blob: 7e77e2396f838634fa89f2c9e639bba69b597887 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "NativeBN"
#include "JNIHelp.h"
#include "JniConstants.h"
#include "JniException.h"
#include "ScopedPrimitiveArray.h"
#include "ScopedUtfChars.h"
#include "jni.h"
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <stdio.h>
#include <memory>
#if defined(OPENSSL_IS_BORINGSSL)
/* BoringSSL no longer exports |bn_check_top|. */
static void bn_check_top(const BIGNUM* bn) {
/* This asserts that |bn->top| (which contains the number of elements of
* |bn->d| that are valid) is minimal. In other words, that there aren't
* superfluous zeros. */
if (bn != NULL && bn->top != 0 && bn->d[bn->top-1] == 0) {
abort();
}
}
#endif
struct BN_CTX_Deleter {
void operator()(BN_CTX* p) const {
BN_CTX_free(p);
}
};
typedef std::unique_ptr<BN_CTX, BN_CTX_Deleter> Unique_BN_CTX;
static BIGNUM* toBigNum(jlong address) {
return reinterpret_cast<BIGNUM*>(static_cast<uintptr_t>(address));
}
static bool throwExceptionIfNecessary(JNIEnv* env) {
long error = ERR_get_error();
if (error == 0) {
return false;
}
char message[256];
ERR_error_string_n(error, message, sizeof(message));
int reason = ERR_GET_REASON(error);
if (reason == BN_R_DIV_BY_ZERO) {
jniThrowException(env, "java/lang/ArithmeticException", "BigInteger division by zero");
} else if (reason == BN_R_NO_INVERSE) {
jniThrowException(env, "java/lang/ArithmeticException", "BigInteger not invertible");
} else if (reason == ERR_R_MALLOC_FAILURE) {
jniThrowOutOfMemoryError(env, message);
} else {
jniThrowException(env, "java/lang/ArithmeticException", message);
}
return true;
}
static int isValidHandle(JNIEnv* env, jlong handle, const char* message) {
if (handle == 0) {
jniThrowNullPointerException(env, message);
return JNI_FALSE;
}
return JNI_TRUE;
}
static int oneValidHandle(JNIEnv* env, jlong a) {
return isValidHandle(env, a, "Mandatory handle (first) passed as null");
}
static int twoValidHandles(JNIEnv* env, jlong a, jlong b) {
if (!oneValidHandle(env, a)) return JNI_FALSE;
return isValidHandle(env, b, "Mandatory handle (second) passed as null");
}
static int threeValidHandles(JNIEnv* env, jlong a, jlong b, jlong c) {
if (!twoValidHandles(env, a, b)) return JNI_FALSE;
return isValidHandle(env, c, "Mandatory handle (third) passed as null");
}
static int fourValidHandles(JNIEnv* env, jlong a, jlong b, jlong c, jlong d) {
if (!threeValidHandles(env, a, b, c)) return JNI_FALSE;
return isValidHandle(env, d, "Mandatory handle (fourth) passed as null");
}
static jlong NativeBN_BN_new(JNIEnv* env, jclass) {
jlong result = static_cast<jlong>(reinterpret_cast<uintptr_t>(BN_new()));
throwExceptionIfNecessary(env);
return result;
}
static void NativeBN_BN_free(JNIEnv* env, jclass, jlong a) {
if (!oneValidHandle(env, a)) return;
BN_free(toBigNum(a));
}
static int NativeBN_BN_cmp(JNIEnv* env, jclass, jlong a, jlong b) {
if (!twoValidHandles(env, a, b)) return 1;
return BN_cmp(toBigNum(a), toBigNum(b));
}
static void NativeBN_BN_copy(JNIEnv* env, jclass, jlong to, jlong from) {
if (!twoValidHandles(env, to, from)) return;
BN_copy(toBigNum(to), toBigNum(from));
throwExceptionIfNecessary(env);
}
static void NativeBN_putULongInt(JNIEnv* env, jclass, jlong a0, jlong java_dw, jboolean neg) {
if (!oneValidHandle(env, a0)) return;
uint64_t dw = java_dw;
BIGNUM* a = toBigNum(a0);
int ok;
static_assert(sizeof(dw) == sizeof(BN_ULONG) ||
sizeof(dw) == 2*sizeof(BN_ULONG), "Unknown BN configuration");
if (sizeof(dw) == sizeof(BN_ULONG)) {
ok = BN_set_word(a, dw);
} else if (sizeof(dw) == 2 * sizeof(BN_ULONG)) {
ok = (bn_wexpand(a, 2) != NULL);
if (ok) {
a->d[0] = dw;
a->d[1] = dw >> 32;
a->top = 2;
bn_correct_top(a);
}
}
BN_set_negative(a, neg);
if (!ok) {
throwExceptionIfNecessary(env);
}
}
static void NativeBN_putLongInt(JNIEnv* env, jclass cls, jlong a, jlong dw) {
if (dw >= 0) {
NativeBN_putULongInt(env, cls, a, dw, JNI_FALSE);
} else {
NativeBN_putULongInt(env, cls, a, -dw, JNI_TRUE);
}
}
static int NativeBN_BN_dec2bn(JNIEnv* env, jclass, jlong a0, jstring str) {
if (!oneValidHandle(env, a0)) return -1;
ScopedUtfChars chars(env, str);
if (chars.c_str() == NULL) {
return -1;
}
BIGNUM* a = toBigNum(a0);
int result = BN_dec2bn(&a, chars.c_str());
throwExceptionIfNecessary(env);
return result;
}
static int NativeBN_BN_hex2bn(JNIEnv* env, jclass, jlong a0, jstring str) {
if (!oneValidHandle(env, a0)) return -1;
ScopedUtfChars chars(env, str);
if (chars.c_str() == NULL) {
return -1;
}
BIGNUM* a = toBigNum(a0);
int result = BN_hex2bn(&a, chars.c_str());
throwExceptionIfNecessary(env);
return result;
}
static void NativeBN_BN_bin2bn(JNIEnv* env, jclass, jbyteArray arr, int len, jboolean neg, jlong ret) {
if (!oneValidHandle(env, ret)) return;
ScopedByteArrayRO bytes(env, arr);
if (bytes.get() == NULL) {
return;
}
BN_bin2bn(reinterpret_cast<const unsigned char*>(bytes.get()), len, toBigNum(ret));
if (!throwExceptionIfNecessary(env) && neg) {
BN_set_negative(toBigNum(ret), true);
}
}
/**
* Note:
* This procedure directly writes the internal representation of BIGNUMs.
* We do so as there is no direct interface based on Little Endian Integer Arrays.
* Also note that the same representation is used in the Cordoba Java Implementation of BigIntegers,
* whereof certain functionality is still being used.
*/
static void NativeBN_litEndInts2bn(JNIEnv* env, jclass, jintArray arr, int len, jboolean neg, jlong ret0) {
if (!oneValidHandle(env, ret0)) return;
BIGNUM* ret = toBigNum(ret0);
bn_check_top(ret);
if (len > 0) {
ScopedIntArrayRO scopedArray(env, arr);
if (scopedArray.get() == NULL) {
return;
}
#ifdef __LP64__
const int wlen = (len + 1) / 2;
#else
const int wlen = len;
#endif
const unsigned int* tmpInts = reinterpret_cast<const unsigned int*>(scopedArray.get());
if ((tmpInts != NULL) && (bn_wexpand(ret, wlen) != NULL)) {
#ifdef __LP64__
if (len % 2) {
ret->d[wlen - 1] = tmpInts[--len];
}
if (len > 0) {
for (int i = len - 2; i >= 0; i -= 2) {
ret->d[i/2] = ((unsigned long long)tmpInts[i+1] << 32) | tmpInts[i];
}
}
#else
int i = len; do { i--; ret->d[i] = tmpInts[i]; } while (i > 0);
#endif
ret->top = wlen;
ret->neg = neg;
// need to call this due to clear byte at top if avoiding
// having the top bit set (-ve number)
// Basically get rid of top zero ints:
bn_correct_top(ret);
} else {
throwExceptionIfNecessary(env);
}
} else { // (len = 0) means value = 0 and sign will be 0, too.
ret->top = 0;
}
}
#ifdef __LP64__
#define BYTES2ULONG(bytes, k) \
((bytes[k + 7] & 0xffULL) | (bytes[k + 6] & 0xffULL) << 8 | (bytes[k + 5] & 0xffULL) << 16 | (bytes[k + 4] & 0xffULL) << 24 | \
(bytes[k + 3] & 0xffULL) << 32 | (bytes[k + 2] & 0xffULL) << 40 | (bytes[k + 1] & 0xffULL) << 48 | (bytes[k + 0] & 0xffULL) << 56)
#else
#define BYTES2ULONG(bytes, k) \
((bytes[k + 3] & 0xff) | (bytes[k + 2] & 0xff) << 8 | (bytes[k + 1] & 0xff) << 16 | (bytes[k + 0] & 0xff) << 24)
#endif
static void negBigEndianBytes2bn(JNIEnv*, jclass, const unsigned char* bytes, int bytesLen, jlong ret0) {
BIGNUM* ret = toBigNum(ret0);
bn_check_top(ret);
// FIXME: assert bytesLen > 0
int wLen = (bytesLen + sizeof(BN_ULONG) - 1) / sizeof(BN_ULONG);
int firstNonzeroDigit = -2;
if (bn_wexpand(ret, wLen) != NULL) {
BN_ULONG* d = ret->d;
BN_ULONG di;
ret->top = wLen;
int highBytes = bytesLen % sizeof(BN_ULONG);
int k = bytesLen;
// Put bytes to the int array starting from the end of the byte array
int i = 0;
while (k > highBytes) {
k -= sizeof(BN_ULONG);
di = BYTES2ULONG(bytes, k);
if (di != 0) {
d[i] = -di;
firstNonzeroDigit = i;
i++;
while (k > highBytes) {
k -= sizeof(BN_ULONG);
d[i] = ~BYTES2ULONG(bytes, k);
i++;
}
break;
} else {
d[i] = 0;
i++;
}
}
if (highBytes != 0) {
di = -1;
// Put the first bytes in the highest element of the int array
if (firstNonzeroDigit != -2) {
for (k = 0; k < highBytes; k++) {
di = (di << 8) | (bytes[k] & 0xFF);
}
d[i] = ~di;
} else {
for (k = 0; k < highBytes; k++) {
di = (di << 8) | (bytes[k] & 0xFF);
}
d[i] = -di;
}
}
// The top may have superfluous zeros, so fix it.
bn_correct_top(ret);
}
}
static void NativeBN_twosComp2bn(JNIEnv* env, jclass cls, jbyteArray arr, int bytesLen, jlong ret0) {
if (!oneValidHandle(env, ret0)) return;
BIGNUM* ret = toBigNum(ret0);
ScopedByteArrayRO bytes(env, arr);
if (bytes.get() == NULL) {
return;
}
const unsigned char* s = reinterpret_cast<const unsigned char*>(bytes.get());
if ((bytes[0] & 0X80) == 0) { // Positive value!
//
// We can use the existing BN implementation for unsigned big endian bytes:
//
BN_bin2bn(s, bytesLen, ret);
BN_set_negative(ret, false);
} else { // Negative value!
//
// We need to apply two's complement:
//
negBigEndianBytes2bn(env, cls, s, bytesLen, ret0);
BN_set_negative(ret, true);
}
throwExceptionIfNecessary(env);
}
static jlong NativeBN_longInt(JNIEnv* env, jclass, jlong a0) {
if (!oneValidHandle(env, a0)) return -1;
BIGNUM* a = toBigNum(a0);
bn_check_top(a);
int wLen = a->top;
if (wLen == 0) {
return 0;
}
#ifdef __LP64__
jlong result = a->d[0];
#else
jlong result = static_cast<jlong>(a->d[0]) & 0xffffffff;
if (wLen > 1) {
result |= static_cast<jlong>(a->d[1]) << 32;
}
#endif
return a->neg ? -result : result;
}
static char* leadingZerosTrimmed(char* s) {
char* p = s;
if (*p == '-') {
p++;
while ((*p == '0') && (*(p + 1) != 0)) { p++; }
p--;
*p = '-';
} else {
while ((*p == '0') && (*(p + 1) != 0)) { p++; }
}
return p;
}
static jstring NativeBN_BN_bn2dec(JNIEnv* env, jclass, jlong a) {
if (!oneValidHandle(env, a)) return NULL;
char* tmpStr = BN_bn2dec(toBigNum(a));
if (tmpStr == NULL) {
return NULL;
}
char* retStr = leadingZerosTrimmed(tmpStr);
jstring returnJString = env->NewStringUTF(retStr);
OPENSSL_free(tmpStr);
return returnJString;
}
static jstring NativeBN_BN_bn2hex(JNIEnv* env, jclass, jlong a) {
if (!oneValidHandle(env, a)) return NULL;
char* tmpStr = BN_bn2hex(toBigNum(a));
if (tmpStr == NULL) {
return NULL;
}
char* retStr = leadingZerosTrimmed(tmpStr);
jstring returnJString = env->NewStringUTF(retStr);
OPENSSL_free(tmpStr);
return returnJString;
}
static jbyteArray NativeBN_BN_bn2bin(JNIEnv* env, jclass, jlong a0) {
if (!oneValidHandle(env, a0)) return NULL;
BIGNUM* a = toBigNum(a0);
jbyteArray result = env->NewByteArray(BN_num_bytes(a));
if (result == NULL) {
return NULL;
}
ScopedByteArrayRW bytes(env, result);
if (bytes.get() == NULL) {
return NULL;
}
BN_bn2bin(a, reinterpret_cast<unsigned char*>(bytes.get()));
return result;
}
static jintArray NativeBN_bn2litEndInts(JNIEnv* env, jclass, jlong a0) {
if (!oneValidHandle(env, a0)) return NULL;
BIGNUM* a = toBigNum(a0);
bn_check_top(a);
int wLen = a->top;
if (wLen == 0) {
return NULL;
}
jintArray result = env->NewIntArray(wLen * sizeof(BN_ULONG)/sizeof(unsigned int));
if (result == NULL) {
return NULL;
}
ScopedIntArrayRW ints(env, result);
if (ints.get() == NULL) {
return NULL;
}
unsigned int* uints = reinterpret_cast<unsigned int*>(ints.get());
if (uints == NULL) {
return NULL;
}
#ifdef __LP64__
int i = wLen; do { i--; uints[i*2+1] = a->d[i] >> 32; uints[i*2] = a->d[i]; } while (i > 0);
#else
int i = wLen; do { i--; uints[i] = a->d[i]; } while (i > 0);
#endif
return result;
}
static int NativeBN_sign(JNIEnv* env, jclass, jlong a) {
if (!oneValidHandle(env, a)) return -2;
if (BN_is_zero(toBigNum(a))) {
return 0;
} else if (BN_is_negative(toBigNum(a))) {
return -1;
}
return 1;
}
static void NativeBN_BN_set_negative(JNIEnv* env, jclass, jlong b, int n) {
if (!oneValidHandle(env, b)) return;
BN_set_negative(toBigNum(b), n);
}
static int NativeBN_bitLength(JNIEnv* env, jclass, jlong a0) {
if (!oneValidHandle(env, a0)) return JNI_FALSE;
BIGNUM* a = toBigNum(a0);
bn_check_top(a);
int wLen = a->top;
if (wLen == 0) return 0;
BN_ULONG* d = a->d;
int i = wLen - 1;
BN_ULONG msd = d[i]; // most significant digit
if (a->neg) {
// Handle negative values correctly:
// i.e. decrement the msd if all other digits are 0:
// while ((i > 0) && (d[i] != 0)) { i--; }
do { i--; } while (!((i < 0) || (d[i] != 0)));
if (i < 0) msd--; // Only if all lower significant digits are 0 we decrement the most significant one.
}
return (wLen - 1) * sizeof(BN_ULONG) * 8 + BN_num_bits_word(msd);
}
static jboolean NativeBN_BN_is_bit_set(JNIEnv* env, jclass, jlong a, int n) {
if (!oneValidHandle(env, a)) return JNI_FALSE;
return BN_is_bit_set(toBigNum(a), n);
}
static void NativeBN_BN_shift(JNIEnv* env, jclass, jlong r, jlong a, int n) {
if (!twoValidHandles(env, r, a)) return;
if (n >= 0) {
BN_lshift(toBigNum(r), toBigNum(a), n);
} else {
BN_rshift(toBigNum(r), toBigNum(a), -n);
}
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_add_word(JNIEnv* env, jclass, jlong a, BN_ULONG w) {
if (!oneValidHandle(env, a)) return;
BN_add_word(toBigNum(a), w);
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_mul_word(JNIEnv* env, jclass, jlong a, BN_ULONG w) {
if (!oneValidHandle(env, a)) return;
BN_mul_word(toBigNum(a), w);
throwExceptionIfNecessary(env);
}
static BN_ULONG NativeBN_BN_mod_word(JNIEnv* env, jclass, jlong a, BN_ULONG w) {
if (!oneValidHandle(env, a)) return 0;
int result = BN_mod_word(toBigNum(a), w);
throwExceptionIfNecessary(env);
return result;
}
static void NativeBN_BN_add(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
if (!threeValidHandles(env, r, a, b)) return;
BN_add(toBigNum(r), toBigNum(a), toBigNum(b));
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_sub(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
if (!threeValidHandles(env, r, a, b)) return;
BN_sub(toBigNum(r), toBigNum(a), toBigNum(b));
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_gcd(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
if (!threeValidHandles(env, r, a, b)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_gcd(toBigNum(r), toBigNum(a), toBigNum(b), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_mul(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
if (!threeValidHandles(env, r, a, b)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_mul(toBigNum(r), toBigNum(a), toBigNum(b), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_exp(JNIEnv* env, jclass, jlong r, jlong a, jlong p) {
if (!threeValidHandles(env, r, a, p)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_exp(toBigNum(r), toBigNum(a), toBigNum(p), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_div(JNIEnv* env, jclass, jlong dv, jlong rem, jlong m, jlong d) {
if (!fourValidHandles(env, (rem ? rem : dv), (dv ? dv : rem), m, d)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_div(toBigNum(dv), toBigNum(rem), toBigNum(m), toBigNum(d), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_nnmod(JNIEnv* env, jclass, jlong r, jlong a, jlong m) {
if (!threeValidHandles(env, r, a, m)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_nnmod(toBigNum(r), toBigNum(a), toBigNum(m), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_mod_exp(JNIEnv* env, jclass, jlong r, jlong a, jlong p, jlong m) {
if (!fourValidHandles(env, r, a, p, m)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_mod_exp(toBigNum(r), toBigNum(a), toBigNum(p), toBigNum(m), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_mod_inverse(JNIEnv* env, jclass, jlong ret, jlong a, jlong n) {
if (!threeValidHandles(env, ret, a, n)) return;
Unique_BN_CTX ctx(BN_CTX_new());
BN_mod_inverse(toBigNum(ret), toBigNum(a), toBigNum(n), ctx.get());
throwExceptionIfNecessary(env);
}
static void NativeBN_BN_generate_prime_ex(JNIEnv* env, jclass, jlong ret, int bits,
jboolean safe, jlong add, jlong rem, jlong cb) {
if (!oneValidHandle(env, ret)) return;
BN_generate_prime_ex(toBigNum(ret), bits, safe, toBigNum(add), toBigNum(rem),
reinterpret_cast<BN_GENCB*>(cb));
throwExceptionIfNecessary(env);
}
static jboolean NativeBN_BN_is_prime_ex(JNIEnv* env, jclass, jlong p, int nchecks, jlong cb) {
if (!oneValidHandle(env, p)) return JNI_FALSE;
Unique_BN_CTX ctx(BN_CTX_new());
return BN_is_prime_ex(toBigNum(p), nchecks, ctx.get(), reinterpret_cast<BN_GENCB*>(cb));
}
static JNINativeMethod gMethods[] = {
NATIVE_METHOD(NativeBN, BN_add, "(JJJ)V"),
NATIVE_METHOD(NativeBN, BN_add_word, "(JI)V"),
NATIVE_METHOD(NativeBN, BN_bin2bn, "([BIZJ)V"),
NATIVE_METHOD(NativeBN, BN_bn2bin, "(J)[B"),
NATIVE_METHOD(NativeBN, BN_bn2dec, "(J)Ljava/lang/String;"),
NATIVE_METHOD(NativeBN, BN_bn2hex, "(J)Ljava/lang/String;"),
NATIVE_METHOD(NativeBN, BN_cmp, "(JJ)I"),
NATIVE_METHOD(NativeBN, BN_copy, "(JJ)V"),
NATIVE_METHOD(NativeBN, BN_dec2bn, "(JLjava/lang/String;)I"),
NATIVE_METHOD(NativeBN, BN_div, "(JJJJ)V"),
NATIVE_METHOD(NativeBN, BN_exp, "(JJJ)V"),
NATIVE_METHOD(NativeBN, BN_free, "(J)V"),
NATIVE_METHOD(NativeBN, BN_gcd, "(JJJ)V"),
NATIVE_METHOD(NativeBN, BN_generate_prime_ex, "(JIZJJJ)V"),
NATIVE_METHOD(NativeBN, BN_hex2bn, "(JLjava/lang/String;)I"),
NATIVE_METHOD(NativeBN, BN_is_bit_set, "(JI)Z"),
NATIVE_METHOD(NativeBN, BN_is_prime_ex, "(JIJ)Z"),
NATIVE_METHOD(NativeBN, BN_mod_exp, "(JJJJ)V"),
NATIVE_METHOD(NativeBN, BN_mod_inverse, "(JJJ)V"),
NATIVE_METHOD(NativeBN, BN_mod_word, "(JI)I"),
NATIVE_METHOD(NativeBN, BN_mul, "(JJJ)V"),
NATIVE_METHOD(NativeBN, BN_mul_word, "(JI)V"),
NATIVE_METHOD(NativeBN, BN_new, "()J"),
NATIVE_METHOD(NativeBN, BN_nnmod, "(JJJ)V"),
NATIVE_METHOD(NativeBN, BN_set_negative, "(JI)V"),
NATIVE_METHOD(NativeBN, BN_shift, "(JJI)V"),
NATIVE_METHOD(NativeBN, BN_sub, "(JJJ)V"),
NATIVE_METHOD(NativeBN, bitLength, "(J)I"),
NATIVE_METHOD(NativeBN, bn2litEndInts, "(J)[I"),
NATIVE_METHOD(NativeBN, litEndInts2bn, "([IIZJ)V"),
NATIVE_METHOD(NativeBN, longInt, "(J)J"),
NATIVE_METHOD(NativeBN, putLongInt, "(JJ)V"),
NATIVE_METHOD(NativeBN, putULongInt, "(JJZ)V"),
NATIVE_METHOD(NativeBN, sign, "(J)I"),
NATIVE_METHOD(NativeBN, twosComp2bn, "([BIJ)V"),
};
void register_java_math_NativeBN(JNIEnv* env) {
jniRegisterNativeMethods(env, "java/math/NativeBN", gMethods, NELEM(gMethods));
}