blob: 0a762b32a32e5bc07c404f0f75b77306214f3d0a [file] [log] [blame]
/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/codeCache.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
#include "compiler/compilerDefinitions.hpp"
#include "gc/shared/gcConfig.hpp"
#include "utilities/defaultStream.hpp"
const char* compilertype2name_tab[compiler_number_of_types] = {
"",
"c1",
"c2",
"jvmci"
};
#if defined(COMPILER2)
CompLevel CompLevel_highest_tier = CompLevel_full_optimization; // pure C2 and tiered or JVMCI and tiered
#elif defined(COMPILER1)
CompLevel CompLevel_highest_tier = CompLevel_simple; // pure C1 or JVMCI
#else
CompLevel CompLevel_highest_tier = CompLevel_none;
#endif
#if defined(TIERED)
CompLevel CompLevel_initial_compile = CompLevel_full_profile; // tiered
#elif defined(COMPILER1) || INCLUDE_JVMCI
CompLevel CompLevel_initial_compile = CompLevel_simple; // pure C1 or JVMCI
#elif defined(COMPILER2)
CompLevel CompLevel_initial_compile = CompLevel_full_optimization; // pure C2
#else
CompLevel CompLevel_initial_compile = CompLevel_none;
#endif
#if defined(COMPILER2)
CompMode Compilation_mode = CompMode_server;
#elif defined(COMPILER1)
CompMode Compilation_mode = CompMode_client;
#else
CompMode Compilation_mode = CompMode_none;
#endif
// Returns threshold scaled with CompileThresholdScaling
intx CompilerConfig::scaled_compile_threshold(intx threshold) {
return scaled_compile_threshold(threshold, CompileThresholdScaling);
}
// Returns freq_log scaled with CompileThresholdScaling
intx CompilerConfig::scaled_freq_log(intx freq_log) {
return scaled_freq_log(freq_log, CompileThresholdScaling);
}
// Returns threshold scaled with the value of scale.
// If scale < 0.0, threshold is returned without scaling.
intx CompilerConfig::scaled_compile_threshold(intx threshold, double scale) {
assert(threshold >= 0, "must be");
if (scale == 1.0 || scale < 0.0) {
return threshold;
} else {
double v = threshold * scale;
assert(v >= 0, "must be");
if (v > max_intx) {
return max_intx;
} else {
return (intx)(v);
}
}
}
// Returns freq_log scaled with the value of scale.
// Returned values are in the range of [0, InvocationCounter::number_of_count_bits + 1].
// If scale < 0.0, freq_log is returned without scaling.
intx CompilerConfig::scaled_freq_log(intx freq_log, double scale) {
// Check if scaling is necessary or if negative value was specified.
if (scale == 1.0 || scale < 0.0) {
return freq_log;
}
// Check values to avoid calculating log2 of 0.
if (scale == 0.0 || freq_log == 0) {
return 0;
}
// Determine the maximum notification frequency value currently supported.
// The largest mask value that the interpreter/C1 can handle is
// of length InvocationCounter::number_of_count_bits. Mask values are always
// one bit shorter then the value of the notification frequency. Set
// max_freq_bits accordingly.
intx max_freq_bits = InvocationCounter::number_of_count_bits + 1;
intx scaled_freq = scaled_compile_threshold((intx)1 << freq_log, scale);
if (scaled_freq == 0) {
// Return 0 right away to avoid calculating log2 of 0.
return 0;
} else if (scaled_freq > nth_bit(max_freq_bits)) {
return max_freq_bits;
} else {
return log2_intptr(scaled_freq);
}
}
#ifdef TIERED
void set_client_compilation_mode() {
Compilation_mode = CompMode_client;
CompLevel_highest_tier = CompLevel_simple;
CompLevel_initial_compile = CompLevel_simple;
FLAG_SET_ERGO(bool, TieredCompilation, false);
FLAG_SET_ERGO(bool, ProfileInterpreter, false);
#if INCLUDE_JVMCI
FLAG_SET_ERGO(bool, EnableJVMCI, false);
FLAG_SET_ERGO(bool, UseJVMCICompiler, false);
#endif
#if INCLUDE_AOT
FLAG_SET_ERGO(bool, UseAOT, false);
#endif
if (FLAG_IS_DEFAULT(NeverActAsServerClassMachine)) {
FLAG_SET_ERGO(bool, NeverActAsServerClassMachine, true);
}
if (FLAG_IS_DEFAULT(InitialCodeCacheSize)) {
FLAG_SET_ERGO(uintx, InitialCodeCacheSize, 160*K);
}
if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) {
FLAG_SET_ERGO(uintx, ReservedCodeCacheSize, 32*M);
}
if (FLAG_IS_DEFAULT(NonProfiledCodeHeapSize)) {
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 27*M);
}
if (FLAG_IS_DEFAULT(ProfiledCodeHeapSize)) {
FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
}
if (FLAG_IS_DEFAULT(NonNMethodCodeHeapSize)) {
FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 5*M);
}
if (FLAG_IS_DEFAULT(CodeCacheExpansionSize)) {
FLAG_SET_ERGO(uintx, CodeCacheExpansionSize, 32*K);
}
if (FLAG_IS_DEFAULT(MetaspaceSize)) {
FLAG_SET_ERGO(size_t, MetaspaceSize, MIN2(12*M, MaxMetaspaceSize));
}
if (FLAG_IS_DEFAULT(MaxRAM)) {
// Do not use FLAG_SET_ERGO to update MaxRAM, as this will impact
// heap setting done based on available phys_mem (see Arguments::set_heap_size).
FLAG_SET_DEFAULT(MaxRAM, 1ULL*G);
}
if (FLAG_IS_DEFAULT(CompileThreshold)) {
FLAG_SET_ERGO(intx, CompileThreshold, 1500);
}
if (FLAG_IS_DEFAULT(OnStackReplacePercentage)) {
FLAG_SET_ERGO(intx, OnStackReplacePercentage, 933);
}
if (FLAG_IS_DEFAULT(CICompilerCount)) {
FLAG_SET_ERGO(intx, CICompilerCount, 1);
}
}
bool compilation_mode_selected() {
return !FLAG_IS_DEFAULT(TieredCompilation) ||
!FLAG_IS_DEFAULT(TieredStopAtLevel) ||
!FLAG_IS_DEFAULT(UseAOT)
JVMCI_ONLY(|| !FLAG_IS_DEFAULT(EnableJVMCI)
|| !FLAG_IS_DEFAULT(UseJVMCICompiler));
}
void select_compilation_mode_ergonomically() {
#if defined(_WINDOWS) && !defined(_LP64)
if (FLAG_IS_DEFAULT(NeverActAsServerClassMachine)) {
FLAG_SET_ERGO(bool, NeverActAsServerClassMachine, true);
}
#endif
if (NeverActAsServerClassMachine) {
set_client_compilation_mode();
}
}
#endif // TIERED
void CompilerConfig::set_tiered_flags() {
// With tiered, set default policy to SimpleThresholdPolicy, which is 2.
if (FLAG_IS_DEFAULT(CompilationPolicyChoice)) {
FLAG_SET_DEFAULT(CompilationPolicyChoice, 2);
}
if (CompilationPolicyChoice < 2) {
vm_exit_during_initialization(
"Incompatible compilation policy selected", NULL);
}
// Increase the code cache size - tiered compiles a lot more.
if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) {
FLAG_SET_ERGO(uintx, ReservedCodeCacheSize,
MIN2(CODE_CACHE_DEFAULT_LIMIT, (size_t)ReservedCodeCacheSize * 5));
}
// Enable SegmentedCodeCache if TieredCompilation is enabled, ReservedCodeCacheSize >= 240M
// and the code cache contains at least 8 pages (segmentation disables advantage of huge pages).
if (FLAG_IS_DEFAULT(SegmentedCodeCache) && ReservedCodeCacheSize >= 240*M &&
8 * CodeCache::page_size() <= ReservedCodeCacheSize) {
FLAG_SET_ERGO(bool, SegmentedCodeCache, true);
}
if (!UseInterpreter) { // -Xcomp
Tier3InvokeNotifyFreqLog = 0;
Tier4InvocationThreshold = 0;
}
if (CompileThresholdScaling < 0) {
vm_exit_during_initialization("Negative value specified for CompileThresholdScaling", NULL);
}
// Scale tiered compilation thresholds.
// CompileThresholdScaling == 0.0 is equivalent to -Xint and leaves compilation thresholds unchanged.
if (!FLAG_IS_DEFAULT(CompileThresholdScaling) && CompileThresholdScaling > 0.0) {
FLAG_SET_ERGO(intx, Tier0InvokeNotifyFreqLog, scaled_freq_log(Tier0InvokeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier0BackedgeNotifyFreqLog, scaled_freq_log(Tier0BackedgeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier3InvocationThreshold, scaled_compile_threshold(Tier3InvocationThreshold));
FLAG_SET_ERGO(intx, Tier3MinInvocationThreshold, scaled_compile_threshold(Tier3MinInvocationThreshold));
FLAG_SET_ERGO(intx, Tier3CompileThreshold, scaled_compile_threshold(Tier3CompileThreshold));
FLAG_SET_ERGO(intx, Tier3BackEdgeThreshold, scaled_compile_threshold(Tier3BackEdgeThreshold));
// Tier2{Invocation,MinInvocation,Compile,Backedge}Threshold should be scaled here
// once these thresholds become supported.
FLAG_SET_ERGO(intx, Tier2InvokeNotifyFreqLog, scaled_freq_log(Tier2InvokeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier2BackedgeNotifyFreqLog, scaled_freq_log(Tier2BackedgeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier3InvokeNotifyFreqLog, scaled_freq_log(Tier3InvokeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier3BackedgeNotifyFreqLog, scaled_freq_log(Tier3BackedgeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier23InlineeNotifyFreqLog, scaled_freq_log(Tier23InlineeNotifyFreqLog));
FLAG_SET_ERGO(intx, Tier4InvocationThreshold, scaled_compile_threshold(Tier4InvocationThreshold));
FLAG_SET_ERGO(intx, Tier4MinInvocationThreshold, scaled_compile_threshold(Tier4MinInvocationThreshold));
FLAG_SET_ERGO(intx, Tier4CompileThreshold, scaled_compile_threshold(Tier4CompileThreshold));
FLAG_SET_ERGO(intx, Tier4BackEdgeThreshold, scaled_compile_threshold(Tier4BackEdgeThreshold));
}
}
#if INCLUDE_JVMCI
void set_jvmci_specific_flags() {
if (UseJVMCICompiler) {
Compilation_mode = CompMode_server;
if (FLAG_IS_DEFAULT(TypeProfileWidth)) {
FLAG_SET_DEFAULT(TypeProfileWidth, 8);
}
if (FLAG_IS_DEFAULT(OnStackReplacePercentage)) {
FLAG_SET_DEFAULT(OnStackReplacePercentage, 933);
}
// JVMCI needs values not less than defaults
if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) {
FLAG_SET_DEFAULT(ReservedCodeCacheSize, MAX2(64*M, ReservedCodeCacheSize));
}
if (FLAG_IS_DEFAULT(InitialCodeCacheSize)) {
FLAG_SET_DEFAULT(InitialCodeCacheSize, MAX2(16*M, InitialCodeCacheSize));
}
if (FLAG_IS_DEFAULT(MetaspaceSize)) {
FLAG_SET_DEFAULT(MetaspaceSize, MIN2(MAX2(12*M, MetaspaceSize), MaxMetaspaceSize));
}
if (FLAG_IS_DEFAULT(NewSizeThreadIncrease)) {
FLAG_SET_DEFAULT(NewSizeThreadIncrease, MAX2(4*K, NewSizeThreadIncrease));
}
if (TieredStopAtLevel != CompLevel_full_optimization) {
// Currently JVMCI compiler can only work at the full optimization level
warning("forcing TieredStopAtLevel to full optimization because JVMCI is enabled");
FLAG_SET_ERGO(intx, TieredStopAtLevel, CompLevel_full_optimization);
}
if (FLAG_IS_DEFAULT(TypeProfileLevel)) {
FLAG_SET_DEFAULT(TypeProfileLevel, 0);
}
}
}
#endif // INCLUDE_JVMCI
bool CompilerConfig::check_args_consistency(bool status) {
// Check lower bounds of the code cache
// Template Interpreter code is approximately 3X larger in debug builds.
uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
if (ReservedCodeCacheSize < InitialCodeCacheSize) {
jio_fprintf(defaultStream::error_stream(),
"Invalid ReservedCodeCacheSize: %dK. Must be at least InitialCodeCacheSize=%dK.\n",
ReservedCodeCacheSize/K, InitialCodeCacheSize/K);
status = false;
} else if (ReservedCodeCacheSize < min_code_cache_size) {
jio_fprintf(defaultStream::error_stream(),
"Invalid ReservedCodeCacheSize=%dK. Must be at least %uK.\n", ReservedCodeCacheSize/K,
min_code_cache_size/K);
status = false;
} else if (ReservedCodeCacheSize > CODE_CACHE_SIZE_LIMIT) {
// Code cache size larger than CODE_CACHE_SIZE_LIMIT is not supported.
jio_fprintf(defaultStream::error_stream(),
"Invalid ReservedCodeCacheSize=%dM. Must be at most %uM.\n", ReservedCodeCacheSize/M,
CODE_CACHE_SIZE_LIMIT/M);
status = false;
} else if (NonNMethodCodeHeapSize < min_code_cache_size) {
jio_fprintf(defaultStream::error_stream(),
"Invalid NonNMethodCodeHeapSize=%dK. Must be at least %uK.\n", NonNMethodCodeHeapSize/K,
min_code_cache_size/K);
status = false;
}
#ifdef _LP64
if (!FLAG_IS_DEFAULT(CICompilerCount) && !FLAG_IS_DEFAULT(CICompilerCountPerCPU) && CICompilerCountPerCPU) {
warning("The VM option CICompilerCountPerCPU overrides CICompilerCount.");
}
#endif
if (BackgroundCompilation && (CompileTheWorld || ReplayCompiles)) {
if (!FLAG_IS_DEFAULT(BackgroundCompilation)) {
warning("BackgroundCompilation disabled due to CompileTheWorld or ReplayCompiles options.");
}
FLAG_SET_CMDLINE(bool, BackgroundCompilation, false);
}
#ifdef COMPILER2
if (PostLoopMultiversioning && !RangeCheckElimination) {
if (!FLAG_IS_DEFAULT(PostLoopMultiversioning)) {
warning("PostLoopMultiversioning disabled because RangeCheckElimination is disabled.");
}
FLAG_SET_CMDLINE(bool, PostLoopMultiversioning, false);
}
if (UseCountedLoopSafepoints && LoopStripMiningIter == 0) {
if (!FLAG_IS_DEFAULT(UseCountedLoopSafepoints) || !FLAG_IS_DEFAULT(LoopStripMiningIter)) {
warning("When counted loop safepoints are enabled, LoopStripMiningIter must be at least 1 (a safepoint every 1 iteration): setting it to 1");
}
LoopStripMiningIter = 1;
} else if (!UseCountedLoopSafepoints && LoopStripMiningIter > 0) {
if (!FLAG_IS_DEFAULT(UseCountedLoopSafepoints) || !FLAG_IS_DEFAULT(LoopStripMiningIter)) {
warning("Disabling counted safepoints implies no loop strip mining: setting LoopStripMiningIter to 0");
}
LoopStripMiningIter = 0;
}
#endif // COMPILER2
if (Arguments::is_interpreter_only()) {
if (UseCompiler) {
if (!FLAG_IS_DEFAULT(UseCompiler)) {
warning("UseCompiler disabled due to -Xint.");
}
FLAG_SET_CMDLINE(bool, UseCompiler, false);
}
if (ProfileInterpreter) {
if (!FLAG_IS_DEFAULT(ProfileInterpreter)) {
warning("ProfileInterpreter disabled due to -Xint.");
}
FLAG_SET_CMDLINE(bool, ProfileInterpreter, false);
}
if (TieredCompilation) {
if (!FLAG_IS_DEFAULT(TieredCompilation)) {
warning("TieredCompilation disabled due to -Xint.");
}
FLAG_SET_CMDLINE(bool, TieredCompilation, false);
}
#if INCLUDE_JVMCI
if (EnableJVMCI) {
if (!FLAG_IS_DEFAULT(EnableJVMCI) || !FLAG_IS_DEFAULT(UseJVMCICompiler)) {
warning("JVMCI Compiler disabled due to -Xint.");
}
FLAG_SET_CMDLINE(bool, EnableJVMCI, false);
FLAG_SET_CMDLINE(bool, UseJVMCICompiler, false);
}
#endif
} else {
#if INCLUDE_JVMCI
status = status && JVMCIGlobals::check_jvmci_flags_are_consistent();
#endif
}
return status;
}
void CompilerConfig::ergo_initialize() {
if (Arguments::is_interpreter_only()) {
return; // Nothing to do.
}
#ifdef TIERED
if (!compilation_mode_selected()) {
select_compilation_mode_ergonomically();
}
#endif
#if INCLUDE_JVMCI
// Check that JVMCI compiler supports selested GC.
// Should be done after GCConfig::initialize() was called.
JVMCIGlobals::check_jvmci_supported_gc();
set_jvmci_specific_flags();
#endif
if (TieredCompilation) {
set_tiered_flags();
} else {
int max_compilation_policy_choice = 1;
#ifdef COMPILER2
if (is_server_compilation_mode_vm()) {
max_compilation_policy_choice = 2;
}
#endif
// Check if the policy is valid.
if (CompilationPolicyChoice >= max_compilation_policy_choice) {
vm_exit_during_initialization(
"Incompatible compilation policy selected", NULL);
}
// Scale CompileThreshold
// CompileThresholdScaling == 0.0 is equivalent to -Xint and leaves CompileThreshold unchanged.
if (!FLAG_IS_DEFAULT(CompileThresholdScaling) && CompileThresholdScaling > 0.0) {
FLAG_SET_ERGO(intx, CompileThreshold, scaled_compile_threshold(CompileThreshold));
}
}
if (UseOnStackReplacement && !UseLoopCounter) {
warning("On-stack-replacement requires loop counters; enabling loop counters");
FLAG_SET_DEFAULT(UseLoopCounter, true);
}
#ifdef COMPILER2
if (!EliminateLocks) {
EliminateNestedLocks = false;
}
if (!Inline) {
IncrementalInline = false;
}
#ifndef PRODUCT
if (!IncrementalInline) {
AlwaysIncrementalInline = false;
}
if (FLAG_IS_CMDLINE(PrintIdealGraph) && !PrintIdealGraph) {
FLAG_SET_ERGO(intx, PrintIdealGraphLevel, -1);
}
#endif
if (!UseTypeSpeculation && FLAG_IS_DEFAULT(TypeProfileLevel)) {
// nothing to use the profiling, turn if off
FLAG_SET_DEFAULT(TypeProfileLevel, 0);
}
if (!FLAG_IS_DEFAULT(OptoLoopAlignment) && FLAG_IS_DEFAULT(MaxLoopPad)) {
FLAG_SET_DEFAULT(MaxLoopPad, OptoLoopAlignment-1);
}
if (FLAG_IS_DEFAULT(LoopStripMiningIterShortLoop)) {
// blind guess
LoopStripMiningIterShortLoop = LoopStripMiningIter / 10;
}
#endif // COMPILER2
}