blob: 1a5761b20263044fee87ab1548f07ac90c4349c1 [file] [log] [blame]
/*
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/satbMarkQueue.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "memory/allocation.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.hpp"
#include "runtime/vmThread.hpp"
SATBMarkQueue::SATBMarkQueue(SATBMarkQueueSet* qset, bool permanent) :
// SATB queues are only active during marking cycles. We create
// them with their active field set to false. If a thread is
// created during a cycle and its SATB queue needs to be activated
// before the thread starts running, we'll need to set its active
// field to true. This is done in JavaThread::initialize_queues().
PtrQueue(qset, permanent, false /* active */)
{ }
void SATBMarkQueue::flush() {
// Filter now to possibly save work later. If filtering empties the
// buffer then flush_impl can deallocate the buffer.
filter();
flush_impl();
}
// Return true if a SATB buffer entry refers to an object that
// requires marking.
//
// The entry must point into the G1 heap. In particular, it must not
// be a NULL pointer. NULL pointers are pre-filtered and never
// inserted into a SATB buffer.
//
// An entry that is below the NTAMS pointer for the containing heap
// region requires marking. Such an entry must point to a valid object.
//
// An entry that is at least the NTAMS pointer for the containing heap
// region might be any of the following, none of which should be marked.
//
// * A reference to an object allocated since marking started.
// According to SATB, such objects are implicitly kept live and do
// not need to be dealt with via SATB buffer processing.
//
// * A reference to a young generation object. Young objects are
// handled separately and are not marked by concurrent marking.
//
// * A stale reference to a young generation object. If a young
// generation object reference is recorded and not filtered out
// before being moved by a young collection, the reference becomes
// stale.
//
// * A stale reference to an eagerly reclaimed humongous object. If a
// humongous object is recorded and then reclaimed, the reference
// becomes stale.
//
// The stale reference cases are implicitly handled by the NTAMS
// comparison. Because of the possibility of stale references, buffer
// processing must be somewhat circumspect and not assume entries
// in an unfiltered buffer refer to valid objects.
inline bool requires_marking(const void* entry, G1CollectedHeap* heap) {
// Includes rejection of NULL pointers.
assert(heap->is_in_reserved(entry),
"Non-heap pointer in SATB buffer: " PTR_FORMAT, p2i(entry));
HeapRegion* region = heap->heap_region_containing(entry);
assert(region != NULL, "No region for " PTR_FORMAT, p2i(entry));
if (entry >= region->next_top_at_mark_start()) {
return false;
}
assert(((oop)entry)->is_oop(true /* ignore mark word */),
"Invalid oop in SATB buffer: " PTR_FORMAT, p2i(entry));
return true;
}
inline bool retain_entry(const void* entry, G1CollectedHeap* heap) {
return requires_marking(entry, heap) && !heap->isMarkedNext((oop)entry);
}
// This method removes entries from a SATB buffer that will not be
// useful to the concurrent marking threads. Entries are retained if
// they require marking and are not already marked. Retained entries
// are compacted toward the top of the buffer.
void SATBMarkQueue::filter() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
void** buf = _buf;
if (buf == NULL) {
// nothing to do
return;
}
// Two-fingered compaction toward the end.
void** src = &buf[index()];
void** dst = &buf[capacity()];
assert(src <= dst, "invariant");
for ( ; src < dst; ++src) {
// Search low to high for an entry to keep.
void* entry = *src;
if (retain_entry(entry, g1h)) {
// Found keeper. Search high to low for an entry to discard.
while (src < --dst) {
if (!retain_entry(*dst, g1h)) {
*dst = entry; // Replace discard with keeper.
break;
}
}
// If discard search failed (src == dst), the outer loop will also end.
}
}
// dst points to the lowest retained entry, or the end of the buffer
// if all the entries were filtered out.
set_index(dst - buf);
}
// This method will first apply the above filtering to the buffer. If
// post-filtering a large enough chunk of the buffer has been cleared
// we can re-use the buffer (instead of enqueueing it) and we can just
// allow the mutator to carry on executing using the same buffer
// instead of replacing it.
bool SATBMarkQueue::should_enqueue_buffer() {
assert(_lock == NULL || _lock->owned_by_self(),
"we should have taken the lock before calling this");
// If G1SATBBufferEnqueueingThresholdPercent == 0 we could skip filtering.
// This method should only be called if there is a non-NULL buffer
// that is full.
assert(index() == 0, "pre-condition");
assert(_buf != NULL, "pre-condition");
filter();
size_t cap = capacity();
size_t percent_used = ((cap - index()) * 100) / cap;
bool should_enqueue = percent_used > G1SATBBufferEnqueueingThresholdPercent;
return should_enqueue;
}
void SATBMarkQueue::apply_closure_and_empty(SATBBufferClosure* cl) {
assert(SafepointSynchronize::is_at_safepoint(),
"SATB queues must only be processed at safepoints");
if (_buf != NULL) {
cl->do_buffer(&_buf[index()], size());
reset();
}
}
#ifndef PRODUCT
// Helpful for debugging
static void print_satb_buffer(const char* name,
void** buf,
size_t index,
size_t capacity) {
tty->print_cr(" SATB BUFFER [%s] buf: " PTR_FORMAT " index: " SIZE_FORMAT
" capacity: " SIZE_FORMAT,
name, p2i(buf), index, capacity);
}
void SATBMarkQueue::print(const char* name) {
print_satb_buffer(name, _buf, index(), capacity());
}
#endif // PRODUCT
SATBMarkQueueSet::SATBMarkQueueSet() :
PtrQueueSet(),
_shared_satb_queue(this, true /* permanent */) { }
void SATBMarkQueueSet::initialize(Monitor* cbl_mon, Mutex* fl_lock,
int process_completed_threshold,
Mutex* lock) {
PtrQueueSet::initialize(cbl_mon, fl_lock, process_completed_threshold, -1);
_shared_satb_queue.set_lock(lock);
}
void SATBMarkQueueSet::handle_zero_index_for_thread(JavaThread* t) {
t->satb_mark_queue().handle_zero_index();
}
#ifdef ASSERT
void SATBMarkQueueSet::dump_active_states(bool expected_active) {
log_error(gc, verify)("Expected SATB active state: %s", expected_active ? "ACTIVE" : "INACTIVE");
log_error(gc, verify)("Actual SATB active states:");
log_error(gc, verify)(" Queue set: %s", is_active() ? "ACTIVE" : "INACTIVE");
for (JavaThread* t = Threads::first(); t; t = t->next()) {
log_error(gc, verify)(" Thread \"%s\" queue: %s", t->name(), t->satb_mark_queue().is_active() ? "ACTIVE" : "INACTIVE");
}
log_error(gc, verify)(" Shared queue: %s", shared_satb_queue()->is_active() ? "ACTIVE" : "INACTIVE");
}
void SATBMarkQueueSet::verify_active_states(bool expected_active) {
// Verify queue set state
if (is_active() != expected_active) {
dump_active_states(expected_active);
guarantee(false, "SATB queue set has an unexpected active state");
}
// Verify thread queue states
for (JavaThread* t = Threads::first(); t; t = t->next()) {
if (t->satb_mark_queue().is_active() != expected_active) {
dump_active_states(expected_active);
guarantee(false, "Thread SATB queue has an unexpected active state");
}
}
// Verify shared queue state
if (shared_satb_queue()->is_active() != expected_active) {
dump_active_states(expected_active);
guarantee(false, "Shared SATB queue has an unexpected active state");
}
}
#endif // ASSERT
void SATBMarkQueueSet::set_active_all_threads(bool active, bool expected_active) {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
#ifdef ASSERT
verify_active_states(expected_active);
#endif // ASSERT
_all_active = active;
for (JavaThread* t = Threads::first(); t; t = t->next()) {
t->satb_mark_queue().set_active(active);
}
shared_satb_queue()->set_active(active);
}
void SATBMarkQueueSet::filter_thread_buffers() {
for(JavaThread* t = Threads::first(); t; t = t->next()) {
t->satb_mark_queue().filter();
}
shared_satb_queue()->filter();
}
bool SATBMarkQueueSet::apply_closure_to_completed_buffer(SATBBufferClosure* cl) {
BufferNode* nd = NULL;
{
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (_completed_buffers_head != NULL) {
nd = _completed_buffers_head;
_completed_buffers_head = nd->next();
if (_completed_buffers_head == NULL) _completed_buffers_tail = NULL;
_n_completed_buffers--;
if (_n_completed_buffers == 0) _process_completed = false;
}
}
if (nd != NULL) {
void **buf = BufferNode::make_buffer_from_node(nd);
size_t index = nd->index();
size_t size = buffer_size();
assert(index <= size, "invariant");
cl->do_buffer(buf + index, size - index);
deallocate_buffer(nd);
return true;
} else {
return false;
}
}
#ifndef PRODUCT
// Helpful for debugging
#define SATB_PRINTER_BUFFER_SIZE 256
void SATBMarkQueueSet::print_all(const char* msg) {
char buffer[SATB_PRINTER_BUFFER_SIZE];
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
tty->cr();
tty->print_cr("SATB BUFFERS [%s]", msg);
BufferNode* nd = _completed_buffers_head;
int i = 0;
while (nd != NULL) {
void** buf = BufferNode::make_buffer_from_node(nd);
jio_snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Enqueued: %d", i);
print_satb_buffer(buffer, buf, nd->index(), buffer_size());
nd = nd->next();
i += 1;
}
for (JavaThread* t = Threads::first(); t; t = t->next()) {
jio_snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Thread: %s", t->name());
t->satb_mark_queue().print(buffer);
}
shared_satb_queue()->print("Shared");
tty->cr();
}
#endif // PRODUCT
void SATBMarkQueueSet::abandon_partial_marking() {
BufferNode* buffers_to_delete = NULL;
{
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
while (_completed_buffers_head != NULL) {
BufferNode* nd = _completed_buffers_head;
_completed_buffers_head = nd->next();
nd->set_next(buffers_to_delete);
buffers_to_delete = nd;
}
_completed_buffers_tail = NULL;
_n_completed_buffers = 0;
DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked());
}
while (buffers_to_delete != NULL) {
BufferNode* nd = buffers_to_delete;
buffers_to_delete = nd->next();
deallocate_buffer(nd);
}
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
// So we can safely manipulate these queues.
for (JavaThread* t = Threads::first(); t; t = t->next()) {
t->satb_mark_queue().reset();
}
shared_satb_queue()->reset();
}