List<Type> newThrown) {
throw new IllegalArgumentException("Not a method type: " + t);
}
public Type visitMethodType(MethodType t, List<Type> newThrown) {
return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
}
public Type visitForAll(ForAll t, List<Type> newThrown) {
return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
}
};
public Type createMethodTypeWithReturn(Type original, Type newReturn) {
return original.accept(methodWithReturn, newReturn);
}
// where
private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
public Type visitType(Type t, Type newReturn) {
throw new IllegalArgumentException("Not a method type: " + t);
}
public Type visitMethodType(MethodType t, Type newReturn) {
return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
}
public Type visitForAll(ForAll t, Type newReturn) {
return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
}
};
// <editor-fold defaultstate="collapsed" desc="createErrorType">
public Type createErrorType(Type originalType) {
return new ErrorType(originalType, syms.errSymbol);
}
public Type createErrorType(ClassSymbol c, Type originalType) {
return new ErrorType(c, originalType);
}
public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
return new ErrorType(name, container, originalType);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="rank">
/**
* The rank of a class is the length of the longest path between
* the class and java.lang.Object in the class inheritance
* graph. Undefined for all but reference types.
*/
public int rank(Type t) {
switch(t.tag) {
case CLASS: {
ClassType cls = (ClassType)t;
if (cls.rank_field < 0) {
Name fullname = cls.tsym.getQualifiedName();
if (fullname == names.java_lang_Object)
cls.rank_field = 0;
else {
int r = rank(supertype(cls));
for (List<Type> l = interfaces(cls);
l.nonEmpty();
l = l.tail) {
if (rank(l.head) > r)
r = rank(l.head);
}
cls.rank_field = r + 1;
}
}
return cls.rank_field;
}
case TYPEVAR: {
TypeVar tvar = (TypeVar)t;
if (tvar.rank_field < 0) {
int r = rank(supertype(tvar));
for (List<Type> l = interfaces(tvar);
l.nonEmpty();
l = l.tail) {
if (rank(l.head) > r) r = rank(l.head);
}
tvar.rank_field = r + 1;
}
return tvar.rank_field;
}
case ERROR:
return 0;
default:
throw new AssertionError();
}
}
// </editor-fold>
/**
* Helper method for generating a string representation of a given type
* accordingly to a given locale
*/
public String toString(Type t, Locale locale) {
return Printer.createStandardPrinter(messages).visit(t, locale);
}
/**
* Helper method for generating a string representation of a given type
* accordingly to a given locale
*/
public String toString(Symbol t, Locale locale) {
return Printer.createStandardPrinter(messages).visit(t, locale);
}
// <editor-fold defaultstate="collapsed" desc="toString">
/**
* This toString is slightly more descriptive than the one on Type.
*
* @deprecated Types.toString(Type t, Locale l) provides better support
* for localization
*/
@Deprecated
public String toString(Type t) {
if (t.tag == FORALL) {
ForAll forAll = (ForAll)t;
return typaramsString(forAll.tvars) + forAll.qtype;
}
return "" + t;
}
// where
private String typaramsString(List<Type> tvars) {
StringBuilder s = new StringBuilder();
s.append('<');
boolean first = true;
for (Type t : tvars) {
if (!first) s.append(", ");
first = false;
appendTyparamString(((TypeVar)t), s);
}
s.append('>');
return s.toString();
}
private void appendTyparamString(TypeVar t, StringBuilder buf) {
buf.append(t);
if (t.bound == null ||
t.bound.tsym.getQualifiedName() == names.java_lang_Object)
return;
buf.append(" extends "); // Java syntax; no need for i18n
Type bound = t.bound;
if (!bound.isCompound()) {
buf.append(bound);
} else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
buf.append(supertype(t));
for (Type intf : interfaces(t)) {
buf.append('&');
buf.append(intf);
}
} else {
// No superclass was given in bounds.
// In this case, supertype is Object, erasure is first interface.
boolean first = true;
for (Type intf : interfaces(t)) {
if (!first) buf.append('&');
first = false;
buf.append(intf);
}
}
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
/**
* A cache for closures.
*
* <p>A closure is a list of all the supertypes and interfaces of
* a class or interface type, ordered by ClassSymbol.precedes
* (that is, subclasses come first, arbitrary but fixed
* otherwise).
*/
private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
/**
* Returns the closure of a class or interface type.
*/
public List<Type> closure(Type t) {
List<Type> cl = closureCache.get(t);
if (cl == null) {
Type st = supertype(t);
if (!t.isCompound()) {
if (st.tag == CLASS) {
cl = insert(closure(st), t);
} else if (st.tag == TYPEVAR) {
cl = closure(st).prepend(t);
} else {
cl = List.of(t);
}
} else {
cl = closure(supertype(t));
}
for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
cl = union(cl, closure(l.head));
closureCache.put(t, cl);
}
return cl;
}
/**
* Insert a type in a closure
*/
public List<Type> insert(List<Type> cl, Type t) {
if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
return cl.prepend(t);
} else if (cl.head.tsym.precedes(t.tsym, this)) {
return insert(cl.tail, t).prepend(cl.head);
} else {
return cl;
}
}
/**
* Form the union of two closures
*/
public List<Type> union(List<Type> cl1, List<Type> cl2) {
if (cl1.isEmpty()) {
return cl2;
} else if (cl2.isEmpty()) {
return cl1;
} else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
return union(cl1.tail, cl2).prepend(cl1.head);
} else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
return union(cl1, cl2.tail).prepend(cl2.head);
} else {
return union(cl1.tail, cl2.tail).prepend(cl1.head);
}
}
/**
* Intersect two closures
*/
public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
if (cl1 == cl2)
return cl1;
if (cl1.isEmpty() || cl2.isEmpty())
return List.nil();
if (cl1.head.tsym.precedes(cl2.head.tsym, this))
return intersect(cl1.tail, cl2);
if (cl2.head.tsym.precedes(cl1.head.tsym, this))
return intersect(cl1, cl2.tail);
if (isSameType(cl1.head, cl2.head))
return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
if (cl1.head.tsym == cl2.head.tsym &&
cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
Type merge = merge(cl1.head,cl2.head);
return intersect(cl1.tail, cl2.tail).prepend(merge);
}
if (cl1.head.isRaw() || cl2.head.isRaw())
return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
}
return intersect(cl1.tail, cl2.tail);
}
// where
class TypePair {
final Type t1;
final Type t2;
TypePair(Type t1, Type t2) {
this.t1 = t1;
this.t2 = t2;
}
@Override
public int hashCode() {
return 127 * Types.hashCode(t1) + Types.hashCode(t2);
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof TypePair))
return false;
TypePair typePair = (TypePair)obj;
return isSameType(t1, typePair.t1)
&& isSameType(t2, typePair.t2);
}
}
Set<TypePair> mergeCache = new HashSet<TypePair>();
private Type merge(Type c1, Type c2) {
ClassType class1 = (ClassType) c1;
List<Type> act1 = class1.getTypeArguments();
ClassType class2 = (ClassType) c2;
List<Type> act2 = class2.getTypeArguments();
ListBuffer<Type> merged = new ListBuffer<Type>();
List<Type> typarams = class1.tsym.type.getTypeArguments();
while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
if (containsType(act1.head, act2.head)) {
merged.append(act1.head);
} else if (containsType(act2.head, act1.head)) {
merged.append(act2.head);
} else {
TypePair pair = new TypePair(c1, c2);
Type m;
if (mergeCache.add(pair)) {
m = new WildcardType(lub(upperBound(act1.head),
upperBound(act2.head)),
BoundKind.EXTENDS,
syms.boundClass);
mergeCache.remove(pair);
} else {
m = new WildcardType(syms.objectType,
BoundKind.UNBOUND,
syms.boundClass);
}
merged.append(m.withTypeVar(typarams.head));
}
act1 = act1.tail;
act2 = act2.tail;
typarams = typarams.tail;
}
Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
}
/**
* Return the minimum type of a closure, a compound type if no
* unique minimum exists.
*/
private Type compoundMin(List<Type> cl) {
if (cl.isEmpty()) return syms.objectType;
List<Type> compound = closureMin(cl);
if (compound.isEmpty())
return null;
else if (compound.tail.isEmpty())
return compound.head;
else
return makeCompoundType(compound);
}
/**
* Return the minimum types of a closure, suitable for computing
* compoundMin or glb.
*/
private List<Type> closureMin(List<Type> cl) {
ListBuffer<Type> classes = lb();
ListBuffer<Type> interfaces = lb();
while (!cl.isEmpty()) {
Type current = cl.head;
if (current.isInterface())
interfaces.append(current);
else
classes.append(current);
ListBuffer<Type> candidates = lb();
for (Type t : cl.tail) {
if (!isSubtypeNoCapture(current, t))
candidates.append(t);
}
cl = candidates.toList();
}
return classes.appendList(interfaces).toList();
}
/**
* Return the least upper bound of pair of types. if the lub does
* not exist return null.
*/
public Type lub(Type t1, Type t2) {
return lub(List.of(t1, t2));
}
/**
* Return the least upper bound (lub) of set of types. If the lub
* does not exist return the type of null (bottom).
*/
public Type lub(List<Type> ts) {
final int ARRAY_BOUND = 1;
final int CLASS_BOUND = 2;
int boundkind = 0;
for (Type t : ts) {
switch (t.tag) {
case CLASS:
boundkind |= CLASS_BOUND;
break;
case ARRAY:
boundkind |= ARRAY_BOUND;
break;
case TYPEVAR:
do {
t = t.getUpperBound();
} while (t.tag == TYPEVAR);
if (t.tag == ARRAY) {
boundkind |= ARRAY_BOUND;
} else {
boundkind |= CLASS_BOUND;
}
break;
default:
if (t.isPrimitive())
return syms.errType;
}
}
switch (boundkind) {
case 0:
return syms.botType;
case ARRAY_BOUND:
// calculate lub(A[], B[])
List<Type> elements = Type.map(ts, elemTypeFun);
for (Type t : elements) {
if (t.isPrimitive()) {
// if a primitive type is found, then return
// arraySuperType unless all the types are the
// same
Type first = ts.head;
for (Type s : ts.tail) {
if (!isSameType(first, s)) {
// lub(int[], B[]) is Cloneable & Serializable
return arraySuperType();
}
}
// all the array types are the same, return one
// lub(int[], int[]) is int[]
return first;
}
}
// lub(A[], B[]) is lub(A, B)[]
return new ArrayType(lub(elements), syms.arrayClass);
case CLASS_BOUND:
// calculate lub(A, B)
while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
ts = ts.tail;
Assert.check(!ts.isEmpty());
//step 1 - compute erased candidate set (EC)
List<Type> cl = erasedSupertypes(ts.head);
for (Type t : ts.tail) {
if (t.tag == CLASS || t.tag == TYPEVAR)
cl = intersect(cl, erasedSupertypes(t));
}
//step 2 - compute minimal erased candidate set (MEC)
List<Type> mec = closureMin(cl);
//step 3 - for each element G in MEC, compute lci(Inv(G))
List<Type> candidates = List.nil();
for (Type erasedSupertype : mec) {
List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
for (Type t : ts) {
lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
}
candidates = candidates.appendList(lci);
}
//step 4 - let MEC be { G1, G2 ... Gn }, then we have that
//lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
return compoundMin(candidates);
default:
// calculate lub(A, B[])
List<Type> classes = List.of(arraySuperType());
for (Type t : ts) {
if (t.tag != ARRAY) // Filter out any arrays
classes = classes.prepend(t);
}
// lub(A, B[]) is lub(A, arraySuperType)
return lub(classes);
}
}
// where
List<Type> erasedSupertypes(Type t) {
ListBuffer<Type> buf = lb();
for (Type sup : closure(t)) {
if (sup.tag == TYPEVAR) {
buf.append(sup);
} else {
buf.append(erasure(sup));
}
}
return buf.toList();
}
private Type arraySuperType = null;
private Type arraySuperType() {
// initialized lazily to avoid problems during compiler startup
if (arraySuperType == null) {
synchronized (this) {
if (arraySuperType == null) {
// JLS 10.8: all arrays implement Cloneable and Serializable.
arraySuperType = makeCompoundType(List.of(syms.serializableType,
syms.cloneableType),
syms.objectType);
}
}
}
return arraySuperType;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
public Type glb(List<Type> ts) {
Type t1 = ts.head;
for (Type t2 : ts.tail) {
if (t1.isErroneous())
return t1;
t1 = glb(t1, t2);
}
return t1;
}
//where
public Type glb(Type t, Type s) {
if (s == null)
return t;
else if (t.isPrimitive() || s.isPrimitive())
return syms.errType;
else if (isSubtypeNoCapture(t, s))
return t;
else if (isSubtypeNoCapture(s, t))
return s;
List<Type> closure = union(closure(t), closure(s));
List<Type> bounds = closureMin(closure);
if (bounds.isEmpty()) { // length == 0
return syms.objectType;
} else if (bounds.tail.isEmpty()) { // length == 1
return bounds.head;
} else { // length > 1
int classCount = 0;
for (Type bound : bounds)
if (!bound.isInterface())
classCount++;
if (classCount > 1)
return createErrorType(t);
}
return makeCompoundType(bounds);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="hashCode">
/**
* Compute a hash code on a type.
*/
public static int hashCode(Type t) {
return hashCode.visit(t);
}
// where
private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
public Integer visitType(Type t, Void ignored) {
return t.tag;
}
@Override
public Integer visitClassType(ClassType t, Void ignored) {
int result = visit(t.getEnclosingType());
result *= 127;
result += t.tsym.flatName().hashCode();
for (Type s : t.getTypeArguments()) {
result *= 127;
result += visit(s);
}
return result;
}
@Override
public Integer visitWildcardType(WildcardType t, Void ignored) {
int result = t.kind.hashCode();
if (t.type != null) {
result *= 127;
result += visit(t.type);
}
return result;
}
@Override
public Integer visitArrayType(ArrayType t, Void ignored) {
return visit(t.elemtype) + 12;
}
@Override
public Integer visitTypeVar(TypeVar t, Void ignored) {
return System.identityHashCode(t.tsym);
}
@Override
public Integer visitUndetVar(UndetVar t, Void ignored) {
return System.identityHashCode(t);
}
@Override
public Integer visitErrorType(ErrorType t, Void ignored) {
return 0;
}
};
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
/**
* Does t have a result that is a subtype of the result type of s,
* suitable for covariant returns? It is assumed that both types
* are (possibly polymorphic) method types. Monomorphic method
* types are handled in the obvious way. Polymorphic method types
* require renaming all type variables of one to corresponding
* type variables in the other, where correspondence is by
* position in the type parameter list. */
public boolean resultSubtype(Type t, Type s, Warner warner) {
List<Type> tvars = t.getTypeArguments();
List<Type> svars = s.getTypeArguments();
Type tres = t.getReturnType();
Type sres = subst(s.getReturnType(), svars, tvars);
return covariantReturnType(tres, sres, warner);
}
/**
* Return-Type-Substitutable.
* @see <a href="http://java.sun.com/docs/books/jls/">The Java
* Language Specification, Third Ed. (8.4.5)</a>
*/
public boolean returnTypeSubstitutable(Type r1, Type r2) {
if (hasSameArgs(r1, r2))
return resultSubtype(r1, r2, Warner.noWarnings);
else
return covariantReturnType(r1.getReturnType(),
erasure(r2.getReturnType()),
Warner.noWarnings);
}
public boolean returnTypeSubstitutable(Type r1,
Type r2, Type r2res,
Warner warner) {
if (isSameType(r1.getReturnType(), r2res))
return true;
if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
return false;
if (hasSameArgs(r1, r2))
return covariantReturnType(r1.getReturnType(), r2res, warner);
if (!source.allowCovariantReturns())
return false;
if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
return true;
if (!isSubtype(r1.getReturnType(), erasure(r2res)))
return false;
warner.warn(LintCategory.UNCHECKED);
return true;
}
/**
* Is t an appropriate return type in an overrider for a
* method that returns s?
*/
public boolean covariantReturnType(Type t, Type s, Warner warner) {
return
isSameType(t, s) ||
source.allowCovariantReturns() &&
!t.isPrimitive() &&
!s.isPrimitive() &&
isAssignable(t, s, warner);
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Box/unbox support">
/**
* Return the class that boxes the given primitive.
*/
public ClassSymbol boxedClass(Type t) {
return reader.enterClass(syms.boxedName[t.tag]);
}
/**
* Return the boxed type if 't' is primitive, otherwise return 't' itself.
*/
public Type boxedTypeOrType(Type t) {
return t.isPrimitive() ?
boxedClass(t).type :
t;
}
/**
* Return the primitive type corresponding to a boxed type.
*/
public Type unboxedType(Type t) {
if (allowBoxing) {
for (int i=0; i<syms.boxedName.length; i++) {
Name box = syms.boxedName[i];
if (box != null &&
asSuper(t, reader.enterClass(box)) != null)
return syms.typeOfTag[i];
}
}
return Type.noType;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Capture conversion">
/*
* JLS 3rd Ed. 5.1.10 Capture Conversion:
*
* Let G name a generic type declaration with n formal type
* parameters A1 ... An with corresponding bounds U1 ... Un. There
* exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
* where, for 1 <= i <= n:
*
* + If Ti is a wildcard type argument (4.5.1) of the form ? then
* Si is a fresh type variable whose upper bound is
* Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
* type.
*
* + If Ti is a wildcard type argument of the form ? extends Bi,
* then Si is a fresh type variable whose upper bound is
* glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
* the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
* a compile-time error if for any two classes (not interfaces)
* Vi and Vj,Vi is not a subclass of Vj or vice versa.
*
* + If Ti is a wildcard type argument of the form ? super Bi,
* then Si is a fresh type variable whose upper bound is
* Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
*
* + Otherwise, Si = Ti.
*
* Capture conversion on any type other than a parameterized type
* (4.5) acts as an identity conversion (5.1.1). Capture
* conversions never require a special action at run time and
* therefore never throw an exception at run time.
*
* Capture conversion is not applied recursively.
*/
/**
* Capture conversion as specified by JLS 3rd Ed.
*/
public List<Type> capture(List<Type> ts) {
List<Type> buf = List.nil();
for (Type t : ts) {
buf = buf.prepend(capture(t));
}
return buf.reverse();
}
public Type capture(Type t) {
if (t.tag != CLASS)
return t;
if (t.getEnclosingType() != Type.noType) {
Type capturedEncl = capture(t.getEnclosingType());
if (capturedEncl != t.getEnclosingType()) {
Type type1 = memberType(capturedEncl, t.tsym);
t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
}
}
ClassType cls = (ClassType)t;
if (cls.isRaw() || !cls.isParameterized())
return cls;
ClassType G = (ClassType)cls.asElement().asType();
List<Type> A = G.getTypeArguments();
List<Type> T = cls.getTypeArguments();
List<Type> S = freshTypeVariables(T);
List<Type> currentA = A;
List<Type> currentT = T;
List<Type> currentS = S;
boolean captured = false;
while (!currentA.isEmpty() &&
!currentT.isEmpty() &&
!currentS.isEmpty()) {
if (currentS.head != currentT.head) {
captured = true;
WildcardType Ti = (WildcardType)currentT.head;
Type Ui = currentA.head.getUpperBound();
CapturedType Si = (CapturedType)currentS.head;
if (Ui == null)
Ui = syms.objectType;
switch (Ti.kind) {
case UNBOUND:
Si.bound = subst(Ui, A, S);
Si.lower = syms.botType;
break;
case EXTENDS:
Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
Si.lower = syms.botType;
break;
case SUPER:
Si.bound = subst(Ui, A, S);
Si.lower = Ti.getSuperBound();
break;
}
if (Si.bound == Si.lower)
currentS.head = Si.bound;
}
currentA = currentA.tail;
currentT = currentT.tail;
currentS = currentS.tail;
}
if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
return erasure(t); // some "rare" type involved
if (captured)
return new ClassType(cls.getEnclosingType(), S, cls.tsym);
else
return t;
}
// where
public List<Type> freshTypeVariables(List<Type> types) {
ListBuffer<Type> result = lb();
for (Type t : types) {
if (t.tag == WILDCARD) {
Type bound = ((WildcardType)t).getExtendsBound();
if (bound == null)
bound = syms.objectType;
result.append(new CapturedType(capturedName,
syms.noSymbol,
bound,
syms.botType,
(WildcardType)t));
} else {
result.append(t);
}
}
return result.toList();
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Internal utility methods">
private List<Type> upperBounds(List<Type> ss) {
if (ss.isEmpty()) return ss;
Type head = upperBound(ss.head);
List<Type> tail = upperBounds(ss.tail);
if (head != ss.head || tail != ss.tail)
return tail.prepend(head);
else
return ss;
}
private boolean sideCast(Type from, Type to, Warner warn) {
// We are casting from type $from$ to type $to$, which are
// non-final unrelated types. This method
// tries to reject a cast by transferring type parameters
// from $to$ to $from$ by common superinterfaces.
boolean reverse = false;
Type target = to;
if ((to.tsym.flags() & INTERFACE) == 0) {
Assert.check((from.tsym.flags() & INTERFACE) != 0);
reverse = true;
to = from;
from = target;
}
List<Type> commonSupers = superClosure(to, erasure(from));
boolean giveWarning = commonSupers.isEmpty();
// The arguments to the supers could be unified here to
// get a more accurate analysis
while (commonSupers.nonEmpty()) {
Type t1 = asSuper(from, commonSupers.head.tsym);
Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
return false;
giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
commonSupers = commonSupers.tail;
}
if (giveWarning && !isReifiable(reverse ? from : to))
warn.warn(LintCategory.UNCHECKED);
if (!source.allowCovariantReturns())
// reject if there is a common method signature with
// incompatible return types.
chk.checkCompatibleAbstracts(warn.pos(), from, to);
return true;
}
private boolean sideCastFinal(Type from, Type to, Warner warn) {
// We are casting from type $from$ to type $to$, which are
// unrelated types one of which is final and the other of
// which is an interface. This method
// tries to reject a cast by transferring type parameters
// from the final class to the interface.
boolean reverse = false;
Type target = to;
if ((to.tsym.flags() & INTERFACE) == 0) {
Assert.check((from.tsym.flags() & INTERFACE) != 0);
reverse = true;
to = from;
from = target;
}
Assert.check((from.tsym.flags() & FINAL) != 0);
Type t1 = asSuper(from, to.tsym);
if (t1 == null) return false;
Type t2 = to;
if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
return false;
if (!source.allowCovariantReturns())
// reject if there is a common method signature with
// incompatible return types.
chk.checkCompatibleAbstracts(warn.pos(), from, to);
if (!isReifiable(target) &&
(reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
warn.warn(LintCategory.UNCHECKED);
return true;
}
private boolean giveWarning(Type from, Type to) {
Type subFrom = asSub(from, to.tsym);
return to.isParameterized() &&
(!(isUnbounded(to) ||
isSubtype(from, to) ||
((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
}
private List<Type> superClosure(Type t, Type s) {
List<Type> cl = List.nil();
for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
if (isSubtype(s, erasure(l.head))) {
cl = insert(cl, l.head);
} else {
cl = union(cl, superClosure(l.head, s));
}
}
return cl;
}
private boolean containsTypeEquivalent(Type t, Type s) {
return
isSameType(t, s) || // shortcut
containsType(t, s) && containsType(s, t);
}
// <editor-fold defaultstate="collapsed" desc="adapt">
/**
* Adapt a type by computing a substitution which maps a source
* type to a target type.
*
* @param source the source type
* @param target the target type
* @param from the type variables of the computed substitution
* @param to the types of the computed substitution.
*/
public void adapt(Type source,
Type target,
ListBuffer<Type> from,
ListBuffer<Type> to) throws AdaptFailure {
new Adapter(from, to).adapt(source, target);
}
class Adapter extends SimpleVisitor<Void, Type> {
ListBuffer<Type> from;
ListBuffer<Type> to;
Map<Symbol,Type> mapping;
Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
this.from = from;
this.to = to;
mapping = new HashMap<Symbol,Type>();
}
public void adapt(Type source, Type target) throws AdaptFailure {
visit(source, target);
List<Type> fromList = from.toList();
List<Type> toList = to.toList();
while (!fromList.isEmpty()) {
Type val = mapping.get(fromList.head.tsym);
if (toList.head != val)
toList.head = val;
fromList = fromList.tail;
toList = toList.tail;
}
}
@Override
public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
if (target.tag == CLASS)
adaptRecursive(source.allparams(), target.allparams());
return null;
}
@Override
public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
if (target.tag == ARRAY)
adaptRecursive(elemtype(source), elemtype(target));
return null;
}
@Override
public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
if (source.isExtendsBound())
adaptRecursive(upperBound(source), upperBound(target));
else if (source.isSuperBound())
adaptRecursive(lowerBound(source), lowerBound(target));
return null;
}
@Override
public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
// Check to see if there is
// already a mapping for $source$, in which case
// the old mapping will be merged with the new
Type val = mapping.get(source.tsym);
if (val != null) {
if (val.isSuperBound() && target.isSuperBound()) {
val = isSubtype(lowerBound(val), lowerBound(target))
? target : val;
} else if (val.isExtendsBound() && target.isExtendsBound()) {
val = isSubtype(upperBound(val), upperBound(target))
? val : target;
} else if (!isSameType(val, target)) {
throw new AdaptFailure();
}
} else {
val = target;
from.append(source);
to.append(target);
}
mapping.put(source.tsym, val);
return null;
}
@Override
public Void visitType(Type source, Type target) {
return null;
}
private Set<TypePair> cache = new HashSet<TypePair>();
private void adaptRecursive(Type source, Type target) {
TypePair pair = new TypePair(source, target);
if (cache.add(pair)) {
try {
visit(source, target);
} finally {
cache.remove(pair);
}
}
}
private void adaptRecursive(List<Type> source, List<Type> target) {
if (source.length() == target.length()) {
while (source.nonEmpty()) {
adaptRecursive(source.head, target.head);
source = source.tail;
target = target.tail;
}
}
}
}
public static class AdaptFailure extends RuntimeException {
static final long serialVersionUID = -7490231548272701566L;
}
private void adaptSelf(Type t,
ListBuffer<Type> from,
ListBuffer<Type> to) {
try {
//if (t.tsym.type != t)
adapt(t.tsym.type, t, from, to);
} catch (AdaptFailure ex) {
// Adapt should never fail calculating a mapping from
// t.tsym.type to t as there can be no merge problem.
throw new AssertionError(ex);
}
}
// </editor-fold>
/**
* Rewrite all type variables (universal quantifiers) in the given
* type to wildcards (existential quantifiers). This is used to
* determine if a cast is allowed. For example, if high is true
* and {@code T <: Number}, then {@code List<T>} is rewritten to
* {@code List<? extends Number>}. Since {@code List<Integer> <:
* List<? extends Number>} a {@code List<T>} can be cast to {@code
* List<Integer>} with a warning.
* @param t a type
* @param high if true return an upper bound; otherwise a lower
* bound
* @param rewriteTypeVars only rewrite captured wildcards if false;
* otherwise rewrite all type variables
* @return the type rewritten with wildcards (existential
* quantifiers) only
*/
private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
return new Rewriter(high, rewriteTypeVars).visit(t);
}
class Rewriter extends UnaryVisitor<Type> {
boolean high;
boolean rewriteTypeVars;
Rewriter(boolean high, boolean rewriteTypeVars) {
this.high = high;
this.rewriteTypeVars = rewriteTypeVars;
}
@Override
public Type visitClassType(ClassType t, Void s) {
ListBuffer<Type> rewritten = new ListBuffer<Type>();
boolean changed = false;
for (Type arg : t.allparams()) {
Type bound = visit(arg);
if (arg != bound) {
changed = true;
}
rewritten.append(bound);
}
if (changed)
return subst(t.tsym.type,
t.tsym.type.allparams(),
rewritten.toList());
else
return t;
}
public Type visitType(Type t, Void s) {
return high ? upperBound(t) : lowerBound(t);
}
@Override
public Type visitCapturedType(CapturedType t, Void s) {
Type bound = visitWildcardType(t.wildcard, null);
return (bound.contains(t)) ?
erasure(bound) :
bound;
}
@Override
public Type visitTypeVar(TypeVar t, Void s) {
if (rewriteTypeVars) {
Type bound = high ?
(t.bound.contains(t) ?
erasure(t.bound) :
visit(t.bound)) :
syms.botType;
return rewriteAsWildcardType(bound, t);
}
else
return t;
}
@Override
public Type visitWildcardType(WildcardType t, Void s) {
Type bound = high ? t.getExtendsBound() :
t.getSuperBound();
if (bound == null)
bound = high ? syms.objectType : syms.botType;
return rewriteAsWildcardType(visit(bound), t.bound);
}
private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
return high ?
makeExtendsWildcard(B(bound), formal) :
makeSuperWildcard(B(bound), formal);
}
Type B(Type t) {
while (t.tag == WILDCARD) {
WildcardType w = (WildcardType)t;
t = high ?
w.getExtendsBound() :
w.getSuperBound();
if (t == null) {
t = high ? syms.objectType : syms.botType;
}
}
return t;
}
}
/**
* Create a wildcard with the given upper (extends) bound; create
* an unbounded wildcard if bound is Object.
*
* @param bound the upper bound
* @param formal the formal type parameter that will be
* substituted by the wildcard
*/
private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
if (bound == syms.objectType) {
return new WildcardType(syms.objectType,
BoundKind.UNBOUND,
syms.boundClass,
formal);
} else {
return new WildcardType(bound,
BoundKind.EXTENDS,
syms.boundClass,
formal);
}
}
/**
* Create a wildcard with the given lower (super) bound; create an
* unbounded wildcard if bound is bottom (type of {@code null}).
*
* @param bound the lower bound
* @param formal the formal type parameter that will be
* substituted by the wildcard
*/
private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
if (bound.tag == BOT) {
return new WildcardType(syms.objectType,
BoundKind.UNBOUND,
syms.boundClass,
formal);
} else {
return new WildcardType(bound,
BoundKind.SUPER,
syms.boundClass,
formal);
}
}
/**
* A wrapper for a type that allows use in sets.
*/
class SingletonType {
final Type t;
SingletonType(Type t) {
this.t = t;
}
public int hashCode() {
return Types.hashCode(t);
}
public boolean equals(Object obj) {
return (obj instanceof SingletonType) &&
isSameType(t, ((SingletonType)obj).t);
}
public String toString() {
return t.toString();
}
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Visitors">
/**
* A default visitor for types. All visitor methods except
* visitType are implemented by delegating to visitType. Concrete
* subclasses must provide an implementation of visitType and can
* override other methods as needed.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* type itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
final public R visit(Type t, S s) { return t.accept(this, s); }
public R visitClassType(ClassType t, S s) { return visitType(t, s); }
public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
public R visitForAll(ForAll t, S s) { return visitType(t, s); }
public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
}
/**
* A default visitor for symbols. All visitor methods except
* visitSymbol are implemented by delegating to visitSymbol. Concrete
* subclasses must provide an implementation of visitSymbol and can
* override other methods as needed.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* symbol itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
}
/**
* A <em>simple</em> visitor for types. This visitor is simple as
* captured wildcards, for-all types (generic methods), and
* undetermined type variables (part of inference) are hidden.
* Captured wildcards are hidden by treating them as type
* variables and the rest are hidden by visiting their qtypes.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* type itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
@Override
public R visitCapturedType(CapturedType t, S s) {
return visitTypeVar(t, s);
}
@Override
public R visitForAll(ForAll t, S s) {
return visit(t.qtype, s);
}
@Override
public R visitUndetVar(UndetVar t, S s) {
return visit(t.qtype, s);
}
}
/**
* A plain relation on types. That is a 2-ary function on the
* form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
* <!-- In plain text: Type x Type -> Boolean -->
*/
public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
/**
* A convenience visitor for implementing operations that only
* require one argument (the type itself), that is, unary
* operations.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
*/
public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
final public R visit(Type t) { return t.accept(this, null); }
}
/**
* A visitor for implementing a mapping from types to types. The
* default behavior of this class is to implement the identity
* mapping (mapping a type to itself). This can be overridden in
* subclasses.
*
* @param <S> the type of the second argument (the first being the
* type itself) of this mapping; use Void if a second argument is
* not needed.
*/
public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
final public Type visit(Type t) { return t.accept(this, null); }
public Type visitType(Type t, S s) { return t; }
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Annotation support">
public RetentionPolicy getRetention(Attribute.Compound a) {
RetentionPolicy vis = RetentionPolicy.CLASS; // the default
Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
if (c != null) {
Attribute value = c.member(names.value);
if (value != null && value instanceof Attribute.Enum) {
Name levelName = ((Attribute.Enum)value).value.name;
if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
else ;// /* fail soft */ throw new AssertionError(levelName);
}
}
return vis;
}
// </editor-fold>
}