blob: 77093f79081c75fa7c7e367affc8abf155160986 [file] [log] [blame]
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
/**
* A synchronization aid that allows one or more threads to wait until
* a set of operations being performed in other threads completes.
*
* <p>A {@code CountDownLatch} is initialized with a given <em>count</em>.
* The {@link #await await} methods block until the current count reaches
* zero due to invocations of the {@link #countDown} method, after which
* all waiting threads are released and any subsequent invocations of
* {@link #await await} return immediately. This is a one-shot phenomenon
* -- the count cannot be reset. If you need a version that resets the
* count, consider using a {@link CyclicBarrier}.
*
* <p>A {@code CountDownLatch} is a versatile synchronization tool
* and can be used for a number of purposes. A
* {@code CountDownLatch} initialized with a count of one serves as a
* simple on/off latch, or gate: all threads invoking {@link #await await}
* wait at the gate until it is opened by a thread invoking {@link
* #countDown}. A {@code CountDownLatch} initialized to <em>N</em>
* can be used to make one thread wait until <em>N</em> threads have
* completed some action, or some action has been completed N times.
*
* <p>A useful property of a {@code CountDownLatch} is that it
* doesn't require that threads calling {@code countDown} wait for
* the count to reach zero before proceeding, it simply prevents any
* thread from proceeding past an {@link #await await} until all
* threads could pass.
*
* <p><b>Sample usage:</b> Here is a pair of classes in which a group
* of worker threads use two countdown latches:
* <ul>
* <li>The first is a start signal that prevents any worker from proceeding
* until the driver is ready for them to proceed;
* <li>The second is a completion signal that allows the driver to wait
* until all workers have completed.
* </ul>
*
* <pre> {@code
* class Driver { // ...
* void main() throws InterruptedException {
* CountDownLatch startSignal = new CountDownLatch(1);
* CountDownLatch doneSignal = new CountDownLatch(N);
*
* for (int i = 0; i < N; ++i) // create and start threads
* new Thread(new Worker(startSignal, doneSignal)).start();
*
* doSomethingElse(); // don't let run yet
* startSignal.countDown(); // let all threads proceed
* doSomethingElse();
* doneSignal.await(); // wait for all to finish
* }
* }
*
* class Worker implements Runnable {
* private final CountDownLatch startSignal;
* private final CountDownLatch doneSignal;
* Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
* this.startSignal = startSignal;
* this.doneSignal = doneSignal;
* }
* public void run() {
* try {
* startSignal.await();
* doWork();
* doneSignal.countDown();
* } catch (InterruptedException ex) {} // return;
* }
*
* void doWork() { ... }
* }}</pre>
*
* <p>Another typical usage would be to divide a problem into N parts,
* describe each part with a Runnable that executes that portion and
* counts down on the latch, and queue all the Runnables to an
* Executor. When all sub-parts are complete, the coordinating thread
* will be able to pass through await. (When threads must repeatedly
* count down in this way, instead use a {@link CyclicBarrier}.)
*
* <pre> {@code
* class Driver2 { // ...
* void main() throws InterruptedException {
* CountDownLatch doneSignal = new CountDownLatch(N);
* Executor e = ...
*
* for (int i = 0; i < N; ++i) // create and start threads
* e.execute(new WorkerRunnable(doneSignal, i));
*
* doneSignal.await(); // wait for all to finish
* }
* }
*
* class WorkerRunnable implements Runnable {
* private final CountDownLatch doneSignal;
* private final int i;
* WorkerRunnable(CountDownLatch doneSignal, int i) {
* this.doneSignal = doneSignal;
* this.i = i;
* }
* public void run() {
* try {
* doWork(i);
* doneSignal.countDown();
* } catch (InterruptedException ex) {} // return;
* }
*
* void doWork() { ... }
* }}</pre>
*
* <p>Memory consistency effects: Until the count reaches
* zero, actions in a thread prior to calling
* {@code countDown()}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions following a successful return from a corresponding
* {@code await()} in another thread.
*
* @since 1.5
* @author Doug Lea
*/
public class CountDownLatch {
/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
private final Sync sync;
/**
* Constructs a {@code CountDownLatch} initialized with the given count.
*
* @param count the number of times {@link #countDown} must be invoked
* before threads can pass through {@link #await}
* @throws IllegalArgumentException if {@code count} is negative
*/
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
*
* <p>If the current count is zero then this method returns immediately.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of two things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted},
* or the specified waiting time elapses.
*
* <p>If the current count is zero then this method returns immediately
* with the value {@code true}.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of three things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If the count reaches zero then the method returns with the
* value {@code true}.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if the count reached zero and {@code false}
* if the waiting time elapsed before the count reached zero
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
/**
* Decrements the count of the latch, releasing all waiting threads if
* the count reaches zero.
*
* <p>If the current count is greater than zero then it is decremented.
* If the new count is zero then all waiting threads are re-enabled for
* thread scheduling purposes.
*
* <p>If the current count equals zero then nothing happens.
*/
public void countDown() {
sync.releaseShared(1);
}
/**
* Returns the current count.
*
* <p>This method is typically used for debugging and testing purposes.
*
* @return the current count
*/
public long getCount() {
return sync.getCount();
}
/**
* Returns a string identifying this latch, as well as its state.
* The state, in brackets, includes the String {@code "Count ="}
* followed by the current count.
*
* @return a string identifying this latch, as well as its state
*/
public String toString() {
return super.toString() + "[Count = " + sync.getCount() + "]";
}
}