| /* |
| * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| #include "precompiled.hpp" |
| #include "classfile/symbolTable.hpp" |
| #include "compiler/compileBroker.hpp" |
| #include "jvmci/jniAccessMark.inline.hpp" |
| #include "jvmci/jvmciCompilerToVM.hpp" |
| #include "jvmci/jvmciRuntime.hpp" |
| #include "logging/log.hpp" |
| #include "memory/oopFactory.hpp" |
| #include "memory/universe.hpp" |
| #include "oops/constantPool.inline.hpp" |
| #include "oops/method.inline.hpp" |
| #include "oops/objArrayKlass.hpp" |
| #include "oops/oop.inline.hpp" |
| #include "runtime/biasedLocking.hpp" |
| #include "runtime/deoptimization.hpp" |
| #include "runtime/fieldDescriptor.inline.hpp" |
| #include "runtime/frame.inline.hpp" |
| #include "runtime/sharedRuntime.hpp" |
| #if INCLUDE_G1GC |
| #include "gc/g1/g1ThreadLocalData.hpp" |
| #endif // INCLUDE_G1GC |
| |
| // Simple helper to see if the caller of a runtime stub which |
| // entered the VM has been deoptimized |
| |
| static bool caller_is_deopted() { |
| JavaThread* thread = JavaThread::current(); |
| RegisterMap reg_map(thread, false); |
| frame runtime_frame = thread->last_frame(); |
| frame caller_frame = runtime_frame.sender(®_map); |
| assert(caller_frame.is_compiled_frame(), "must be compiled"); |
| return caller_frame.is_deoptimized_frame(); |
| } |
| |
| // Stress deoptimization |
| static void deopt_caller() { |
| if ( !caller_is_deopted()) { |
| JavaThread* thread = JavaThread::current(); |
| RegisterMap reg_map(thread, false); |
| frame runtime_frame = thread->last_frame(); |
| frame caller_frame = runtime_frame.sender(®_map); |
| Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); |
| assert(caller_is_deopted(), "Must be deoptimized"); |
| } |
| } |
| |
| // Manages a scope for a JVMCI runtime call that attempts a heap allocation. |
| // If there is a pending exception upon closing the scope and the runtime |
| // call is of the variety where allocation failure returns NULL without an |
| // exception, the following action is taken: |
| // 1. The pending exception is cleared |
| // 2. NULL is written to JavaThread::_vm_result |
| // 3. Checks that an OutOfMemoryError is Universe::out_of_memory_error_retry(). |
| class RetryableAllocationMark: public StackObj { |
| private: |
| JavaThread* _thread; |
| public: |
| RetryableAllocationMark(JavaThread* thread, bool activate) { |
| if (activate) { |
| assert(!thread->in_retryable_allocation(), "retryable allocation scope is non-reentrant"); |
| _thread = thread; |
| _thread->set_in_retryable_allocation(true); |
| } else { |
| _thread = NULL; |
| } |
| } |
| ~RetryableAllocationMark() { |
| if (_thread != NULL) { |
| _thread->set_in_retryable_allocation(false); |
| JavaThread* THREAD = _thread; |
| if (HAS_PENDING_EXCEPTION) { |
| oop ex = PENDING_EXCEPTION; |
| CLEAR_PENDING_EXCEPTION; |
| oop retry_oome = Universe::out_of_memory_error_retry(); |
| if (ex->is_a(retry_oome->klass()) && retry_oome != ex) { |
| ResourceMark rm; |
| fatal("Unexpected exception in scope of retryable allocation: " INTPTR_FORMAT " of type %s", p2i(ex), ex->klass()->external_name()); |
| } |
| _thread->set_vm_result(NULL); |
| } |
| } |
| } |
| }; |
| |
| JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_common(JavaThread* thread, Klass* klass, bool null_on_fail)) |
| JRT_BLOCK; |
| assert(klass->is_klass(), "not a class"); |
| Handle holder(THREAD, klass->klass_holder()); // keep the klass alive |
| InstanceKlass* h = InstanceKlass::cast(klass); |
| { |
| RetryableAllocationMark ram(thread, null_on_fail); |
| h->check_valid_for_instantiation(true, CHECK); |
| oop obj; |
| if (null_on_fail) { |
| if (!h->is_initialized()) { |
| // Cannot re-execute class initialization without side effects |
| // so return without attempting the initialization |
| return; |
| } |
| } else { |
| // make sure klass is initialized |
| h->initialize(CHECK); |
| } |
| // allocate instance and return via TLS |
| obj = h->allocate_instance(CHECK); |
| thread->set_vm_result(obj); |
| } |
| JRT_BLOCK_END; |
| SharedRuntime::on_slowpath_allocation_exit(thread); |
| JRT_END |
| |
| JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_common(JavaThread* thread, Klass* array_klass, jint length, bool null_on_fail)) |
| JRT_BLOCK; |
| // Note: no handle for klass needed since they are not used |
| // anymore after new_objArray() and no GC can happen before. |
| // (This may have to change if this code changes!) |
| assert(array_klass->is_klass(), "not a class"); |
| oop obj; |
| if (array_klass->is_typeArray_klass()) { |
| BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); |
| RetryableAllocationMark ram(thread, null_on_fail); |
| obj = oopFactory::new_typeArray(elt_type, length, CHECK); |
| } else { |
| Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive |
| Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); |
| RetryableAllocationMark ram(thread, null_on_fail); |
| obj = oopFactory::new_objArray(elem_klass, length, CHECK); |
| } |
| thread->set_vm_result(obj); |
| // This is pretty rare but this runtime patch is stressful to deoptimization |
| // if we deoptimize here so force a deopt to stress the path. |
| if (DeoptimizeALot) { |
| static int deopts = 0; |
| // Alternate between deoptimizing and raising an error (which will also cause a deopt) |
| if (deopts++ % 2 == 0) { |
| if (null_on_fail) { |
| return; |
| } else { |
| ResourceMark rm(THREAD); |
| THROW(vmSymbols::java_lang_OutOfMemoryError()); |
| } |
| } else { |
| deopt_caller(); |
| } |
| } |
| JRT_BLOCK_END; |
| SharedRuntime::on_slowpath_allocation_exit(thread); |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::new_multi_array_common(JavaThread* thread, Klass* klass, int rank, jint* dims, bool null_on_fail)) |
| assert(klass->is_klass(), "not a class"); |
| assert(rank >= 1, "rank must be nonzero"); |
| Handle holder(THREAD, klass->klass_holder()); // keep the klass alive |
| RetryableAllocationMark ram(thread, null_on_fail); |
| oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); |
| thread->set_vm_result(obj); |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_common(JavaThread* thread, oopDesc* element_mirror, jint length, bool null_on_fail)) |
| RetryableAllocationMark ram(thread, null_on_fail); |
| oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); |
| thread->set_vm_result(obj); |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_common(JavaThread* thread, oopDesc* type_mirror, bool null_on_fail)) |
| InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); |
| |
| if (klass == NULL) { |
| ResourceMark rm(THREAD); |
| THROW(vmSymbols::java_lang_InstantiationException()); |
| } |
| RetryableAllocationMark ram(thread, null_on_fail); |
| |
| // Create new instance (the receiver) |
| klass->check_valid_for_instantiation(false, CHECK); |
| |
| if (null_on_fail) { |
| if (!klass->is_initialized()) { |
| // Cannot re-execute class initialization without side effects |
| // so return without attempting the initialization |
| return; |
| } |
| } else { |
| // Make sure klass gets initialized |
| klass->initialize(CHECK); |
| } |
| |
| oop obj = klass->allocate_instance(CHECK); |
| thread->set_vm_result(obj); |
| JRT_END |
| |
| extern void vm_exit(int code); |
| |
| // Enter this method from compiled code handler below. This is where we transition |
| // to VM mode. This is done as a helper routine so that the method called directly |
| // from compiled code does not have to transition to VM. This allows the entry |
| // method to see if the nmethod that we have just looked up a handler for has |
| // been deoptimized while we were in the vm. This simplifies the assembly code |
| // cpu directories. |
| // |
| // We are entering here from exception stub (via the entry method below) |
| // If there is a compiled exception handler in this method, we will continue there; |
| // otherwise we will unwind the stack and continue at the caller of top frame method |
| // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to |
| // control the area where we can allow a safepoint. After we exit the safepoint area we can |
| // check to see if the handler we are going to return is now in a nmethod that has |
| // been deoptimized. If that is the case we return the deopt blob |
| // unpack_with_exception entry instead. This makes life for the exception blob easier |
| // because making that same check and diverting is painful from assembly language. |
| JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, CompiledMethod*& cm)) |
| // Reset method handle flag. |
| thread->set_is_method_handle_return(false); |
| |
| Handle exception(thread, ex); |
| cm = CodeCache::find_compiled(pc); |
| assert(cm != NULL, "this is not a compiled method"); |
| // Adjust the pc as needed/ |
| if (cm->is_deopt_pc(pc)) { |
| RegisterMap map(thread, false); |
| frame exception_frame = thread->last_frame().sender(&map); |
| // if the frame isn't deopted then pc must not correspond to the caller of last_frame |
| assert(exception_frame.is_deoptimized_frame(), "must be deopted"); |
| pc = exception_frame.pc(); |
| } |
| #ifdef ASSERT |
| assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); |
| assert(oopDesc::is_oop(exception()), "just checking"); |
| // Check that exception is a subclass of Throwable, otherwise we have a VerifyError |
| if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { |
| if (ExitVMOnVerifyError) vm_exit(-1); |
| ShouldNotReachHere(); |
| } |
| #endif |
| |
| // Check the stack guard pages and reenable them if necessary and there is |
| // enough space on the stack to do so. Use fast exceptions only if the guard |
| // pages are enabled. |
| bool guard_pages_enabled = thread->stack_guards_enabled(); |
| if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); |
| |
| if (JvmtiExport::can_post_on_exceptions()) { |
| // To ensure correct notification of exception catches and throws |
| // we have to deoptimize here. If we attempted to notify the |
| // catches and throws during this exception lookup it's possible |
| // we could deoptimize on the way out of the VM and end back in |
| // the interpreter at the throw site. This would result in double |
| // notifications since the interpreter would also notify about |
| // these same catches and throws as it unwound the frame. |
| |
| RegisterMap reg_map(thread); |
| frame stub_frame = thread->last_frame(); |
| frame caller_frame = stub_frame.sender(®_map); |
| |
| // We don't really want to deoptimize the nmethod itself since we |
| // can actually continue in the exception handler ourselves but I |
| // don't see an easy way to have the desired effect. |
| Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); |
| assert(caller_is_deopted(), "Must be deoptimized"); |
| |
| return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); |
| } |
| |
| // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions |
| if (guard_pages_enabled) { |
| address fast_continuation = cm->handler_for_exception_and_pc(exception, pc); |
| if (fast_continuation != NULL) { |
| // Set flag if return address is a method handle call site. |
| thread->set_is_method_handle_return(cm->is_method_handle_return(pc)); |
| return fast_continuation; |
| } |
| } |
| |
| // If the stack guard pages are enabled, check whether there is a handler in |
| // the current method. Otherwise (guard pages disabled), force an unwind and |
| // skip the exception cache update (i.e., just leave continuation==NULL). |
| address continuation = NULL; |
| if (guard_pages_enabled) { |
| |
| // New exception handling mechanism can support inlined methods |
| // with exception handlers since the mappings are from PC to PC |
| |
| // debugging support |
| // tracing |
| if (log_is_enabled(Info, exceptions)) { |
| ResourceMark rm; |
| stringStream tempst; |
| assert(cm->method() != NULL, "Unexpected null method()"); |
| tempst.print("compiled method <%s>\n" |
| " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, |
| cm->method()->print_value_string(), p2i(pc), p2i(thread)); |
| Exceptions::log_exception(exception, tempst.as_string()); |
| } |
| // for AbortVMOnException flag |
| NOT_PRODUCT(Exceptions::debug_check_abort(exception)); |
| |
| // Clear out the exception oop and pc since looking up an |
| // exception handler can cause class loading, which might throw an |
| // exception and those fields are expected to be clear during |
| // normal bytecode execution. |
| thread->clear_exception_oop_and_pc(); |
| |
| bool recursive_exception = false; |
| continuation = SharedRuntime::compute_compiled_exc_handler(cm, pc, exception, false, false, recursive_exception); |
| // If an exception was thrown during exception dispatch, the exception oop may have changed |
| thread->set_exception_oop(exception()); |
| thread->set_exception_pc(pc); |
| |
| // The exception cache is used only for non-implicit exceptions |
| // Update the exception cache only when another exception did |
| // occur during the computation of the compiled exception handler |
| // (e.g., when loading the class of the catch type). |
| // Checking for exception oop equality is not |
| // sufficient because some exceptions are pre-allocated and reused. |
| if (continuation != NULL && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { |
| cm->add_handler_for_exception_and_pc(exception, pc, continuation); |
| } |
| } |
| |
| // Set flag if return address is a method handle call site. |
| thread->set_is_method_handle_return(cm->is_method_handle_return(pc)); |
| |
| if (log_is_enabled(Info, exceptions)) { |
| ResourceMark rm; |
| log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT |
| " for exception thrown at PC " PTR_FORMAT, |
| p2i(thread), p2i(continuation), p2i(pc)); |
| } |
| |
| return continuation; |
| JRT_END |
| |
| // Enter this method from compiled code only if there is a Java exception handler |
| // in the method handling the exception. |
| // We are entering here from exception stub. We don't do a normal VM transition here. |
| // We do it in a helper. This is so we can check to see if the nmethod we have just |
| // searched for an exception handler has been deoptimized in the meantime. |
| address JVMCIRuntime::exception_handler_for_pc(JavaThread* thread) { |
| oop exception = thread->exception_oop(); |
| address pc = thread->exception_pc(); |
| // Still in Java mode |
| DEBUG_ONLY(ResetNoHandleMark rnhm); |
| CompiledMethod* cm = NULL; |
| address continuation = NULL; |
| { |
| // Enter VM mode by calling the helper |
| ResetNoHandleMark rnhm; |
| continuation = exception_handler_for_pc_helper(thread, exception, pc, cm); |
| } |
| // Back in JAVA, use no oops DON'T safepoint |
| |
| // Now check to see if the compiled method we were called from is now deoptimized. |
| // If so we must return to the deopt blob and deoptimize the nmethod |
| if (cm != NULL && caller_is_deopted()) { |
| continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); |
| } |
| |
| assert(continuation != NULL, "no handler found"); |
| return continuation; |
| } |
| |
| JRT_ENTRY_NO_ASYNC(void, JVMCIRuntime::monitorenter(JavaThread* thread, oopDesc* obj, BasicLock* lock)) |
| IF_TRACE_jvmci_3 { |
| char type[O_BUFLEN]; |
| obj->klass()->name()->as_C_string(type, O_BUFLEN); |
| markWord mark = obj->mark(); |
| TRACE_jvmci_3("%s: entered locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, mark.value(), p2i(lock)); |
| tty->flush(); |
| } |
| if (PrintBiasedLockingStatistics) { |
| Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); |
| } |
| Handle h_obj(thread, obj); |
| assert(oopDesc::is_oop(h_obj()), "must be NULL or an object"); |
| if (UseBiasedLocking) { |
| // Retry fast entry if bias is revoked to avoid unnecessary inflation |
| ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); |
| } else { |
| if (JVMCIUseFastLocking) { |
| // When using fast locking, the compiled code has already tried the fast case |
| ObjectSynchronizer::slow_enter(h_obj, lock, THREAD); |
| } else { |
| ObjectSynchronizer::fast_enter(h_obj, lock, false, THREAD); |
| } |
| } |
| TRACE_jvmci_3("%s: exiting locking slow with obj=" INTPTR_FORMAT, thread->name(), p2i(obj)); |
| JRT_END |
| |
| JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* thread, oopDesc* obj, BasicLock* lock)) |
| assert(thread == JavaThread::current(), "threads must correspond"); |
| assert(thread->last_Java_sp(), "last_Java_sp must be set"); |
| // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown |
| EXCEPTION_MARK; |
| |
| #ifdef ASSERT |
| if (!oopDesc::is_oop(obj)) { |
| ResetNoHandleMark rhm; |
| nmethod* method = thread->last_frame().cb()->as_nmethod_or_null(); |
| if (method != NULL) { |
| tty->print_cr("ERROR in monitorexit in method %s wrong obj " INTPTR_FORMAT, method->name(), p2i(obj)); |
| } |
| thread->print_stack_on(tty); |
| assert(false, "invalid lock object pointer dected"); |
| } |
| #endif |
| |
| if (JVMCIUseFastLocking) { |
| // When using fast locking, the compiled code has already tried the fast case |
| ObjectSynchronizer::slow_exit(obj, lock, THREAD); |
| } else { |
| ObjectSynchronizer::fast_exit(obj, lock, THREAD); |
| } |
| IF_TRACE_jvmci_3 { |
| char type[O_BUFLEN]; |
| obj->klass()->name()->as_C_string(type, O_BUFLEN); |
| TRACE_jvmci_3("%s: exited locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, obj->mark().value(), p2i(lock)); |
| tty->flush(); |
| } |
| JRT_END |
| |
| // Object.notify() fast path, caller does slow path |
| JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread *thread, oopDesc* obj)) |
| |
| // Very few notify/notifyAll operations find any threads on the waitset, so |
| // the dominant fast-path is to simply return. |
| // Relatedly, it's critical that notify/notifyAll be fast in order to |
| // reduce lock hold times. |
| if (!SafepointSynchronize::is_synchronizing()) { |
| if (ObjectSynchronizer::quick_notify(obj, thread, false)) { |
| return true; |
| } |
| } |
| return false; // caller must perform slow path |
| |
| JRT_END |
| |
| // Object.notifyAll() fast path, caller does slow path |
| JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread *thread, oopDesc* obj)) |
| |
| if (!SafepointSynchronize::is_synchronizing() ) { |
| if (ObjectSynchronizer::quick_notify(obj, thread, true)) { |
| return true; |
| } |
| } |
| return false; // caller must perform slow path |
| |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* thread, const char* exception, const char* message)) |
| TempNewSymbol symbol = SymbolTable::new_symbol(exception); |
| SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, message); |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* thread, const char* exception, Klass* klass)) |
| ResourceMark rm(thread); |
| TempNewSymbol symbol = SymbolTable::new_symbol(exception); |
| SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, klass->external_name()); |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::throw_class_cast_exception(JavaThread* thread, const char* exception, Klass* caster_klass, Klass* target_klass)) |
| ResourceMark rm(thread); |
| const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); |
| TempNewSymbol symbol = SymbolTable::new_symbol(exception); |
| SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, message); |
| JRT_END |
| |
| JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) |
| ttyLocker ttyl; |
| |
| if (obj == NULL) { |
| tty->print("NULL"); |
| } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) { |
| if (oopDesc::is_oop_or_null(obj, true)) { |
| char buf[O_BUFLEN]; |
| tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); |
| } else { |
| tty->print(INTPTR_FORMAT, p2i(obj)); |
| } |
| } else { |
| ResourceMark rm; |
| assert(obj != NULL && java_lang_String::is_instance(obj), "must be"); |
| char *buf = java_lang_String::as_utf8_string(obj); |
| tty->print_raw(buf); |
| } |
| if (newline) { |
| tty->cr(); |
| } |
| JRT_END |
| |
| #if INCLUDE_G1GC |
| |
| JRT_LEAF(void, JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj)) |
| G1ThreadLocalData::satb_mark_queue(thread).enqueue(obj); |
| JRT_END |
| |
| JRT_LEAF(void, JVMCIRuntime::write_barrier_post(JavaThread* thread, void* card_addr)) |
| G1ThreadLocalData::dirty_card_queue(thread).enqueue(card_addr); |
| JRT_END |
| |
| #endif // INCLUDE_G1GC |
| |
| JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) |
| bool ret = true; |
| if(!Universe::heap()->is_in(parent)) { |
| tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); |
| parent->print(); |
| ret=false; |
| } |
| if(!Universe::heap()->is_in(child)) { |
| tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); |
| child->print(); |
| ret=false; |
| } |
| return (jint)ret; |
| JRT_END |
| |
| JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* thread, jlong where, jlong format, jlong value)) |
| ResourceMark rm; |
| const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where; |
| char *detail_msg = NULL; |
| if (format != 0L) { |
| const char* buf = (char*) (address) format; |
| size_t detail_msg_length = strlen(buf) * 2; |
| detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); |
| jio_snprintf(detail_msg, detail_msg_length, buf, value); |
| } |
| report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); |
| JRT_END |
| |
| JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) |
| oop exception = thread->exception_oop(); |
| assert(exception != NULL, "npe"); |
| thread->set_exception_oop(NULL); |
| thread->set_exception_pc(0); |
| return exception; |
| JRT_END |
| |
| PRAGMA_DIAG_PUSH |
| PRAGMA_FORMAT_NONLITERAL_IGNORED |
| JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3)) |
| ResourceMark rm; |
| tty->print(format, v1, v2, v3); |
| JRT_END |
| PRAGMA_DIAG_POP |
| |
| static void decipher(jlong v, bool ignoreZero) { |
| if (v != 0 || !ignoreZero) { |
| void* p = (void *)(address) v; |
| CodeBlob* cb = CodeCache::find_blob(p); |
| if (cb) { |
| if (cb->is_nmethod()) { |
| char buf[O_BUFLEN]; |
| tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod_or_null()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); |
| return; |
| } |
| cb->print_value_on(tty); |
| return; |
| } |
| if (Universe::heap()->is_in(p)) { |
| oop obj = oop(p); |
| obj->print_value_on(tty); |
| return; |
| } |
| tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); |
| } |
| } |
| |
| PRAGMA_DIAG_PUSH |
| PRAGMA_FORMAT_NONLITERAL_IGNORED |
| JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) |
| ResourceMark rm; |
| const char *buf = (const char*) (address) format; |
| if (vmError) { |
| if (buf != NULL) { |
| fatal(buf, v1, v2, v3); |
| } else { |
| fatal("<anonymous error>"); |
| } |
| } else if (buf != NULL) { |
| tty->print(buf, v1, v2, v3); |
| } else { |
| assert(v2 == 0, "v2 != 0"); |
| assert(v3 == 0, "v3 != 0"); |
| decipher(v1, false); |
| } |
| JRT_END |
| PRAGMA_DIAG_POP |
| |
| JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) |
| union { |
| jlong l; |
| jdouble d; |
| jfloat f; |
| } uu; |
| uu.l = value; |
| switch (typeChar) { |
| case 'Z': tty->print(value == 0 ? "false" : "true"); break; |
| case 'B': tty->print("%d", (jbyte) value); break; |
| case 'C': tty->print("%c", (jchar) value); break; |
| case 'S': tty->print("%d", (jshort) value); break; |
| case 'I': tty->print("%d", (jint) value); break; |
| case 'F': tty->print("%f", uu.f); break; |
| case 'J': tty->print(JLONG_FORMAT, value); break; |
| case 'D': tty->print("%lf", uu.d); break; |
| default: assert(false, "unknown typeChar"); break; |
| } |
| if (newline) { |
| tty->cr(); |
| } |
| JRT_END |
| |
| JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* thread, oopDesc* obj)) |
| return (jint) obj->identity_hash(); |
| JRT_END |
| |
| JRT_ENTRY(jboolean, JVMCIRuntime::thread_is_interrupted(JavaThread* thread, oopDesc* receiver, jboolean clear_interrupted)) |
| Handle receiverHandle(thread, receiver); |
| // A nested ThreadsListHandle may require the Threads_lock which |
| // requires thread_in_vm which is why this method cannot be JRT_LEAF. |
| ThreadsListHandle tlh; |
| |
| JavaThread* receiverThread = java_lang_Thread::thread(receiverHandle()); |
| if (receiverThread == NULL || (EnableThreadSMRExtraValidityChecks && !tlh.includes(receiverThread))) { |
| // The other thread may exit during this process, which is ok so return false. |
| return JNI_FALSE; |
| } else { |
| return (jint) Thread::is_interrupted(receiverThread, clear_interrupted != 0); |
| } |
| JRT_END |
| |
| JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* thread, int value)) |
| deopt_caller(); |
| return (jint) value; |
| JRT_END |
| |
| |
| // private static JVMCIRuntime JVMCI.initializeRuntime() |
| JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *env, jclass c)) |
| JNI_JVMCIENV(thread, env); |
| if (!EnableJVMCI) { |
| JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled"); |
| } |
| JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); |
| JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); |
| return JVMCIENV->get_jobject(runtime); |
| JVM_END |
| |
| void JVMCIRuntime::call_getCompiler(TRAPS) { |
| THREAD_JVMCIENV(JavaThread::current()); |
| JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK); |
| initialize(JVMCIENV); |
| JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK); |
| } |
| |
| void JVMCINMethodData::initialize( |
| int nmethod_mirror_index, |
| const char* name, |
| FailedSpeculation** failed_speculations) |
| { |
| _failed_speculations = failed_speculations; |
| _nmethod_mirror_index = nmethod_mirror_index; |
| if (name != NULL) { |
| _has_name = true; |
| char* dest = (char*) this->name(); |
| strcpy(dest, name); |
| } else { |
| _has_name = false; |
| } |
| } |
| |
| void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) { |
| uint index = (speculation >> 32) & 0xFFFFFFFF; |
| int length = (int) speculation; |
| if (index + length > (uint) nm->speculations_size()) { |
| fatal(INTPTR_FORMAT "[index: %d, length: %d] out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size()); |
| } |
| address data = nm->speculations_begin() + index; |
| FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length); |
| } |
| |
| oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) { |
| if (_nmethod_mirror_index == -1) { |
| return NULL; |
| } |
| if (phantom_ref) { |
| return nm->oop_at_phantom(_nmethod_mirror_index); |
| } else { |
| return nm->oop_at(_nmethod_mirror_index); |
| } |
| } |
| |
| void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) { |
| assert(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod"); |
| oop* addr = nm->oop_addr_at(_nmethod_mirror_index); |
| assert(new_mirror != NULL, "use clear_nmethod_mirror to clear the mirror"); |
| assert(*addr == NULL, "cannot overwrite non-null mirror"); |
| |
| *addr = new_mirror; |
| |
| // Since we've patched some oops in the nmethod, |
| // (re)register it with the heap. |
| Universe::heap()->register_nmethod(nm); |
| } |
| |
| void JVMCINMethodData::clear_nmethod_mirror(nmethod* nm) { |
| if (_nmethod_mirror_index != -1) { |
| oop* addr = nm->oop_addr_at(_nmethod_mirror_index); |
| *addr = NULL; |
| } |
| } |
| |
| void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) { |
| oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ true); |
| if (nmethod_mirror == NULL) { |
| return; |
| } |
| |
| // Update the values in the mirror if it still refers to nm. |
| // We cannot use JVMCIObject to wrap the mirror as this is called |
| // during GC, forbidding the creation of JNIHandles. |
| JVMCIEnv* jvmciEnv = NULL; |
| nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror); |
| if (nm == current) { |
| if (!nm->is_alive()) { |
| // Break the link from the mirror to nm such that |
| // future invocations via the mirror will result in |
| // an InvalidInstalledCodeException. |
| HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0); |
| HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); |
| } else if (nm->is_not_entrant()) { |
| // Zero the entry point so any new invocation will fail but keep |
| // the address link around that so that existing activations can |
| // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code). |
| HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); |
| } |
| } |
| } |
| |
| void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) { |
| if (is_HotSpotJVMCIRuntime_initialized()) { |
| if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) { |
| JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library"); |
| } |
| } |
| |
| initialize(JVMCIENV); |
| |
| // This should only be called in the context of the JVMCI class being initialized |
| JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK); |
| |
| _HotSpotJVMCIRuntime_instance = JVMCIENV->make_global(result); |
| } |
| |
| void JVMCIRuntime::initialize(JVMCIEnv* JVMCIENV) { |
| assert(this != NULL, "sanity"); |
| // Check first without JVMCI_lock |
| if (_initialized) { |
| return; |
| } |
| |
| MutexLocker locker(JVMCI_lock); |
| // Check again under JVMCI_lock |
| if (_initialized) { |
| return; |
| } |
| |
| while (_being_initialized) { |
| JVMCI_lock->wait(); |
| if (_initialized) { |
| return; |
| } |
| } |
| |
| _being_initialized = true; |
| |
| { |
| MutexUnlocker unlock(JVMCI_lock); |
| |
| HandleMark hm; |
| ResourceMark rm; |
| JavaThread* THREAD = JavaThread::current(); |
| if (JVMCIENV->is_hotspot()) { |
| HotSpotJVMCI::compute_offsets(CHECK_EXIT); |
| } else { |
| JNIAccessMark jni(JVMCIENV); |
| |
| JNIJVMCI::initialize_ids(jni.env()); |
| if (jni()->ExceptionCheck()) { |
| jni()->ExceptionDescribe(); |
| fatal("JNI exception during init"); |
| } |
| } |
| create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0)); |
| create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0)); |
| |
| if (!JVMCIENV->is_hotspot()) { |
| JVMCIENV->copy_saved_properties(); |
| } |
| } |
| |
| _initialized = true; |
| _being_initialized = false; |
| JVMCI_lock->notify_all(); |
| } |
| |
| JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) { |
| Thread* THREAD = Thread::current(); |
| // These primitive types are long lived and are created before the runtime is fully set up |
| // so skip registering them for scanning. |
| JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true); |
| if (JVMCIENV->is_hotspot()) { |
| JavaValue result(T_OBJECT); |
| JavaCallArguments args; |
| args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror))); |
| args.push_int(type2char(type)); |
| JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject())); |
| |
| return JVMCIENV->wrap(JNIHandles::make_local((oop)result.get_jobject())); |
| } else { |
| JNIAccessMark jni(JVMCIENV); |
| jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(), |
| JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(), |
| mirror.as_jobject(), type2char(type)); |
| if (jni()->ExceptionCheck()) { |
| return JVMCIObject(); |
| } |
| return JVMCIENV->wrap(result); |
| } |
| } |
| |
| void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) { |
| if (!is_HotSpotJVMCIRuntime_initialized()) { |
| initialize(JVMCI_CHECK); |
| JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK); |
| } |
| } |
| |
| JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) { |
| initialize(JVMCIENV); |
| initialize_JVMCI(JVMCI_CHECK_(JVMCIObject())); |
| return _HotSpotJVMCIRuntime_instance; |
| } |
| |
| |
| // private void CompilerToVM.registerNatives() |
| JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *env, jclass c2vmClass)) |
| |
| #ifdef _LP64 |
| #ifndef TARGET_ARCH_sparc |
| uintptr_t heap_end = (uintptr_t) Universe::heap()->reserved_region().end(); |
| uintptr_t allocation_end = heap_end + ((uintptr_t)16) * 1024 * 1024 * 1024; |
| guarantee(heap_end < allocation_end, "heap end too close to end of address space (might lead to erroneous TLAB allocations)"); |
| #endif // TARGET_ARCH_sparc |
| #else |
| fatal("check TLAB allocation code for address space conflicts"); |
| #endif |
| |
| JNI_JVMCIENV(thread, env); |
| |
| if (!EnableJVMCI) { |
| JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled"); |
| } |
| |
| JVMCIENV->runtime()->initialize(JVMCIENV); |
| |
| { |
| ResourceMark rm; |
| HandleMark hm(thread); |
| ThreadToNativeFromVM trans(thread); |
| |
| // Ensure _non_oop_bits is initialized |
| Universe::non_oop_word(); |
| |
| if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) { |
| if (!env->ExceptionCheck()) { |
| for (int i = 0; i < CompilerToVM::methods_count(); i++) { |
| if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) { |
| guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature); |
| break; |
| } |
| } |
| } else { |
| env->ExceptionDescribe(); |
| } |
| guarantee(false, "Failed registering CompilerToVM native methods"); |
| } |
| } |
| JVM_END |
| |
| |
| void JVMCIRuntime::shutdown() { |
| if (is_HotSpotJVMCIRuntime_initialized()) { |
| _shutdown_called = true; |
| |
| THREAD_JVMCIENV(JavaThread::current()); |
| JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance); |
| } |
| } |
| |
| void JVMCIRuntime::bootstrap_finished(TRAPS) { |
| if (is_HotSpotJVMCIRuntime_initialized()) { |
| THREAD_JVMCIENV(JavaThread::current()); |
| JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV); |
| } |
| } |
| |
| void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD, bool clear) { |
| if (HAS_PENDING_EXCEPTION) { |
| Handle exception(THREAD, PENDING_EXCEPTION); |
| const char* exception_file = THREAD->exception_file(); |
| int exception_line = THREAD->exception_line(); |
| CLEAR_PENDING_EXCEPTION; |
| if (exception->is_a(SystemDictionary::ThreadDeath_klass())) { |
| // Don't print anything if we are being killed. |
| } else { |
| java_lang_Throwable::print_stack_trace(exception, tty); |
| |
| // Clear and ignore any exceptions raised during printing |
| CLEAR_PENDING_EXCEPTION; |
| } |
| if (!clear) { |
| THREAD->set_pending_exception(exception(), exception_file, exception_line); |
| } |
| } |
| } |
| |
| |
| void JVMCIRuntime::exit_on_pending_exception(JVMCIEnv* JVMCIENV, const char* message) { |
| JavaThread* THREAD = JavaThread::current(); |
| |
| static volatile int report_error = 0; |
| if (!report_error && Atomic::cmpxchg(1, &report_error, 0) == 0) { |
| // Only report an error once |
| tty->print_raw_cr(message); |
| if (JVMCIENV != NULL) { |
| JVMCIENV->describe_pending_exception(true); |
| } else { |
| describe_pending_hotspot_exception(THREAD, true); |
| } |
| } else { |
| // Allow error reporting thread to print the stack trace. Windows |
| // doesn't allow uninterruptible wait for JavaThreads |
| const bool interruptible = true; |
| os::sleep(THREAD, 200, interruptible); |
| } |
| |
| before_exit(THREAD); |
| vm_exit(-1); |
| } |
| |
| // ------------------------------------------------------------------ |
| // Note: the logic of this method should mirror the logic of |
| // constantPoolOopDesc::verify_constant_pool_resolve. |
| bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) { |
| if (accessing_klass->is_objArray_klass()) { |
| accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass(); |
| } |
| if (!accessing_klass->is_instance_klass()) { |
| return true; |
| } |
| |
| if (resolved_klass->is_objArray_klass()) { |
| // Find the element klass, if this is an array. |
| resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); |
| } |
| if (resolved_klass->is_instance_klass()) { |
| Reflection::VerifyClassAccessResults result = |
| Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true); |
| return result == Reflection::ACCESS_OK; |
| } |
| return true; |
| } |
| |
| // ------------------------------------------------------------------ |
| Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass, |
| const constantPoolHandle& cpool, |
| Symbol* sym, |
| bool require_local) { |
| JVMCI_EXCEPTION_CONTEXT; |
| |
| // Now we need to check the SystemDictionary |
| if (sym->char_at(0) == 'L' && |
| sym->char_at(sym->utf8_length()-1) == ';') { |
| // This is a name from a signature. Strip off the trimmings. |
| // Call recursive to keep scope of strippedsym. |
| TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, |
| sym->utf8_length()-2); |
| return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local); |
| } |
| |
| Handle loader(THREAD, (oop)NULL); |
| Handle domain(THREAD, (oop)NULL); |
| if (accessing_klass != NULL) { |
| loader = Handle(THREAD, accessing_klass->class_loader()); |
| domain = Handle(THREAD, accessing_klass->protection_domain()); |
| } |
| |
| Klass* found_klass; |
| { |
| ttyUnlocker ttyul; // release tty lock to avoid ordering problems |
| MutexLocker ml(Compile_lock); |
| if (!require_local) { |
| found_klass = SystemDictionary::find_constrained_instance_or_array_klass(sym, loader, CHECK_NULL); |
| } else { |
| found_klass = SystemDictionary::find_instance_or_array_klass(sym, loader, domain, CHECK_NULL); |
| } |
| } |
| |
| // If we fail to find an array klass, look again for its element type. |
| // The element type may be available either locally or via constraints. |
| // In either case, if we can find the element type in the system dictionary, |
| // we must build an array type around it. The CI requires array klasses |
| // to be loaded if their element klasses are loaded, except when memory |
| // is exhausted. |
| if (sym->char_at(0) == '[' && |
| (sym->char_at(1) == '[' || sym->char_at(1) == 'L')) { |
| // We have an unloaded array. |
| // Build it on the fly if the element class exists. |
| TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, |
| sym->utf8_length()-1); |
| |
| // Get element Klass recursively. |
| Klass* elem_klass = |
| get_klass_by_name_impl(accessing_klass, |
| cpool, |
| elem_sym, |
| require_local); |
| if (elem_klass != NULL) { |
| // Now make an array for it |
| return elem_klass->array_klass(THREAD); |
| } |
| } |
| |
| if (found_klass == NULL && !cpool.is_null() && cpool->has_preresolution()) { |
| // Look inside the constant pool for pre-resolved class entries. |
| for (int i = cpool->length() - 1; i >= 1; i--) { |
| if (cpool->tag_at(i).is_klass()) { |
| Klass* kls = cpool->resolved_klass_at(i); |
| if (kls->name() == sym) { |
| return kls; |
| } |
| } |
| } |
| } |
| |
| return found_klass; |
| } |
| |
| // ------------------------------------------------------------------ |
| Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass, |
| Symbol* klass_name, |
| bool require_local) { |
| ResourceMark rm; |
| constantPoolHandle cpool; |
| return get_klass_by_name_impl(accessing_klass, |
| cpool, |
| klass_name, |
| require_local); |
| } |
| |
| // ------------------------------------------------------------------ |
| // Implementation of get_klass_by_index. |
| Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool, |
| int index, |
| bool& is_accessible, |
| Klass* accessor) { |
| JVMCI_EXCEPTION_CONTEXT; |
| Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index); |
| Symbol* klass_name = NULL; |
| if (klass == NULL) { |
| klass_name = cpool->klass_name_at(index); |
| } |
| |
| if (klass == NULL) { |
| // Not found in constant pool. Use the name to do the lookup. |
| Klass* k = get_klass_by_name_impl(accessor, |
| cpool, |
| klass_name, |
| false); |
| // Calculate accessibility the hard way. |
| if (k == NULL) { |
| is_accessible = false; |
| } else if (k->class_loader() != accessor->class_loader() && |
| get_klass_by_name_impl(accessor, cpool, k->name(), true) == NULL) { |
| // Loaded only remotely. Not linked yet. |
| is_accessible = false; |
| } else { |
| // Linked locally, and we must also check public/private, etc. |
| is_accessible = check_klass_accessibility(accessor, k); |
| } |
| if (!is_accessible) { |
| return NULL; |
| } |
| return k; |
| } |
| |
| // It is known to be accessible, since it was found in the constant pool. |
| is_accessible = true; |
| return klass; |
| } |
| |
| // ------------------------------------------------------------------ |
| // Get a klass from the constant pool. |
| Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool, |
| int index, |
| bool& is_accessible, |
| Klass* accessor) { |
| ResourceMark rm; |
| Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor); |
| return result; |
| } |
| |
| // ------------------------------------------------------------------ |
| // Implementation of get_field_by_index. |
| // |
| // Implementation note: the results of field lookups are cached |
| // in the accessor klass. |
| void JVMCIRuntime::get_field_by_index_impl(InstanceKlass* klass, fieldDescriptor& field_desc, |
| int index) { |
| JVMCI_EXCEPTION_CONTEXT; |
| |
| assert(klass->is_linked(), "must be linked before using its constant-pool"); |
| |
| constantPoolHandle cpool(thread, klass->constants()); |
| |
| // Get the field's name, signature, and type. |
| Symbol* name = cpool->name_ref_at(index); |
| |
| int nt_index = cpool->name_and_type_ref_index_at(index); |
| int sig_index = cpool->signature_ref_index_at(nt_index); |
| Symbol* signature = cpool->symbol_at(sig_index); |
| |
| // Get the field's declared holder. |
| int holder_index = cpool->klass_ref_index_at(index); |
| bool holder_is_accessible; |
| Klass* declared_holder = get_klass_by_index(cpool, holder_index, |
| holder_is_accessible, |
| klass); |
| |
| // The declared holder of this field may not have been loaded. |
| // Bail out with partial field information. |
| if (!holder_is_accessible) { |
| return; |
| } |
| |
| |
| // Perform the field lookup. |
| Klass* canonical_holder = |
| InstanceKlass::cast(declared_holder)->find_field(name, signature, &field_desc); |
| if (canonical_holder == NULL) { |
| return; |
| } |
| |
| assert(canonical_holder == field_desc.field_holder(), "just checking"); |
| } |
| |
| // ------------------------------------------------------------------ |
| // Get a field by index from a klass's constant pool. |
| void JVMCIRuntime::get_field_by_index(InstanceKlass* accessor, fieldDescriptor& fd, int index) { |
| ResourceMark rm; |
| return get_field_by_index_impl(accessor, fd, index); |
| } |
| |
| // ------------------------------------------------------------------ |
| // Perform an appropriate method lookup based on accessor, holder, |
| // name, signature, and bytecode. |
| methodHandle JVMCIRuntime::lookup_method(InstanceKlass* accessor, |
| Klass* holder, |
| Symbol* name, |
| Symbol* sig, |
| Bytecodes::Code bc, |
| constantTag tag) { |
| // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl(). |
| assert(check_klass_accessibility(accessor, holder), "holder not accessible"); |
| |
| methodHandle dest_method; |
| LinkInfo link_info(holder, name, sig, accessor, LinkInfo::needs_access_check, tag); |
| switch (bc) { |
| case Bytecodes::_invokestatic: |
| dest_method = |
| LinkResolver::resolve_static_call_or_null(link_info); |
| break; |
| case Bytecodes::_invokespecial: |
| dest_method = |
| LinkResolver::resolve_special_call_or_null(link_info); |
| break; |
| case Bytecodes::_invokeinterface: |
| dest_method = |
| LinkResolver::linktime_resolve_interface_method_or_null(link_info); |
| break; |
| case Bytecodes::_invokevirtual: |
| dest_method = |
| LinkResolver::linktime_resolve_virtual_method_or_null(link_info); |
| break; |
| default: ShouldNotReachHere(); |
| } |
| |
| return dest_method; |
| } |
| |
| |
| // ------------------------------------------------------------------ |
| methodHandle JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool, |
| int index, Bytecodes::Code bc, |
| InstanceKlass* accessor) { |
| if (bc == Bytecodes::_invokedynamic) { |
| ConstantPoolCacheEntry* cpce = cpool->invokedynamic_cp_cache_entry_at(index); |
| bool is_resolved = !cpce->is_f1_null(); |
| if (is_resolved) { |
| // Get the invoker Method* from the constant pool. |
| // (The appendix argument, if any, will be noted in the method's signature.) |
| Method* adapter = cpce->f1_as_method(); |
| return methodHandle(adapter); |
| } |
| |
| return NULL; |
| } |
| |
| int holder_index = cpool->klass_ref_index_at(index); |
| bool holder_is_accessible; |
| Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); |
| |
| // Get the method's name and signature. |
| Symbol* name_sym = cpool->name_ref_at(index); |
| Symbol* sig_sym = cpool->signature_ref_at(index); |
| |
| if (cpool->has_preresolution() |
| || ((holder == SystemDictionary::MethodHandle_klass() || holder == SystemDictionary::VarHandle_klass()) && |
| MethodHandles::is_signature_polymorphic_name(holder, name_sym))) { |
| // Short-circuit lookups for JSR 292-related call sites. |
| // That is, do not rely only on name-based lookups, because they may fail |
| // if the names are not resolvable in the boot class loader (7056328). |
| switch (bc) { |
| case Bytecodes::_invokevirtual: |
| case Bytecodes::_invokeinterface: |
| case Bytecodes::_invokespecial: |
| case Bytecodes::_invokestatic: |
| { |
| Method* m = ConstantPool::method_at_if_loaded(cpool, index); |
| if (m != NULL) { |
| return m; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (holder_is_accessible) { // Our declared holder is loaded. |
| constantTag tag = cpool->tag_ref_at(index); |
| methodHandle m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag); |
| if (!m.is_null()) { |
| // We found the method. |
| return m; |
| } |
| } |
| |
| // Either the declared holder was not loaded, or the method could |
| // not be found. |
| |
| return NULL; |
| } |
| |
| // ------------------------------------------------------------------ |
| InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) { |
| // For the case of <array>.clone(), the method holder can be an ArrayKlass* |
| // instead of an InstanceKlass*. For that case simply pretend that the |
| // declared holder is Object.clone since that's where the call will bottom out. |
| if (method_holder->is_instance_klass()) { |
| return InstanceKlass::cast(method_holder); |
| } else if (method_holder->is_array_klass()) { |
| return InstanceKlass::cast(SystemDictionary::Object_klass()); |
| } else { |
| ShouldNotReachHere(); |
| } |
| return NULL; |
| } |
| |
| |
| // ------------------------------------------------------------------ |
| methodHandle JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool, |
| int index, Bytecodes::Code bc, |
| InstanceKlass* accessor) { |
| ResourceMark rm; |
| return get_method_by_index_impl(cpool, index, bc, accessor); |
| } |
| |
| // ------------------------------------------------------------------ |
| // Check for changes to the system dictionary during compilation |
| // class loads, evolution, breakpoints |
| JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies, JVMCICompileState* compile_state, char** failure_detail) { |
| // If JVMTI capabilities were enabled during compile, the compilation is invalidated. |
| if (compile_state != NULL && compile_state->jvmti_state_changed()) { |
| *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies"; |
| return JVMCI::dependencies_failed; |
| } |
| |
| // Dependencies must be checked when the system dictionary changes |
| // or if we don't know whether it has changed (i.e., compile_state == NULL). |
| CompileTask* task = compile_state == NULL ? NULL : compile_state->task(); |
| Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail); |
| if (result == Dependencies::end_marker) { |
| return JVMCI::ok; |
| } |
| |
| if (!Dependencies::is_klass_type(result) || compile_state == NULL) { |
| return JVMCI::dependencies_failed; |
| } |
| // The dependencies were invalid at the time of installation |
| // without any intervening modification of the system |
| // dictionary. That means they were invalidly constructed. |
| return JVMCI::dependencies_invalid; |
| } |
| |
| // Reports a pending exception and exits the VM. |
| static void fatal_exception_in_compile(JVMCIEnv* JVMCIENV, JavaThread* thread, const char* msg) { |
| // Only report a fatal JVMCI compilation exception once |
| static volatile int report_init_failure = 0; |
| if (!report_init_failure && Atomic::cmpxchg(1, &report_init_failure, 0) == 0) { |
| tty->print_cr("%s:", msg); |
| JVMCIENV->describe_pending_exception(true); |
| } |
| JVMCIENV->clear_pending_exception(); |
| before_exit(thread); |
| vm_exit(-1); |
| } |
| |
| void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) { |
| JVMCI_EXCEPTION_CONTEXT |
| |
| JVMCICompileState* compile_state = JVMCIENV->compile_state(); |
| |
| bool is_osr = entry_bci != InvocationEntryBci; |
| if (compiler->is_bootstrapping() && is_osr) { |
| // no OSR compilations during bootstrap - the compiler is just too slow at this point, |
| // and we know that there are no endless loops |
| compile_state->set_failure(true, "No OSR during boostrap"); |
| return; |
| } |
| if (JVMCI::shutdown_called()) { |
| compile_state->set_failure(false, "Avoiding compilation during shutdown"); |
| return; |
| } |
| |
| HandleMark hm; |
| JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); |
| if (JVMCIENV->has_pending_exception()) { |
| fatal_exception_in_compile(JVMCIENV, thread, "Exception during HotSpotJVMCIRuntime initialization"); |
| } |
| JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV); |
| if (JVMCIENV->has_pending_exception()) { |
| JVMCIENV->describe_pending_exception(true); |
| compile_state->set_failure(false, "exception getting JVMCI wrapper method"); |
| return; |
| } |
| |
| JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci, |
| (jlong) compile_state, compile_state->task()->compile_id()); |
| if (!JVMCIENV->has_pending_exception()) { |
| if (result_object.is_non_null()) { |
| JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object); |
| if (failure_message.is_non_null()) { |
| // Copy failure reason into resource memory first ... |
| const char* failure_reason = JVMCIENV->as_utf8_string(failure_message); |
| // ... and then into the C heap. |
| failure_reason = os::strdup(failure_reason, mtJVMCI); |
| bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0; |
| compile_state->set_failure(retryable, failure_reason, true); |
| } else { |
| if (compile_state->task()->code() == NULL) { |
| compile_state->set_failure(true, "no nmethod produced"); |
| } else { |
| compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object)); |
| compiler->inc_methods_compiled(); |
| } |
| } |
| } else { |
| assert(false, "JVMCICompiler.compileMethod should always return non-null"); |
| } |
| } else { |
| // An uncaught exception here implies failure during compiler initialization. |
| // The only sensible thing to do here is to exit the VM. |
| fatal_exception_in_compile(JVMCIENV, thread, "Exception during JVMCI compiler initialization"); |
| } |
| if (compiler->is_bootstrapping()) { |
| compiler->set_bootstrap_compilation_request_handled(); |
| } |
| } |
| |
| |
| // ------------------------------------------------------------------ |
| JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV, |
| const methodHandle& method, |
| nmethod*& nm, |
| int entry_bci, |
| CodeOffsets* offsets, |
| int orig_pc_offset, |
| CodeBuffer* code_buffer, |
| int frame_words, |
| OopMapSet* oop_map_set, |
| ExceptionHandlerTable* handler_table, |
| ImplicitExceptionTable* implicit_exception_table, |
| AbstractCompiler* compiler, |
| DebugInformationRecorder* debug_info, |
| Dependencies* dependencies, |
| int compile_id, |
| bool has_unsafe_access, |
| bool has_wide_vector, |
| JVMCIObject compiled_code, |
| JVMCIObject nmethod_mirror, |
| FailedSpeculation** failed_speculations, |
| char* speculations, |
| int speculations_len) { |
| JVMCI_EXCEPTION_CONTEXT; |
| nm = NULL; |
| int comp_level = CompLevel_full_optimization; |
| char* failure_detail = NULL; |
| |
| bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0; |
| assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be"); |
| JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror); |
| const char* nmethod_mirror_name = name.is_null() ? NULL : JVMCIENV->as_utf8_string(name); |
| int nmethod_mirror_index; |
| if (!install_default) { |
| // Reserve or initialize mirror slot in the oops table. |
| OopRecorder* oop_recorder = debug_info->oop_recorder(); |
| nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : NULL); |
| } else { |
| // A default HotSpotNmethod mirror is never tracked by the nmethod |
| nmethod_mirror_index = -1; |
| } |
| |
| JVMCI::CodeInstallResult result; |
| { |
| // To prevent compile queue updates. |
| MutexLocker locker(MethodCompileQueue_lock, THREAD); |
| |
| // Prevent SystemDictionary::add_to_hierarchy from running |
| // and invalidating our dependencies until we install this method. |
| MutexLocker ml(Compile_lock); |
| |
| // Encode the dependencies now, so we can check them right away. |
| dependencies->encode_content_bytes(); |
| |
| // Record the dependencies for the current compile in the log |
| if (LogCompilation) { |
| for (Dependencies::DepStream deps(dependencies); deps.next(); ) { |
| deps.log_dependency(); |
| } |
| } |
| |
| // Check for {class loads, evolution, breakpoints} during compilation |
| result = validate_compile_task_dependencies(dependencies, JVMCIENV->compile_state(), &failure_detail); |
| if (result != JVMCI::ok) { |
| // While not a true deoptimization, it is a preemptive decompile. |
| MethodData* mdp = method()->method_data(); |
| if (mdp != NULL) { |
| mdp->inc_decompile_count(); |
| #ifdef ASSERT |
| if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) { |
| ResourceMark m; |
| tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string()); |
| } |
| #endif |
| } |
| |
| // All buffers in the CodeBuffer are allocated in the CodeCache. |
| // If the code buffer is created on each compile attempt |
| // as in C2, then it must be freed. |
| //code_buffer->free_blob(); |
| } else { |
| nm = nmethod::new_nmethod(method, |
| compile_id, |
| entry_bci, |
| offsets, |
| orig_pc_offset, |
| debug_info, dependencies, code_buffer, |
| frame_words, oop_map_set, |
| handler_table, implicit_exception_table, |
| compiler, comp_level, |
| speculations, speculations_len, |
| nmethod_mirror_index, nmethod_mirror_name, failed_speculations); |
| |
| |
| // Free codeBlobs |
| if (nm == NULL) { |
| // The CodeCache is full. Print out warning and disable compilation. |
| { |
| MutexUnlocker ml(Compile_lock); |
| MutexUnlocker locker(MethodCompileQueue_lock); |
| CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level)); |
| } |
| } else { |
| nm->set_has_unsafe_access(has_unsafe_access); |
| nm->set_has_wide_vectors(has_wide_vector); |
| |
| // Record successful registration. |
| // (Put nm into the task handle *before* publishing to the Java heap.) |
| if (JVMCIENV->compile_state() != NULL) { |
| JVMCIENV->compile_state()->task()->set_code(nm); |
| } |
| |
| JVMCINMethodData* data = nm->jvmci_nmethod_data(); |
| assert(data != NULL, "must be"); |
| if (install_default) { |
| assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == NULL, "must be"); |
| if (entry_bci == InvocationEntryBci) { |
| if (TieredCompilation) { |
| // If there is an old version we're done with it |
| CompiledMethod* old = method->code(); |
| if (TraceMethodReplacement && old != NULL) { |
| ResourceMark rm; |
| char *method_name = method->name_and_sig_as_C_string(); |
| tty->print_cr("Replacing method %s", method_name); |
| } |
| if (old != NULL ) { |
| old->make_not_entrant(); |
| } |
| } |
| |
| LogTarget(Info, nmethod, install) lt; |
| if (lt.is_enabled()) { |
| ResourceMark rm; |
| char *method_name = method->name_and_sig_as_C_string(); |
| lt.print("Installing method (%d) %s [entry point: %p]", |
| comp_level, method_name, nm->entry_point()); |
| } |
| // Allow the code to be executed |
| method->set_code(method, nm); |
| } else { |
| LogTarget(Info, nmethod, install) lt; |
| if (lt.is_enabled()) { |
| ResourceMark rm; |
| char *method_name = method->name_and_sig_as_C_string(); |
| lt.print("Installing osr method (%d) %s @ %d", |
| comp_level, method_name, entry_bci); |
| } |
| InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm); |
| } |
| } else { |
| assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be"); |
| } |
| nm->make_in_use(); |
| } |
| result = nm != NULL ? JVMCI::ok :JVMCI::cache_full; |
| } |
| } |
| |
| // String creation must be done outside lock |
| if (failure_detail != NULL) { |
| // A failure to allocate the string is silently ignored. |
| JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV); |
| JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message); |
| } |
| |
| // JVMTI -- compiled method notification (must be done outside lock) |
| if (nm != NULL) { |
| nm->post_compiled_method_load_event(); |
| } |
| |
| return result; |
| } |