blob: 09632154630b9a635afc851f93f19fbf72a22247 [file] [log] [blame]
/*
* Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_aarch64.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "logging/log.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markWord.hpp"
#include "oops/method.hpp"
#include "oops/methodData.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/powerOfTwo.hpp"
void InterpreterMacroAssembler::narrow(Register result) {
// Get method->_constMethod->_result_type
ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
ldr(rscratch1, Address(rscratch1, Method::const_offset()));
ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
Label done, notBool, notByte, notChar;
// common case first
cmpw(rscratch1, T_INT);
br(Assembler::EQ, done);
// mask integer result to narrower return type.
cmpw(rscratch1, T_BOOLEAN);
br(Assembler::NE, notBool);
andw(result, result, 0x1);
b(done);
bind(notBool);
cmpw(rscratch1, T_BYTE);
br(Assembler::NE, notByte);
sbfx(result, result, 0, 8);
b(done);
bind(notByte);
cmpw(rscratch1, T_CHAR);
br(Assembler::NE, notChar);
ubfx(result, result, 0, 16); // truncate upper 16 bits
b(done);
bind(notChar);
sbfx(result, result, 0, 16); // sign-extend short
// Nothing to do for T_INT
bind(done);
}
void InterpreterMacroAssembler::jump_to_entry(address entry) {
assert(entry, "Entry must have been generated by now");
b(entry);
}
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
if (JvmtiExport::can_pop_frame()) {
Label L;
// Initiate popframe handling only if it is not already being
// processed. If the flag has the popframe_processing bit set, it
// means that this code is called *during* popframe handling - we
// don't want to reenter.
// This method is only called just after the call into the vm in
// call_VM_base, so the arg registers are available.
ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
// Call Interpreter::remove_activation_preserving_args_entry() to get the
// address of the same-named entrypoint in the generated interpreter code.
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
br(r0);
bind(L);
}
}
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
switch (state) {
case atos: ldr(r0, oop_addr);
str(zr, oop_addr);
verify_oop(r0, state); break;
case ltos: ldr(r0, val_addr); break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: ldrw(r0, val_addr); break;
case ftos: ldrs(v0, val_addr); break;
case dtos: ldrd(v0, val_addr); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
// Clean up tos value in the thread object
movw(rscratch1, (int) ilgl);
strw(rscratch1, tos_addr);
strw(zr, val_addr);
}
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
if (JvmtiExport::can_force_early_return()) {
Label L;
ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
// Initiate earlyret handling only if it is not already being processed.
// If the flag has the earlyret_processing bit set, it means that this code
// is called *during* earlyret handling - we don't want to reenter.
ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
br(Assembler::NE, L);
// Call Interpreter::remove_activation_early_entry() to get the address of the
// same-named entrypoint in the generated interpreter code.
ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
br(r0);
bind(L);
}
}
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
Register reg,
int bcp_offset) {
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
ldrh(reg, Address(rbcp, bcp_offset));
rev16(reg, reg);
}
void InterpreterMacroAssembler::get_dispatch() {
uint64_t offset;
adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
lea(rdispatch, Address(rdispatch, offset));
}
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
int bcp_offset,
size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
if (index_size == sizeof(u2)) {
load_unsigned_short(index, Address(rbcp, bcp_offset));
} else if (index_size == sizeof(u4)) {
// assert(EnableInvokeDynamic, "giant index used only for JSR 292");
ldrw(index, Address(rbcp, bcp_offset));
// Check if the secondary index definition is still ~x, otherwise
// we have to change the following assembler code to calculate the
// plain index.
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
eonw(index, index, zr); // convert to plain index
} else if (index_size == sizeof(u1)) {
load_unsigned_byte(index, Address(rbcp, bcp_offset));
} else {
ShouldNotReachHere();
}
}
// Return
// Rindex: index into constant pool
// Rcache: address of cache entry - ConstantPoolCache::base_offset()
//
// A caller must add ConstantPoolCache::base_offset() to Rcache to get
// the true address of the cache entry.
//
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
Register index,
int bcp_offset,
size_t index_size) {
assert_different_registers(cache, index);
assert_different_registers(cache, rcpool);
get_cache_index_at_bcp(index, bcp_offset, index_size);
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// convert from field index to ConstantPoolCacheEntry
// aarch64 already has the cache in rcpool so there is no need to
// install it in cache. instead we pre-add the indexed offset to
// rcpool and return it in cache. All clients of this method need to
// be modified accordingly.
add(cache, rcpool, index, Assembler::LSL, 5);
}
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
Register index,
Register bytecode,
int byte_no,
int bcp_offset,
size_t index_size) {
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
// We use a 32-bit load here since the layout of 64-bit words on
// little-endian machines allow us that.
// n.b. unlike x86 cache already includes the index offset
lea(bytecode, Address(cache,
ConstantPoolCache::base_offset()
+ ConstantPoolCacheEntry::indices_offset()));
ldarw(bytecode, bytecode);
const int shift_count = (1 + byte_no) * BitsPerByte;
ubfx(bytecode, bytecode, shift_count, BitsPerByte);
}
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
Register tmp,
int bcp_offset,
size_t index_size) {
assert(cache != tmp, "must use different register");
get_cache_index_at_bcp(tmp, bcp_offset, index_size);
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// convert from field index to ConstantPoolCacheEntry index
// and from word offset to byte offset
assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
// skip past the header
add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry
}
void InterpreterMacroAssembler::get_method_counters(Register method,
Register mcs, Label& skip) {
Label has_counters;
ldr(mcs, Address(method, Method::method_counters_offset()));
cbnz(mcs, has_counters);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::build_method_counters), method);
ldr(mcs, Address(method, Method::method_counters_offset()));
cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
bind(has_counters);
}
// Load object from cpool->resolved_references(index)
void InterpreterMacroAssembler::load_resolved_reference_at_index(
Register result, Register index, Register tmp) {
assert_different_registers(result, index);
get_constant_pool(result);
// load pointer for resolved_references[] objArray
ldr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
resolve_oop_handle(result, tmp);
// Add in the index
add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)));
}
void InterpreterMacroAssembler::load_resolved_klass_at_offset(
Register cpool, Register index, Register klass, Register temp) {
add(temp, cpool, index, LSL, LogBytesPerWord);
ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
add(klass, klass, temp, LSL, LogBytesPerWord);
ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
}
void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
Register method,
Register cache) {
const int method_offset = in_bytes(
ConstantPoolCache::base_offset() +
((byte_no == TemplateTable::f2_byte)
? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset()));
ldr(method, Address(cache, method_offset)); // get f1 Method*
}
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
// subtype of super_klass.
//
// Args:
// r0: superklass
// Rsub_klass: subklass
//
// Kills:
// r2, r5
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
Label& ok_is_subtype) {
assert(Rsub_klass != r0, "r0 holds superklass");
assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
// Profile the not-null value's klass.
profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
// Do the check.
check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
// Profile the failure of the check.
profile_typecheck_failed(r2); // blows r2
}
// Java Expression Stack
void InterpreterMacroAssembler::pop_ptr(Register r) {
ldr(r, post(esp, wordSize));
}
void InterpreterMacroAssembler::pop_i(Register r) {
ldrw(r, post(esp, wordSize));
}
void InterpreterMacroAssembler::pop_l(Register r) {
ldr(r, post(esp, 2 * Interpreter::stackElementSize));
}
void InterpreterMacroAssembler::push_ptr(Register r) {
str(r, pre(esp, -wordSize));
}
void InterpreterMacroAssembler::push_i(Register r) {
str(r, pre(esp, -wordSize));
}
void InterpreterMacroAssembler::push_l(Register r) {
str(zr, pre(esp, -wordSize));
str(r, pre(esp, - wordSize));
}
void InterpreterMacroAssembler::pop_f(FloatRegister r) {
ldrs(r, post(esp, wordSize));
}
void InterpreterMacroAssembler::pop_d(FloatRegister r) {
ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
}
void InterpreterMacroAssembler::push_f(FloatRegister r) {
strs(r, pre(esp, -wordSize));
}
void InterpreterMacroAssembler::push_d(FloatRegister r) {
strd(r, pre(esp, 2* -wordSize));
}
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos: pop_ptr(); break;
case btos:
case ztos:
case ctos:
case stos:
case itos: pop_i(); break;
case ltos: pop_l(); break;
case ftos: pop_f(); break;
case dtos: pop_d(); break;
case vtos: /* nothing to do */ break;
default: ShouldNotReachHere();
}
verify_oop(r0, state);
}
void InterpreterMacroAssembler::push(TosState state) {
verify_oop(r0, state);
switch (state) {
case atos: push_ptr(); break;
case btos:
case ztos:
case ctos:
case stos:
case itos: push_i(); break;
case ltos: push_l(); break;
case ftos: push_f(); break;
case dtos: push_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
}
// Helpers for swap and dup
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::load_float(Address src) {
ldrs(v0, src);
}
void InterpreterMacroAssembler::load_double(Address src) {
ldrd(v0, src);
}
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
// set sender sp
mov(r13, sp);
// record last_sp
str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
}
// Jump to from_interpreted entry of a call unless single stepping is possible
// in this thread in which case we must call the i2i entry
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
prepare_to_jump_from_interpreted();
if (JvmtiExport::can_post_interpreter_events()) {
Label run_compiled_code;
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
cbzw(rscratch1, run_compiled_code);
ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
br(rscratch1);
bind(run_compiled_code);
}
ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
br(rscratch1);
}
// The following two routines provide a hook so that an implementation
// can schedule the dispatch in two parts. amd64 does not do this.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
}
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
dispatch_next(state, step);
}
void InterpreterMacroAssembler::dispatch_base(TosState state,
address* table,
bool verifyoop,
bool generate_poll) {
if (VerifyActivationFrameSize) {
Unimplemented();
}
if (verifyoop) {
verify_oop(r0, state);
}
Label safepoint;
address* const safepoint_table = Interpreter::safept_table(state);
bool needs_thread_local_poll = generate_poll && table != safepoint_table;
if (needs_thread_local_poll) {
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
ldr(rscratch2, Address(rthread, Thread::polling_word_offset()));
tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
}
if (table == Interpreter::dispatch_table(state)) {
addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
} else {
mov(rscratch2, (address)table);
ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
}
br(rscratch2);
if (needs_thread_local_poll) {
bind(safepoint);
lea(rscratch2, ExternalAddress((address)safepoint_table));
ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
br(rscratch2);
}
}
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
}
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
dispatch_base(state, Interpreter::normal_table(state));
}
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
dispatch_base(state, Interpreter::normal_table(state), false);
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
// load next bytecode
ldrb(rscratch1, Address(pre(rbcp, step)));
dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
}
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
// load current bytecode
ldrb(rscratch1, Address(rbcp, 0));
dispatch_base(state, table);
}
// remove activation
//
// Apply stack watermark barrier.
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(
TosState state,
bool throw_monitor_exception,
bool install_monitor_exception,
bool notify_jvmdi) {
// Note: Registers r3 xmm0 may be in use for the
// result check if synchronized method
Label unlocked, unlock, no_unlock;
// The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
// that would normally not be safe to use. Such bad returns into unsafe territory of
// the stack, will call InterpreterRuntime::at_unwind.
Label slow_path;
Label fast_path;
safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
br(Assembler::AL, fast_path);
bind(slow_path);
push(state);
set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
reset_last_Java_frame(true);
pop(state);
bind(fast_path);
// get the value of _do_not_unlock_if_synchronized into r3
const Address do_not_unlock_if_synchronized(rthread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
ldrb(r3, do_not_unlock_if_synchronized);
strb(zr, do_not_unlock_if_synchronized); // reset the flag
// get method access flags
ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
ldr(r2, Address(r1, Method::access_flags_offset()));
tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
// is set.
cbnz(r3, no_unlock);
// unlock monitor
push(state); // save result
// BasicObjectLock will be first in list, since this is a
// synchronized method. However, need to check that the object has
// not been unlocked by an explicit monitorexit bytecode.
const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
wordSize - (int) sizeof(BasicObjectLock));
// We use c_rarg1 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly
lea(c_rarg1, monitor); // address of first monitor
ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
cbnz(r0, unlock);
pop(state);
if (throw_monitor_exception) {
// Entry already unlocked, need to throw exception
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Monitor already unlocked during a stack unroll. If requested,
// install an illegal_monitor_state_exception. Continue with
// stack unrolling.
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::new_illegal_monitor_state_exception));
}
b(unlocked);
}
bind(unlock);
unlock_object(c_rarg1);
pop(state);
// Check that for block-structured locking (i.e., that all locked
// objects has been unlocked)
bind(unlocked);
// r0: Might contain return value
// Check that all monitors are unlocked
{
Label loop, exception, entry, restart;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
const Address monitor_block_top(
rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
bind(restart);
// We use c_rarg1 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly
ldr(c_rarg1, monitor_block_top); // points to current entry, starting
// with top-most entry
lea(r19, monitor_block_bot); // points to word before bottom of
// monitor block
b(entry);
// Entry already locked, need to throw exception
bind(exception);
if (throw_monitor_exception) {
// Throw exception
MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::
throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and install illegal_monitor_exception.
// Unlock does not block, so don't have to worry about the frame.
// We don't have to preserve c_rarg1 since we are going to throw an exception.
push(state);
unlock_object(c_rarg1);
pop(state);
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::
new_illegal_monitor_state_exception));
}
b(restart);
}
bind(loop);
// check if current entry is used
ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
cbnz(rscratch1, exception);
add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
bind(entry);
cmp(c_rarg1, r19); // check if bottom reached
br(Assembler::NE, loop); // if not at bottom then check this entry
}
bind(no_unlock);
// jvmti support
if (notify_jvmdi) {
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
} else {
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
}
// remove activation
// get sender esp
ldr(esp,
Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
if (StackReservedPages > 0) {
// testing if reserved zone needs to be re-enabled
Label no_reserved_zone_enabling;
ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
cmp(esp, rscratch1);
br(Assembler::LS, no_reserved_zone_enabling);
call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_delayed_StackOverflowError));
should_not_reach_here();
bind(no_reserved_zone_enabling);
}
// remove frame anchor
leave();
// If we're returning to interpreted code we will shortly be
// adjusting SP to allow some space for ESP. If we're returning to
// compiled code the saved sender SP was saved in sender_sp, so this
// restores it.
andr(sp, esp, -16);
}
// Lock object
//
// Args:
// c_rarg1: BasicObjectLock to be used for locking
//
// Kills:
// r0
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
// rscratch1, rscratch2 (scratch regs)
void InterpreterMacroAssembler::lock_object(Register lock_reg)
{
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
if (UseHeavyMonitors) {
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
lock_reg);
} else {
Label done;
const Register swap_reg = r0;
const Register tmp = c_rarg2;
const Register obj_reg = c_rarg3; // Will contain the oop
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
const int mark_offset = lock_offset +
BasicLock::displaced_header_offset_in_bytes();
Label slow_case;
// Load object pointer into obj_reg %c_rarg3
ldr(obj_reg, Address(lock_reg, obj_offset));
if (DiagnoseSyncOnPrimitiveWrappers != 0) {
load_klass(tmp, obj_reg);
ldrw(tmp, Address(tmp, Klass::access_flags_offset()));
tstw(tmp, JVM_ACC_IS_BOX_CLASS);
br(Assembler::NE, slow_case);
}
if (UseBiasedLocking) {
biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
}
// Load (object->mark() | 1) into swap_reg
ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
orr(swap_reg, rscratch1, 1);
// Save (object->mark() | 1) into BasicLock's displaced header
str(swap_reg, Address(lock_reg, mark_offset));
assert(lock_offset == 0,
"displached header must be first word in BasicObjectLock");
Label fail;
if (PrintBiasedLockingStatistics) {
Label fast;
cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
bind(fast);
atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
rscratch2, rscratch1, tmp);
b(done);
bind(fail);
} else {
cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
}
// Test if the oopMark is an obvious stack pointer, i.e.,
// 1) (mark & 7) == 0, and
// 2) rsp <= mark < mark + os::pagesize()
//
// These 3 tests can be done by evaluating the following
// expression: ((mark - rsp) & (7 - os::vm_page_size())),
// assuming both stack pointer and pagesize have their
// least significant 3 bits clear.
// NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
// NOTE2: aarch64 does not like to subtract sp from rn so take a
// copy
mov(rscratch1, sp);
sub(swap_reg, swap_reg, rscratch1);
ands(swap_reg, swap_reg, (uint64_t)(7 - os::vm_page_size()));
// Save the test result, for recursive case, the result is zero
str(swap_reg, Address(lock_reg, mark_offset));
if (PrintBiasedLockingStatistics) {
br(Assembler::NE, slow_case);
atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
rscratch2, rscratch1, tmp);
}
br(Assembler::EQ, done);
bind(slow_case);
// Call the runtime routine for slow case
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
lock_reg);
bind(done);
}
}
// Unlocks an object. Used in monitorexit bytecode and
// remove_activation. Throws an IllegalMonitorException if object is
// not locked by current thread.
//
// Args:
// c_rarg1: BasicObjectLock for lock
//
// Kills:
// r0
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
// rscratch1, rscratch2 (scratch regs)
void InterpreterMacroAssembler::unlock_object(Register lock_reg)
{
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
if (UseHeavyMonitors) {
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
} else {
Label done;
const Register swap_reg = r0;
const Register header_reg = c_rarg2; // Will contain the old oopMark
const Register obj_reg = c_rarg3; // Will contain the oop
save_bcp(); // Save in case of exception
// Convert from BasicObjectLock structure to object and BasicLock
// structure Store the BasicLock address into %r0
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
// Load oop into obj_reg(%c_rarg3)
ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
// Free entry
str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
if (UseBiasedLocking) {
biased_locking_exit(obj_reg, header_reg, done);
}
// Load the old header from BasicLock structure
ldr(header_reg, Address(swap_reg,
BasicLock::displaced_header_offset_in_bytes()));
// Test for recursion
cbz(header_reg, done);
// Atomic swap back the old header
cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
// Call the runtime routine for slow case.
str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
bind(done);
restore_bcp();
}
}
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
cbz(mdp, zero_continue);
}
// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label set_mdp;
stp(r0, r1, Address(pre(sp, -2 * wordSize)));
// Test MDO to avoid the call if it is NULL.
ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
cbz(r0, set_mdp);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
// r0: mdi
// mdo is guaranteed to be non-zero here, we checked for it before the call.
ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
add(r0, r1, r0);
str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
bind(set_mdp);
ldp(r0, r1, Address(post(sp, 2 * wordSize)));
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
Label verify_continue;
stp(r0, r1, Address(pre(sp, -2 * wordSize)));
stp(r2, r3, Address(pre(sp, -2 * wordSize)));
test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
get_method(r1);
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
ldr(rscratch1, Address(r1, Method::const_offset()));
add(r2, r2, rscratch1, Assembler::LSL);
lea(r2, Address(r2, ConstMethod::codes_offset()));
cmp(r2, rbcp);
br(Assembler::EQ, verify_continue);
// r1: method
// rbcp: bcp // rbcp == 22
// r3: mdp
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
r1, rbcp, r3);
bind(verify_continue);
ldp(r2, r3, Address(post(sp, 2 * wordSize)));
ldp(r0, r1, Address(post(sp, 2 * wordSize)));
#endif // ASSERT
}
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
int constant,
Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
Address data(mdp_in, constant);
str(value, data);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
int constant,
bool decrement) {
increment_mdp_data_at(mdp_in, noreg, constant, decrement);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
Register reg,
int constant,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
// %%% this does 64bit counters at best it is wasting space
// at worst it is a rare bug when counters overflow
assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
Address addr1(mdp_in, constant);
Address addr2(rscratch2, reg, Address::lsl(0));
Address &addr = addr1;
if (reg != noreg) {
lea(rscratch2, addr1);
addr = addr2;
}
if (decrement) {
// Decrement the register. Set condition codes.
// Intel does this
// addptr(data, (int32_t) -DataLayout::counter_increment);
// If the decrement causes the counter to overflow, stay negative
// Label L;
// jcc(Assembler::negative, L);
// addptr(data, (int32_t) DataLayout::counter_increment);
// so we do this
ldr(rscratch1, addr);
subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
Label L;
br(Assembler::LO, L); // skip store if counter underflow
str(rscratch1, addr);
bind(L);
} else {
assert(DataLayout::counter_increment == 1,
"flow-free idiom only works with 1");
// Intel does this
// Increment the register. Set carry flag.
// addptr(data, DataLayout::counter_increment);
// If the increment causes the counter to overflow, pull back by 1.
// sbbptr(data, (int32_t)0);
// so we do this
ldr(rscratch1, addr);
adds(rscratch1, rscratch1, DataLayout::counter_increment);
Label L;
br(Assembler::CS, L); // skip store if counter overflow
str(rscratch1, addr);
bind(L);
}
}
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
int flag_byte_constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
int flags_offset = in_bytes(DataLayout::flags_offset());
// Set the flag
ldrb(rscratch1, Address(mdp_in, flags_offset));
orr(rscratch1, rscratch1, flag_byte_constant);
strb(rscratch1, Address(mdp_in, flags_offset));
}
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
int offset,
Register value,
Register test_value_out,
Label& not_equal_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
if (test_value_out == noreg) {
ldr(rscratch1, Address(mdp_in, offset));
cmp(value, rscratch1);
} else {
// Put the test value into a register, so caller can use it:
ldr(test_value_out, Address(mdp_in, offset));
cmp(value, test_value_out);
}
br(Assembler::NE, not_equal_continue);
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
ldr(rscratch1, Address(mdp_in, offset_of_disp));
add(mdp_in, mdp_in, rscratch1, LSL);
str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
Register reg,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
lea(rscratch1, Address(mdp_in, offset_of_disp));
ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
add(mdp_in, mdp_in, rscratch1, LSL);
str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
add(mdp_in, mdp_in, (unsigned)constant);
str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
// save/restore across call_VM
stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
return_bci);
ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
}
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
Register bumped_count) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
// Otherwise, assign to mdp
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the taken count.
// We inline increment_mdp_data_at to return bumped_count in a register
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
Address data(mdp, in_bytes(JumpData::taken_offset()));
ldr(bumped_count, data);
assert(DataLayout::counter_increment == 1,
"flow-free idiom only works with 1");
// Intel does this to catch overflow
// addptr(bumped_count, DataLayout::counter_increment);
// sbbptr(bumped_count, 0);
// so we do this
adds(bumped_count, bumped_count, DataLayout::counter_increment);
Label L;
br(Assembler::CS, L); // skip store if counter overflow
str(bumped_count, data);
bind(L);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
// The method data pointer needs to be updated to correspond to
// the next bytecode
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp,
in_bytes(VirtualCallData::
virtual_call_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
Register mdp,
Register reg2,
bool receiver_can_be_null) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
Label skip_receiver_profile;
if (receiver_can_be_null) {
Label not_null;
// We are making a call. Increment the count for null receiver.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
b(skip_receiver_profile);
bind(not_null);
}
// Record the receiver type.
record_klass_in_profile(receiver, mdp, reg2, true);
bind(skip_receiver_profile);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
bind(profile_continue);
}
}
// This routine creates a state machine for updating the multi-row
// type profile at a virtual call site (or other type-sensitive bytecode).
// The machine visits each row (of receiver/count) until the receiver type
// is found, or until it runs out of rows. At the same time, it remembers
// the location of the first empty row. (An empty row records null for its
// receiver, and can be allocated for a newly-observed receiver type.)
// Because there are two degrees of freedom in the state, a simple linear
// search will not work; it must be a decision tree. Hence this helper
// function is recursive, to generate the required tree structured code.
// It's the interpreter, so we are trading off code space for speed.
// See below for example code.
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register mdp,
Register reg2, int start_row,
Label& done, bool is_virtual_call) {
if (TypeProfileWidth == 0) {
if (is_virtual_call) {
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
}
#if INCLUDE_JVMCI
else if (EnableJVMCI) {
increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
}
#endif // INCLUDE_JVMCI
} else {
int non_profiled_offset = -1;
if (is_virtual_call) {
non_profiled_offset = in_bytes(CounterData::count_offset());
}
#if INCLUDE_JVMCI
else if (EnableJVMCI) {
non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
}
#endif // INCLUDE_JVMCI
record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
&VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
}
}
void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
Register reg2, int start_row, Label& done, int total_rows,
OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
int non_profiled_offset) {
int last_row = total_rows - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the item and for null.
// Take any of three different outcomes:
// 1. found item => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
Label next_test;
bool test_for_null_also = (row == start_row);
// See if the item is item[n].
int item_offset = in_bytes(item_offset_fn(row));
test_mdp_data_at(mdp, item_offset, item,
(test_for_null_also ? reg2 : noreg),
next_test);
// (Reg2 now contains the item from the CallData.)
// The item is item[n]. Increment count[n].
int count_offset = in_bytes(item_count_offset_fn(row));
increment_mdp_data_at(mdp, count_offset);
b(done);
bind(next_test);
if (test_for_null_also) {
Label found_null;
// Failed the equality check on item[n]... Test for null.
if (start_row == last_row) {
// The only thing left to do is handle the null case.
if (non_profiled_offset >= 0) {
cbz(reg2, found_null);
// Item did not match any saved item and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
increment_mdp_data_at(mdp, non_profiled_offset);
b(done);
bind(found_null);
} else {
cbnz(reg2, done);
}
break;
}
// Since null is rare, make it be the branch-taken case.
cbz(reg2, found_null);
// Put all the "Case 3" tests here.
record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
item_offset_fn, item_count_offset_fn, non_profiled_offset);
// Found a null. Keep searching for a matching item,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching item, but we
// observed the item[start_row] is NULL.
// Fill in the item field and increment the count.
int item_offset = in_bytes(item_offset_fn(start_row));
set_mdp_data_at(mdp, item_offset, item);
int count_offset = in_bytes(item_count_offset_fn(start_row));
mov(reg2, DataLayout::counter_increment);
set_mdp_data_at(mdp, count_offset, reg2);
if (start_row > 0) {
b(done);
}
}
// Example state machine code for three profile rows:
// // main copy of decision tree, rooted at row[1]
// if (row[0].rec == rec) { row[0].incr(); goto done; }
// if (row[0].rec != NULL) {
// // inner copy of decision tree, rooted at row[1]
// if (row[1].rec == rec) { row[1].incr(); goto done; }
// if (row[1].rec != NULL) {
// // degenerate decision tree, rooted at row[2]
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
// row[2].init(rec); goto done;
// } else {
// // remember row[1] is empty
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// row[1].init(rec); goto done;
// }
// } else {
// // remember row[0] is empty
// if (row[1].rec == rec) { row[1].incr(); goto done; }
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// row[0].init(rec); goto done;
// }
// done:
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
Register mdp, Register reg2,
bool is_virtual_call) {
assert(ProfileInterpreter, "must be profiling");
Label done;
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
bind (done);
}
void InterpreterMacroAssembler::profile_ret(Register return_bci,
Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
uint row;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the total ret count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
for (row = 0; row < RetData::row_limit(); row++) {
Label next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(mdp,
in_bytes(RetData::bci_offset(row)),
return_bci, noreg,
next_test);
// return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp,
in_bytes(RetData::bci_displacement_offset(row)));
b(profile_continue);
bind(next_test);
}
update_mdp_for_ret(return_bci);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(mdp, count_offset, true);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(klass, mdp, reg2, false);
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the default case count
increment_mdp_data_at(mdp,
in_bytes(MultiBranchData::default_count_offset()));
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp,
in_bytes(MultiBranchData::
default_displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_case(Register index,
Register mdp,
Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Build the base (index * per_case_size_in_bytes()) +
// case_array_offset_in_bytes()
movw(reg2, in_bytes(MultiBranchData::per_case_size()));
movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
Assembler::maddw(index, index, reg2, rscratch1);
// Update the case count
increment_mdp_data_at(mdp,
index,
in_bytes(MultiBranchData::relative_count_offset()));
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp,
index,
in_bytes(MultiBranchData::
relative_displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
if (state == atos) {
MacroAssembler::verify_oop(reg);
}
}
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
void InterpreterMacroAssembler::notify_method_entry() {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (JvmtiExport::can_post_interpreter_events()) {
Label L;
ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
cbzw(r3, L);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_method_entry));
bind(L);
}
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
rthread, c_rarg1);
}
// RedefineClasses() tracing support for obsolete method entry
if (log_is_enabled(Trace, redefine, class, obsolete)) {
get_method(c_rarg1);
call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
rthread, c_rarg1);
}
}
void InterpreterMacroAssembler::notify_method_exit(
TosState state, NotifyMethodExitMode mode) {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
Label L;
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. If this
// is changed then the interpreter_frame_result implementation will
// need to be updated too.
// template interpreter will leave the result on the top of the stack.
push(state);
ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
cbz(r3, L);
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
bind(L);
pop(state);
}
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
push(state);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
rthread, c_rarg1);
pop(state);
}
}
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
int increment, Address mask,
Register scratch, Register scratch2,
bool preloaded, Condition cond,
Label* where) {
if (!preloaded) {
ldrw(scratch, counter_addr);
}
add(scratch, scratch, increment);
strw(scratch, counter_addr);
ldrw(scratch2, mask);
ands(scratch, scratch, scratch2);
br(cond, *where);
}
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
int number_of_arguments) {
// interpreter specific
//
// Note: No need to save/restore rbcp & rlocals pointer since these
// are callee saved registers and no blocking/ GC can happen
// in leaf calls.
#ifdef ASSERT
{
Label L;
ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
cbz(rscratch1, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" last_sp != NULL");
bind(L);
}
#endif /* ASSERT */
// super call
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
}
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
// interpreter specific
//
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
// really make a difference for these runtime calls, since they are
// slow anyway. Btw., bcp must be saved/restored since it may change
// due to GC.
// assert(java_thread == noreg , "not expecting a precomputed java thread");
save_bcp();
#ifdef ASSERT
{
Label L;
ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
cbz(rscratch1, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" last_sp != NULL");
bind(L);
}
#endif /* ASSERT */
// super call
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
entry_point, number_of_arguments,
check_exceptions);
// interpreter specific
restore_bcp();
restore_locals();
}
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
assert_different_registers(obj, rscratch1);
Label update, next, none;
verify_oop(obj);
cbnz(obj, update);
orptr(mdo_addr, TypeEntries::null_seen);
b(next);
bind(update);
load_klass(obj, obj);
ldr(rscratch1, mdo_addr);
eor(obj, obj, rscratch1);
tst(obj, TypeEntries::type_klass_mask);
br(Assembler::EQ, next); // klass seen before, nothing to
// do. The unknown bit may have been
// set already but no need to check.
tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
// already unknown. Nothing to do anymore.
ldr(rscratch1, mdo_addr);
cbz(rscratch1, none);
cmp(rscratch1, (u1)TypeEntries::null_seen);
br(Assembler::EQ, none);
// There is a chance that the checks above (re-reading profiling
// data from memory) fail if another thread has just set the
// profiling to this obj's klass
ldr(rscratch1, mdo_addr);
eor(obj, obj, rscratch1);
tst(obj, TypeEntries::type_klass_mask);
br(Assembler::EQ, next);
// different than before. Cannot keep accurate profile.
orptr(mdo_addr, TypeEntries::type_unknown);
b(next);
bind(none);
// first time here. Set profile type.
str(obj, mdo_addr);
bind(next);
}
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
if (!ProfileInterpreter) {
return;
}
if (MethodData::profile_arguments() || MethodData::profile_return()) {
Label profile_continue;
test_method_data_pointer(mdp, profile_continue);
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
br(Assembler::NE, profile_continue);
if (MethodData::profile_arguments()) {
Label done;
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
for (int i = 0; i < TypeProfileArgsLimit; i++) {
if (i > 0 || MethodData::profile_return()) {
// If return value type is profiled we may have no argument to profile
ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
add(rscratch1, mdp, off_to_args);
br(Assembler::LT, done);
}
ldr(tmp, Address(callee, Method::const_offset()));
load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
// stack offset o (zero based) from the start of the argument
// list, for n arguments translates into offset n - o - 1 from
// the end of the argument list
ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
sub(tmp, tmp, rscratch1);
sub(tmp, tmp, 1);
Address arg_addr = argument_address(tmp);
ldr(tmp, arg_addr);
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
profile_obj_type(tmp, mdo_arg_addr);
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
off_to_args += to_add;
}
if (MethodData::profile_return()) {
ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
}
add(rscratch1, mdp, off_to_args);
bind(done);
mov(mdp, rscratch1);
if (MethodData::profile_return()) {
// We're right after the type profile for the last
// argument. tmp is the number of cells left in the
// CallTypeData/VirtualCallTypeData to reach its end. Non null
// if there's a return to profile.
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
}
str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
} else {
assert(MethodData::profile_return(), "either profile call args or call ret");
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
}
// mdp points right after the end of the
// CallTypeData/VirtualCallTypeData, right after the cells for the
// return value type if there's one
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
assert_different_registers(mdp, ret, tmp, rbcp);
if (ProfileInterpreter && MethodData::profile_return()) {
Label profile_continue, done;
test_method_data_pointer(mdp, profile_continue);
if (MethodData::profile_return_jsr292_only()) {
assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
// If we don't profile all invoke bytecodes we must make sure
// it's a bytecode we indeed profile. We can't go back to the
// begining of the ProfileData we intend to update to check its
// type because we're right after it and we don't known its
// length
Label do_profile;
ldrb(rscratch1, Address(rbcp, 0));
cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
br(Assembler::EQ, do_profile);
cmp(rscratch1, (u1)Bytecodes::_invokehandle);
br(Assembler::EQ, do_profile);
get_method(tmp);
ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
subs(zr, rscratch1, vmIntrinsics::_compiledLambdaForm);
br(Assembler::NE, profile_continue);
bind(do_profile);
}
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
mov(tmp, ret);
profile_obj_type(tmp, mdo_ret_addr);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
if (ProfileInterpreter && MethodData::profile_parameters()) {
Label profile_continue, done;
test_method_data_pointer(mdp, profile_continue);
// Load the offset of the area within the MDO used for
// parameters. If it's negative we're not profiling any parameters
ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
tbnz(tmp1, 31, profile_continue); // i.e. sign bit set
// Compute a pointer to the area for parameters from the offset
// and move the pointer to the slot for the last
// parameters. Collect profiling from last parameter down.
// mdo start + parameters offset + array length - 1
add(mdp, mdp, tmp1);
ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
Label loop;
bind(loop);
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
int type_base = in_bytes(ParametersTypeData::type_offset(0));
int per_arg_scale = exact_log2(DataLayout::cell_size);
add(rscratch1, mdp, off_base);
add(rscratch2, mdp, type_base);
Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
// load offset on the stack from the slot for this parameter
ldr(tmp2, arg_off);
neg(tmp2, tmp2);
// read the parameter from the local area
ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
// profile the parameter
profile_obj_type(tmp2, arg_type);
// go to next parameter
subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
br(Assembler::GE, loop);
bind(profile_continue);
}
}