blob: b028e6a9c9bceca9ca59b414ff746b30def1cd28 [file] [log] [blame]
/*
* Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "ci/ciUtilities.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/barrierSetNMethod.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/universe.hpp"
#include "nativeInst_x86.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#if INCLUDE_ZGC
#include "gc/z/zThreadLocalData.hpp"
#endif
// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp
#define __ _masm->
#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
#define a__ ((Assembler*)_masm)->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
// Stub Code definitions
class StubGenerator: public StubCodeGenerator {
private:
#ifdef PRODUCT
#define inc_counter_np(counter) ((void)0)
#else
void inc_counter_np_(int& counter) {
// This can destroy rscratch1 if counter is far from the code cache
__ incrementl(ExternalAddress((address)&counter));
}
#define inc_counter_np(counter) \
BLOCK_COMMENT("inc_counter " #counter); \
inc_counter_np_(counter);
#endif
// Call stubs are used to call Java from C
//
// Linux Arguments:
// c_rarg0: call wrapper address address
// c_rarg1: result address
// c_rarg2: result type BasicType
// c_rarg3: method Method*
// c_rarg4: (interpreter) entry point address
// c_rarg5: parameters intptr_t*
// 16(rbp): parameter size (in words) int
// 24(rbp): thread Thread*
//
// [ return_from_Java ] <--- rsp
// [ argument word n ]
// ...
// -12 [ argument word 1 ]
// -11 [ saved r15 ] <--- rsp_after_call
// -10 [ saved r14 ]
// -9 [ saved r13 ]
// -8 [ saved r12 ]
// -7 [ saved rbx ]
// -6 [ call wrapper ]
// -5 [ result ]
// -4 [ result type ]
// -3 [ method ]
// -2 [ entry point ]
// -1 [ parameters ]
// 0 [ saved rbp ] <--- rbp
// 1 [ return address ]
// 2 [ parameter size ]
// 3 [ thread ]
//
// Windows Arguments:
// c_rarg0: call wrapper address address
// c_rarg1: result address
// c_rarg2: result type BasicType
// c_rarg3: method Method*
// 48(rbp): (interpreter) entry point address
// 56(rbp): parameters intptr_t*
// 64(rbp): parameter size (in words) int
// 72(rbp): thread Thread*
//
// [ return_from_Java ] <--- rsp
// [ argument word n ]
// ...
// -60 [ argument word 1 ]
// -59 [ saved xmm31 ] <--- rsp after_call
// [ saved xmm16-xmm30 ] (EVEX enabled, else the space is blank)
// -27 [ saved xmm15 ]
// [ saved xmm7-xmm14 ]
// -9 [ saved xmm6 ] (each xmm register takes 2 slots)
// -7 [ saved r15 ]
// -6 [ saved r14 ]
// -5 [ saved r13 ]
// -4 [ saved r12 ]
// -3 [ saved rdi ]
// -2 [ saved rsi ]
// -1 [ saved rbx ]
// 0 [ saved rbp ] <--- rbp
// 1 [ return address ]
// 2 [ call wrapper ]
// 3 [ result ]
// 4 [ result type ]
// 5 [ method ]
// 6 [ entry point ]
// 7 [ parameters ]
// 8 [ parameter size ]
// 9 [ thread ]
//
// Windows reserves the callers stack space for arguments 1-4.
// We spill c_rarg0-c_rarg3 to this space.
// Call stub stack layout word offsets from rbp
enum call_stub_layout {
#ifdef _WIN64
xmm_save_first = 6, // save from xmm6
xmm_save_last = 31, // to xmm31
xmm_save_base = -9,
rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
r15_off = -7,
r14_off = -6,
r13_off = -5,
r12_off = -4,
rdi_off = -3,
rsi_off = -2,
rbx_off = -1,
rbp_off = 0,
retaddr_off = 1,
call_wrapper_off = 2,
result_off = 3,
result_type_off = 4,
method_off = 5,
entry_point_off = 6,
parameters_off = 7,
parameter_size_off = 8,
thread_off = 9
#else
rsp_after_call_off = -12,
mxcsr_off = rsp_after_call_off,
r15_off = -11,
r14_off = -10,
r13_off = -9,
r12_off = -8,
rbx_off = -7,
call_wrapper_off = -6,
result_off = -5,
result_type_off = -4,
method_off = -3,
entry_point_off = -2,
parameters_off = -1,
rbp_off = 0,
retaddr_off = 1,
parameter_size_off = 2,
thread_off = 3
#endif
};
#ifdef _WIN64
Address xmm_save(int reg) {
assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
}
#endif
address generate_call_stub(address& return_address) {
assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
(int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
"adjust this code");
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ pc();
// same as in generate_catch_exception()!
const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
const Address call_wrapper (rbp, call_wrapper_off * wordSize);
const Address result (rbp, result_off * wordSize);
const Address result_type (rbp, result_type_off * wordSize);
const Address method (rbp, method_off * wordSize);
const Address entry_point (rbp, entry_point_off * wordSize);
const Address parameters (rbp, parameters_off * wordSize);
const Address parameter_size(rbp, parameter_size_off * wordSize);
// same as in generate_catch_exception()!
const Address thread (rbp, thread_off * wordSize);
const Address r15_save(rbp, r15_off * wordSize);
const Address r14_save(rbp, r14_off * wordSize);
const Address r13_save(rbp, r13_off * wordSize);
const Address r12_save(rbp, r12_off * wordSize);
const Address rbx_save(rbp, rbx_off * wordSize);
// stub code
__ enter();
__ subptr(rsp, -rsp_after_call_off * wordSize);
// save register parameters
#ifndef _WIN64
__ movptr(parameters, c_rarg5); // parameters
__ movptr(entry_point, c_rarg4); // entry_point
#endif
__ movptr(method, c_rarg3); // method
__ movl(result_type, c_rarg2); // result type
__ movptr(result, c_rarg1); // result
__ movptr(call_wrapper, c_rarg0); // call wrapper
// save regs belonging to calling function
__ movptr(rbx_save, rbx);
__ movptr(r12_save, r12);
__ movptr(r13_save, r13);
__ movptr(r14_save, r14);
__ movptr(r15_save, r15);
#ifdef _WIN64
int last_reg = 15;
if (UseAVX > 2) {
last_reg = 31;
}
if (VM_Version::supports_evex()) {
for (int i = xmm_save_first; i <= last_reg; i++) {
__ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0);
}
} else {
for (int i = xmm_save_first; i <= last_reg; i++) {
__ movdqu(xmm_save(i), as_XMMRegister(i));
}
}
const Address rdi_save(rbp, rdi_off * wordSize);
const Address rsi_save(rbp, rsi_off * wordSize);
__ movptr(rsi_save, rsi);
__ movptr(rdi_save, rdi);
#else
const Address mxcsr_save(rbp, mxcsr_off * wordSize);
{
Label skip_ldmx;
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK); // Only check control and mask bits
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, skip_ldmx);
__ ldmxcsr(mxcsr_std);
__ bind(skip_ldmx);
}
#endif
// Load up thread register
__ movptr(r15_thread, thread);
__ reinit_heapbase();
#ifdef ASSERT
// make sure we have no pending exceptions
{
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("StubRoutines::call_stub: entered with pending exception");
__ bind(L);
}
#endif
// pass parameters if any
BLOCK_COMMENT("pass parameters if any");
Label parameters_done;
__ movl(c_rarg3, parameter_size);
__ testl(c_rarg3, c_rarg3);
__ jcc(Assembler::zero, parameters_done);
Label loop;
__ movptr(c_rarg2, parameters); // parameter pointer
__ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
__ BIND(loop);
__ movptr(rax, Address(c_rarg2, 0));// get parameter
__ addptr(c_rarg2, wordSize); // advance to next parameter
__ decrementl(c_rarg1); // decrement counter
__ push(rax); // pass parameter
__ jcc(Assembler::notZero, loop);
// call Java function
__ BIND(parameters_done);
__ movptr(rbx, method); // get Method*
__ movptr(c_rarg1, entry_point); // get entry_point
__ mov(r13, rsp); // set sender sp
BLOCK_COMMENT("call Java function");
__ call(c_rarg1);
BLOCK_COMMENT("call_stub_return_address:");
return_address = __ pc();
// store result depending on type (everything that is not
// T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
__ movptr(c_rarg0, result);
Label is_long, is_float, is_double, exit;
__ movl(c_rarg1, result_type);
__ cmpl(c_rarg1, T_OBJECT);
__ jcc(Assembler::equal, is_long);
__ cmpl(c_rarg1, T_LONG);
__ jcc(Assembler::equal, is_long);
__ cmpl(c_rarg1, T_FLOAT);
__ jcc(Assembler::equal, is_float);
__ cmpl(c_rarg1, T_DOUBLE);
__ jcc(Assembler::equal, is_double);
// handle T_INT case
__ movl(Address(c_rarg0, 0), rax);
__ BIND(exit);
// pop parameters
__ lea(rsp, rsp_after_call);
#ifdef ASSERT
// verify that threads correspond
{
Label L1, L2, L3;
__ cmpptr(r15_thread, thread);
__ jcc(Assembler::equal, L1);
__ stop("StubRoutines::call_stub: r15_thread is corrupted");
__ bind(L1);
__ get_thread(rbx);
__ cmpptr(r15_thread, thread);
__ jcc(Assembler::equal, L2);
__ stop("StubRoutines::call_stub: r15_thread is modified by call");
__ bind(L2);
__ cmpptr(r15_thread, rbx);
__ jcc(Assembler::equal, L3);
__ stop("StubRoutines::call_stub: threads must correspond");
__ bind(L3);
}
#endif
// restore regs belonging to calling function
#ifdef _WIN64
// emit the restores for xmm regs
if (VM_Version::supports_evex()) {
for (int i = xmm_save_first; i <= last_reg; i++) {
__ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0);
}
} else {
for (int i = xmm_save_first; i <= last_reg; i++) {
__ movdqu(as_XMMRegister(i), xmm_save(i));
}
}
#endif
__ movptr(r15, r15_save);
__ movptr(r14, r14_save);
__ movptr(r13, r13_save);
__ movptr(r12, r12_save);
__ movptr(rbx, rbx_save);
#ifdef _WIN64
__ movptr(rdi, rdi_save);
__ movptr(rsi, rsi_save);
#else
__ ldmxcsr(mxcsr_save);
#endif
// restore rsp
__ addptr(rsp, -rsp_after_call_off * wordSize);
// return
__ vzeroupper();
__ pop(rbp);
__ ret(0);
// handle return types different from T_INT
__ BIND(is_long);
__ movq(Address(c_rarg0, 0), rax);
__ jmp(exit);
__ BIND(is_float);
__ movflt(Address(c_rarg0, 0), xmm0);
__ jmp(exit);
__ BIND(is_double);
__ movdbl(Address(c_rarg0, 0), xmm0);
__ jmp(exit);
return start;
}
// Return point for a Java call if there's an exception thrown in
// Java code. The exception is caught and transformed into a
// pending exception stored in JavaThread that can be tested from
// within the VM.
//
// Note: Usually the parameters are removed by the callee. In case
// of an exception crossing an activation frame boundary, that is
// not the case if the callee is compiled code => need to setup the
// rsp.
//
// rax: exception oop
address generate_catch_exception() {
StubCodeMark mark(this, "StubRoutines", "catch_exception");
address start = __ pc();
// same as in generate_call_stub():
const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
const Address thread (rbp, thread_off * wordSize);
#ifdef ASSERT
// verify that threads correspond
{
Label L1, L2, L3;
__ cmpptr(r15_thread, thread);
__ jcc(Assembler::equal, L1);
__ stop("StubRoutines::catch_exception: r15_thread is corrupted");
__ bind(L1);
__ get_thread(rbx);
__ cmpptr(r15_thread, thread);
__ jcc(Assembler::equal, L2);
__ stop("StubRoutines::catch_exception: r15_thread is modified by call");
__ bind(L2);
__ cmpptr(r15_thread, rbx);
__ jcc(Assembler::equal, L3);
__ stop("StubRoutines::catch_exception: threads must correspond");
__ bind(L3);
}
#endif
// set pending exception
__ verify_oop(rax);
__ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
__ lea(rscratch1, ExternalAddress((address)__FILE__));
__ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
__ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
// complete return to VM
assert(StubRoutines::_call_stub_return_address != NULL,
"_call_stub_return_address must have been generated before");
__ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
return start;
}
// Continuation point for runtime calls returning with a pending
// exception. The pending exception check happened in the runtime
// or native call stub. The pending exception in Thread is
// converted into a Java-level exception.
//
// Contract with Java-level exception handlers:
// rax: exception
// rdx: throwing pc
//
// NOTE: At entry of this stub, exception-pc must be on stack !!
address generate_forward_exception() {
StubCodeMark mark(this, "StubRoutines", "forward exception");
address start = __ pc();
// Upon entry, the sp points to the return address returning into
// Java (interpreted or compiled) code; i.e., the return address
// becomes the throwing pc.
//
// Arguments pushed before the runtime call are still on the stack
// but the exception handler will reset the stack pointer ->
// ignore them. A potential result in registers can be ignored as
// well.
#ifdef ASSERT
// make sure this code is only executed if there is a pending exception
{
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
__ jcc(Assembler::notEqual, L);
__ stop("StubRoutines::forward exception: no pending exception (1)");
__ bind(L);
}
#endif
// compute exception handler into rbx
__ movptr(c_rarg0, Address(rsp, 0));
BLOCK_COMMENT("call exception_handler_for_return_address");
__ call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
r15_thread, c_rarg0);
__ mov(rbx, rax);
// setup rax & rdx, remove return address & clear pending exception
__ pop(rdx);
__ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
__ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
#ifdef ASSERT
// make sure exception is set
{
Label L;
__ testptr(rax, rax);
__ jcc(Assembler::notEqual, L);
__ stop("StubRoutines::forward exception: no pending exception (2)");
__ bind(L);
}
#endif
// continue at exception handler (return address removed)
// rax: exception
// rbx: exception handler
// rdx: throwing pc
__ verify_oop(rax);
__ jmp(rbx);
return start;
}
// Support for intptr_t OrderAccess::fence()
//
// Arguments :
//
// Result:
address generate_orderaccess_fence() {
StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
address start = __ pc();
__ membar(Assembler::StoreLoad);
__ ret(0);
return start;
}
// Support for intptr_t get_previous_fp()
//
// This routine is used to find the previous frame pointer for the
// caller (current_frame_guess). This is used as part of debugging
// ps() is seemingly lost trying to find frames.
// This code assumes that caller current_frame_guess) has a frame.
address generate_get_previous_fp() {
StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
const Address old_fp(rbp, 0);
const Address older_fp(rax, 0);
address start = __ pc();
__ enter();
__ movptr(rax, old_fp); // callers fp
__ movptr(rax, older_fp); // the frame for ps()
__ pop(rbp);
__ ret(0);
return start;
}
// Support for intptr_t get_previous_sp()
//
// This routine is used to find the previous stack pointer for the
// caller.
address generate_get_previous_sp() {
StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
address start = __ pc();
__ movptr(rax, rsp);
__ addptr(rax, 8); // return address is at the top of the stack.
__ ret(0);
return start;
}
//----------------------------------------------------------------------------------------------------
// Support for void verify_mxcsr()
//
// This routine is used with -Xcheck:jni to verify that native
// JNI code does not return to Java code without restoring the
// MXCSR register to our expected state.
address generate_verify_mxcsr() {
StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
address start = __ pc();
const Address mxcsr_save(rsp, 0);
if (CheckJNICalls) {
Label ok_ret;
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ push(rax);
__ subptr(rsp, wordSize); // allocate a temp location
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK); // Only check control and mask bits
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, ok_ret);
__ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
__ ldmxcsr(mxcsr_std);
__ bind(ok_ret);
__ addptr(rsp, wordSize);
__ pop(rax);
}
__ ret(0);
return start;
}
address generate_f2i_fixup() {
StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
Address inout(rsp, 5 * wordSize); // return address + 4 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ movl(rax, 0x7f800000);
__ xorl(c_rarg3, c_rarg3);
__ movl(c_rarg2, inout);
__ movl(c_rarg1, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ cmpl(rax, c_rarg1); // NaN? -> 0
__ jcc(Assembler::negative, L);
__ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
__ movl(c_rarg3, 0x80000000);
__ movl(rax, 0x7fffffff);
__ cmovl(Assembler::positive, c_rarg3, rax);
__ bind(L);
__ movptr(inout, c_rarg3);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_f2l_fixup() {
StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
Address inout(rsp, 5 * wordSize); // return address + 4 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ movl(rax, 0x7f800000);
__ xorl(c_rarg3, c_rarg3);
__ movl(c_rarg2, inout);
__ movl(c_rarg1, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ cmpl(rax, c_rarg1); // NaN? -> 0
__ jcc(Assembler::negative, L);
__ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
__ mov64(c_rarg3, 0x8000000000000000);
__ mov64(rax, 0x7fffffffffffffff);
__ cmov(Assembler::positive, c_rarg3, rax);
__ bind(L);
__ movptr(inout, c_rarg3);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_d2i_fixup() {
StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
Address inout(rsp, 6 * wordSize); // return address + 5 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ push(c_rarg0);
__ movl(rax, 0x7ff00000);
__ movq(c_rarg2, inout);
__ movl(c_rarg3, c_rarg2);
__ mov(c_rarg1, c_rarg2);
__ mov(c_rarg0, c_rarg2);
__ negl(c_rarg3);
__ shrptr(c_rarg1, 0x20);
__ orl(c_rarg3, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ xorl(c_rarg2, c_rarg2);
__ shrl(c_rarg3, 0x1f);
__ orl(c_rarg1, c_rarg3);
__ cmpl(rax, c_rarg1);
__ jcc(Assembler::negative, L); // NaN -> 0
__ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
__ movl(c_rarg2, 0x80000000);
__ movl(rax, 0x7fffffff);
__ cmov(Assembler::positive, c_rarg2, rax);
__ bind(L);
__ movptr(inout, c_rarg2);
__ pop(c_rarg0);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_d2l_fixup() {
StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
Address inout(rsp, 6 * wordSize); // return address + 5 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ push(c_rarg0);
__ movl(rax, 0x7ff00000);
__ movq(c_rarg2, inout);
__ movl(c_rarg3, c_rarg2);
__ mov(c_rarg1, c_rarg2);
__ mov(c_rarg0, c_rarg2);
__ negl(c_rarg3);
__ shrptr(c_rarg1, 0x20);
__ orl(c_rarg3, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ xorl(c_rarg2, c_rarg2);
__ shrl(c_rarg3, 0x1f);
__ orl(c_rarg1, c_rarg3);
__ cmpl(rax, c_rarg1);
__ jcc(Assembler::negative, L); // NaN -> 0
__ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
__ mov64(c_rarg2, 0x8000000000000000);
__ mov64(rax, 0x7fffffffffffffff);
__ cmovq(Assembler::positive, c_rarg2, rax);
__ bind(L);
__ movq(inout, c_rarg2);
__ pop(c_rarg0);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_iota_indices(const char *stub_name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
__ emit_data64(0x0706050403020100, relocInfo::none);
__ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
__ emit_data64(0x1716151413121110, relocInfo::none);
__ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
__ emit_data64(0x2726252423222120, relocInfo::none);
__ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
__ emit_data64(0x3736353433323130, relocInfo::none);
__ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
return start;
}
address generate_fp_mask(const char *stub_name, int64_t mask) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
__ emit_data64( mask, relocInfo::none );
__ emit_data64( mask, relocInfo::none );
return start;
}
address generate_vector_mask(const char *stub_name, int64_t mask) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
return start;
}
address generate_vector_byte_perm_mask(const char *stub_name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
__ emit_data64(0x0000000000000001, relocInfo::none);
__ emit_data64(0x0000000000000003, relocInfo::none);
__ emit_data64(0x0000000000000005, relocInfo::none);
__ emit_data64(0x0000000000000007, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000002, relocInfo::none);
__ emit_data64(0x0000000000000004, relocInfo::none);
__ emit_data64(0x0000000000000006, relocInfo::none);
return start;
}
address generate_vector_fp_mask(const char *stub_name, int64_t mask) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
__ emit_data64(mask, relocInfo::none);
return start;
}
address generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len,
int32_t val0, int32_t val1, int32_t val2, int32_t val3,
int32_t val4 = 0, int32_t val5 = 0, int32_t val6 = 0, int32_t val7 = 0,
int32_t val8 = 0, int32_t val9 = 0, int32_t val10 = 0, int32_t val11 = 0,
int32_t val12 = 0, int32_t val13 = 0, int32_t val14 = 0, int32_t val15 = 0) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
assert(len != Assembler::AVX_NoVec, "vector len must be specified");
__ emit_data(val0, relocInfo::none, 0);
__ emit_data(val1, relocInfo::none, 0);
__ emit_data(val2, relocInfo::none, 0);
__ emit_data(val3, relocInfo::none, 0);
if (len >= Assembler::AVX_256bit) {
__ emit_data(val4, relocInfo::none, 0);
__ emit_data(val5, relocInfo::none, 0);
__ emit_data(val6, relocInfo::none, 0);
__ emit_data(val7, relocInfo::none, 0);
if (len >= Assembler::AVX_512bit) {
__ emit_data(val8, relocInfo::none, 0);
__ emit_data(val9, relocInfo::none, 0);
__ emit_data(val10, relocInfo::none, 0);
__ emit_data(val11, relocInfo::none, 0);
__ emit_data(val12, relocInfo::none, 0);
__ emit_data(val13, relocInfo::none, 0);
__ emit_data(val14, relocInfo::none, 0);
__ emit_data(val15, relocInfo::none, 0);
}
}
return start;
}
// Non-destructive plausibility checks for oops
//
// Arguments:
// all args on stack!
//
// Stack after saving c_rarg3:
// [tos + 0]: saved c_rarg3
// [tos + 1]: saved c_rarg2
// [tos + 2]: saved r12 (several TemplateTable methods use it)
// [tos + 3]: saved flags
// [tos + 4]: return address
// * [tos + 5]: error message (char*)
// * [tos + 6]: object to verify (oop)
// * [tos + 7]: saved rax - saved by caller and bashed
// * [tos + 8]: saved r10 (rscratch1) - saved by caller
// * = popped on exit
address generate_verify_oop() {
StubCodeMark mark(this, "StubRoutines", "verify_oop");
address start = __ pc();
Label exit, error;
__ pushf();
__ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
__ push(r12);
// save c_rarg2 and c_rarg3
__ push(c_rarg2);
__ push(c_rarg3);
enum {
// After previous pushes.
oop_to_verify = 6 * wordSize,
saved_rax = 7 * wordSize,
saved_r10 = 8 * wordSize,
// Before the call to MacroAssembler::debug(), see below.
return_addr = 16 * wordSize,
error_msg = 17 * wordSize
};
// get object
__ movptr(rax, Address(rsp, oop_to_verify));
// make sure object is 'reasonable'
__ testptr(rax, rax);
__ jcc(Assembler::zero, exit); // if obj is NULL it is OK
#if INCLUDE_ZGC
if (UseZGC) {
// Check if metadata bits indicate a bad oop
__ testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset()));
__ jcc(Assembler::notZero, error);
}
#endif
// Check if the oop is in the right area of memory
__ movptr(c_rarg2, rax);
__ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
__ andptr(c_rarg2, c_rarg3);
__ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
__ cmpptr(c_rarg2, c_rarg3);
__ jcc(Assembler::notZero, error);
// make sure klass is 'reasonable', which is not zero.
__ load_klass(rax, rax, rscratch1); // get klass
__ testptr(rax, rax);
__ jcc(Assembler::zero, error); // if klass is NULL it is broken
// return if everything seems ok
__ bind(exit);
__ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
__ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
__ pop(c_rarg3); // restore c_rarg3
__ pop(c_rarg2); // restore c_rarg2
__ pop(r12); // restore r12
__ popf(); // restore flags
__ ret(4 * wordSize); // pop caller saved stuff
// handle errors
__ bind(error);
__ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
__ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
__ pop(c_rarg3); // get saved c_rarg3 back
__ pop(c_rarg2); // get saved c_rarg2 back
__ pop(r12); // get saved r12 back
__ popf(); // get saved flags off stack --
// will be ignored
__ pusha(); // push registers
// (rip is already
// already pushed)
// debug(char* msg, int64_t pc, int64_t regs[])
// We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
// pushed all the registers, so now the stack looks like:
// [tos + 0] 16 saved registers
// [tos + 16] return address
// * [tos + 17] error message (char*)
// * [tos + 18] object to verify (oop)
// * [tos + 19] saved rax - saved by caller and bashed
// * [tos + 20] saved r10 (rscratch1) - saved by caller
// * = popped on exit
__ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
__ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
__ movq(c_rarg2, rsp); // pass address of regs on stack
__ mov(r12, rsp); // remember rsp
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
BLOCK_COMMENT("call MacroAssembler::debug");
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
__ hlt();
return start;
}
//
// Verify that a register contains clean 32-bits positive value
// (high 32-bits are 0) so it could be used in 64-bits shifts.
//
// Input:
// Rint - 32-bits value
// Rtmp - scratch
//
void assert_clean_int(Register Rint, Register Rtmp) {
#ifdef ASSERT
Label L;
assert_different_registers(Rtmp, Rint);
__ movslq(Rtmp, Rint);
__ cmpq(Rtmp, Rint);
__ jcc(Assembler::equal, L);
__ stop("high 32-bits of int value are not 0");
__ bind(L);
#endif
}
// Generate overlap test for array copy stubs
//
// Input:
// c_rarg0 - from
// c_rarg1 - to
// c_rarg2 - element count
//
// Output:
// rax - &from[element count - 1]
//
void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
assert(no_overlap_target != NULL, "must be generated");
array_overlap_test(no_overlap_target, NULL, sf);
}
void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
array_overlap_test(NULL, &L_no_overlap, sf);
}
void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
const Register from = c_rarg0;
const Register to = c_rarg1;
const Register count = c_rarg2;
const Register end_from = rax;
__ cmpptr(to, from);
__ lea(end_from, Address(from, count, sf, 0));
if (NOLp == NULL) {
ExternalAddress no_overlap(no_overlap_target);
__ jump_cc(Assembler::belowEqual, no_overlap);
__ cmpptr(to, end_from);
__ jump_cc(Assembler::aboveEqual, no_overlap);
} else {
__ jcc(Assembler::belowEqual, (*NOLp));
__ cmpptr(to, end_from);
__ jcc(Assembler::aboveEqual, (*NOLp));
}
}
// Shuffle first three arg regs on Windows into Linux/Solaris locations.
//
// Outputs:
// rdi - rcx
// rsi - rdx
// rdx - r8
// rcx - r9
//
// Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
// are non-volatile. r9 and r10 should not be used by the caller.
//
DEBUG_ONLY(bool regs_in_thread;)
void setup_arg_regs(int nargs = 3) {
const Register saved_rdi = r9;
const Register saved_rsi = r10;
assert(nargs == 3 || nargs == 4, "else fix");
#ifdef _WIN64
assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
"unexpected argument registers");
if (nargs >= 4)
__ mov(rax, r9); // r9 is also saved_rdi
__ movptr(saved_rdi, rdi);
__ movptr(saved_rsi, rsi);
__ mov(rdi, rcx); // c_rarg0
__ mov(rsi, rdx); // c_rarg1
__ mov(rdx, r8); // c_rarg2
if (nargs >= 4)
__ mov(rcx, rax); // c_rarg3 (via rax)
#else
assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
"unexpected argument registers");
#endif
DEBUG_ONLY(regs_in_thread = false;)
}
void restore_arg_regs() {
assert(!regs_in_thread, "wrong call to restore_arg_regs");
const Register saved_rdi = r9;
const Register saved_rsi = r10;
#ifdef _WIN64
__ movptr(rdi, saved_rdi);
__ movptr(rsi, saved_rsi);
#endif
}
// This is used in places where r10 is a scratch register, and can
// be adapted if r9 is needed also.
void setup_arg_regs_using_thread() {
const Register saved_r15 = r9;
#ifdef _WIN64
__ mov(saved_r15, r15); // r15 is callee saved and needs to be restored
__ get_thread(r15_thread);
assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
"unexpected argument registers");
__ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
__ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
__ mov(rdi, rcx); // c_rarg0
__ mov(rsi, rdx); // c_rarg1
__ mov(rdx, r8); // c_rarg2
#else
assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
"unexpected argument registers");
#endif
DEBUG_ONLY(regs_in_thread = true;)
}
void restore_arg_regs_using_thread() {
assert(regs_in_thread, "wrong call to restore_arg_regs");
const Register saved_r15 = r9;
#ifdef _WIN64
__ get_thread(r15_thread);
__ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
__ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
__ mov(r15, saved_r15); // r15 is callee saved and needs to be restored
#endif
}
// Copy big chunks forward
//
// Inputs:
// end_from - source arrays end address
// end_to - destination array end address
// qword_count - 64-bits element count, negative
// to - scratch
// L_copy_bytes - entry label
// L_copy_8_bytes - exit label
//
void copy_bytes_forward(Register end_from, Register end_to,
Register qword_count, Register to,
Label& L_copy_bytes, Label& L_copy_8_bytes) {
DEBUG_ONLY(__ stop("enter at entry label, not here"));
Label L_loop;
__ align(OptoLoopAlignment);
if (UseUnalignedLoadStores) {
Label L_end;
__ BIND(L_loop);
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
__ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
__ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
__ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
} else {
__ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
__ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
__ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
__ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
__ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
__ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
__ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
__ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
}
__ BIND(L_copy_bytes);
__ addptr(qword_count, 8);
__ jcc(Assembler::lessEqual, L_loop);
__ subptr(qword_count, 4); // sub(8) and add(4)
__ jccb(Assembler::greater, L_end);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
__ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
} else {
__ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
__ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
__ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
__ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
}
__ addptr(qword_count, 4);
__ BIND(L_end);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
__ vpxor(xmm0, xmm0);
__ vpxor(xmm1, xmm1);
}
} else {
// Copy 32-bytes per iteration
__ BIND(L_loop);
__ movq(to, Address(end_from, qword_count, Address::times_8, -24));
__ movq(Address(end_to, qword_count, Address::times_8, -24), to);
__ movq(to, Address(end_from, qword_count, Address::times_8, -16));
__ movq(Address(end_to, qword_count, Address::times_8, -16), to);
__ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
__ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
__ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
__ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
__ BIND(L_copy_bytes);
__ addptr(qword_count, 4);
__ jcc(Assembler::lessEqual, L_loop);
}
__ subptr(qword_count, 4);
__ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
}
// Copy big chunks backward
//
// Inputs:
// from - source arrays address
// dest - destination array address
// qword_count - 64-bits element count
// to - scratch
// L_copy_bytes - entry label
// L_copy_8_bytes - exit label
//
void copy_bytes_backward(Register from, Register dest,
Register qword_count, Register to,
Label& L_copy_bytes, Label& L_copy_8_bytes) {
DEBUG_ONLY(__ stop("enter at entry label, not here"));
Label L_loop;
__ align(OptoLoopAlignment);
if (UseUnalignedLoadStores) {
Label L_end;
__ BIND(L_loop);
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
__ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
__ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
__ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
} else {
__ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
__ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
__ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
__ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
__ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
__ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
__ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0));
__ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3);
}
__ BIND(L_copy_bytes);
__ subptr(qword_count, 8);
__ jcc(Assembler::greaterEqual, L_loop);
__ addptr(qword_count, 4); // add(8) and sub(4)
__ jccb(Assembler::less, L_end);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
__ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
} else {
__ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
__ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
__ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
__ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
}
__ subptr(qword_count, 4);
__ BIND(L_end);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
__ vpxor(xmm0, xmm0);
__ vpxor(xmm1, xmm1);
}
} else {
// Copy 32-bytes per iteration
__ BIND(L_loop);
__ movq(to, Address(from, qword_count, Address::times_8, 24));
__ movq(Address(dest, qword_count, Address::times_8, 24), to);
__ movq(to, Address(from, qword_count, Address::times_8, 16));
__ movq(Address(dest, qword_count, Address::times_8, 16), to);
__ movq(to, Address(from, qword_count, Address::times_8, 8));
__ movq(Address(dest, qword_count, Address::times_8, 8), to);
__ movq(to, Address(from, qword_count, Address::times_8, 0));
__ movq(Address(dest, qword_count, Address::times_8, 0), to);
__ BIND(L_copy_bytes);
__ subptr(qword_count, 4);
__ jcc(Assembler::greaterEqual, L_loop);
}
__ addptr(qword_count, 4);
__ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
}
#ifndef PRODUCT
int& get_profile_ctr(int shift) {
if ( 0 == shift)
return SharedRuntime::_jbyte_array_copy_ctr;
else if(1 == shift)
return SharedRuntime::_jshort_array_copy_ctr;
else if(2 == shift)
return SharedRuntime::_jint_array_copy_ctr;
else
return SharedRuntime::_jlong_array_copy_ctr;
}
#endif
void setup_argument_regs(BasicType type) {
if (type == T_BYTE || type == T_SHORT) {
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
} else {
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
}
}
void restore_argument_regs(BasicType type) {
if (type == T_BYTE || type == T_SHORT) {
restore_arg_regs();
} else {
restore_arg_regs_using_thread();
}
}
#if COMPILER2_OR_JVMCI
// Note: Following rules apply to AVX3 optimized arraycopy stubs:-
// - If target supports AVX3 features (BW+VL+F) then implementation uses 32 byte vectors (YMMs)
// for both special cases (various small block sizes) and aligned copy loop. This is the
// default configuration.
// - If copy length is above AVX3Threshold, then implementation use 64 byte vectors (ZMMs)
// for main copy loop (and subsequent tail) since bulk of the cycles will be consumed in it.
// - If user forces MaxVectorSize=32 then above 4096 bytes its seen that REP MOVs shows a
// better performance for disjoint copies. For conjoint/backward copy vector based
// copy performs better.
// - If user sets AVX3Threshold=0, then special cases for small blocks sizes operate over
// 64 byte vector registers (ZMMs).
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
//
// Side Effects:
// disjoint_copy_avx3_masked is set to the no-overlap entry point
// used by generate_conjoint_[byte/int/short/long]_copy().
//
address generate_disjoint_copy_avx3_masked(address* entry, const char *name, int shift,
bool aligned, bool is_oop, bool dest_uninitialized) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
bool use64byteVector = MaxVectorSize > 32 && AVX3Threshold == 0;
Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry;
Label L_repmovs, L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register temp1 = r8;
const Register temp2 = r11;
const Register temp3 = rax;
const Register temp4 = rcx;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
BasicType type = is_oop ? T_OBJECT : type_vec[shift];
setup_argument_regs(type);
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
{
// Type(shift) byte(0), short(1), int(2), long(3)
int loop_size[] = { 192, 96, 48, 24};
int threshold[] = { 4096, 2048, 1024, 512};
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
// temp1 holds remaining count and temp4 holds running count used to compute
// next address offset for start of to/from addresses (temp4 * scale).
__ mov64(temp4, 0);
__ movq(temp1, count);
// Zero length check.
__ BIND(L_tail);
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit);
// Special cases using 32 byte [masked] vector copy operations.
__ arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift,
temp4, temp3, use64byteVector, L_entry, L_exit);
// PRE-MAIN-POST loop for aligned copy.
__ BIND(L_entry);
if (AVX3Threshold != 0) {
__ cmpq(count, threshold[shift]);
if (MaxVectorSize == 64) {
// Copy using 64 byte vectors.
__ jcc(Assembler::greaterEqual, L_pre_main_post_64);
} else {
assert(MaxVectorSize < 64, "vector size should be < 64 bytes");
// REP MOVS offer a faster copy path.
__ jcc(Assembler::greaterEqual, L_repmovs);
}
}
if (MaxVectorSize < 64 || AVX3Threshold != 0) {
// Partial copy to make dst address 32 byte aligned.
__ movq(temp2, to);
__ andq(temp2, 31);
__ jcc(Assembler::equal, L_main_pre_loop);
__ negptr(temp2);
__ addq(temp2, 32);
if (shift) {
__ shrq(temp2, shift);
}
__ movq(temp3, temp2);
__ copy32_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail);
__ BIND(L_main_pre_loop);
__ subq(temp1, loop_size[shift]);
// Main loop with aligned copy block size of 192 bytes at 32 byte granularity.
__ BIND(L_main_loop);
__ copy64_avx(to, from, temp4, xmm1, false, shift, 0);
__ copy64_avx(to, from, temp4, xmm1, false, shift, 64);
__ copy64_avx(to, from, temp4, xmm1, false, shift, 128);
__ addptr(temp4, loop_size[shift]);
__ subq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop);
__ addq(temp1, loop_size[shift]);
// Tail loop.
__ jmp(L_tail);
__ BIND(L_repmovs);
__ movq(temp2, temp1);
// Swap to(RSI) and from(RDI) addresses to comply with REP MOVs semantics.
__ movq(temp3, to);
__ movq(to, from);
__ movq(from, temp3);
// Save to/from for restoration post rep_mov.
__ movq(temp1, to);
__ movq(temp3, from);
if(shift < 3) {
__ shrq(temp2, 3-shift); // quad word count
}
__ movq(temp4 , temp2); // move quad ward count into temp4(RCX).
__ rep_mov();
__ shlq(temp2, 3); // convert quad words into byte count.
if(shift) {
__ shrq(temp2, shift); // type specific count.
}
// Restore original addresses in to/from.
__ movq(to, temp3);
__ movq(from, temp1);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2); // tailing part (less than a quad ward size).
__ jmp(L_tail);
}
if (MaxVectorSize > 32) {
__ BIND(L_pre_main_post_64);
// Partial copy to make dst address 64 byte aligned.
__ movq(temp2, to);
__ andq(temp2, 63);
__ jcc(Assembler::equal, L_main_pre_loop_64bytes);
__ negptr(temp2);
__ addq(temp2, 64);
if (shift) {
__ shrq(temp2, shift);
}
__ movq(temp3, temp2);
__ copy64_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift, 0 , true);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail64);
__ BIND(L_main_pre_loop_64bytes);
__ subq(temp1, loop_size[shift]);
// Main loop with aligned copy block size of 192 bytes at
// 64 byte copy granularity.
__ BIND(L_main_loop_64bytes);
__ copy64_avx(to, from, temp4, xmm1, false, shift, 0 , true);
__ copy64_avx(to, from, temp4, xmm1, false, shift, 64, true);
__ copy64_avx(to, from, temp4, xmm1, false, shift, 128, true);
__ addptr(temp4, loop_size[shift]);
__ subq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop_64bytes);
__ addq(temp1, loop_size[shift]);
// Zero length check.
__ jcc(Assembler::lessEqual, L_exit);
__ BIND(L_tail64);
// Tail handling using 64 byte [masked] vector copy operations.
use64byteVector = true;
__ arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift,
temp4, temp3, use64byteVector, L_entry, L_exit);
}
__ BIND(L_exit);
}
address ucme_exit_pc = __ pc();
// When called from generic_arraycopy r11 contains specific values
// used during arraycopy epilogue, re-initializing r11.
if (is_oop) {
__ movq(r11, shift == 3 ? count : to);
}
bs->arraycopy_epilogue(_masm, decorators, type, from, to, count);
restore_argument_regs(type);
inc_counter_np(get_profile_ctr(shift)); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
//
address generate_conjoint_copy_avx3_masked(address* entry, const char *name, int shift,
address nooverlap_target, bool aligned, bool is_oop,
bool dest_uninitialized) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
bool use64byteVector = MaxVectorSize > 32 && AVX3Threshold == 0;
Label L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64;
Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register temp1 = r8;
const Register temp2 = rcx;
const Register temp3 = r11;
const Register temp4 = rax;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, (Address::ScaleFactor)(shift));
BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
BasicType type = is_oop ? T_OBJECT : type_vec[shift];
setup_argument_regs(type);
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
{
// Type(shift) byte(0), short(1), int(2), long(3)
int loop_size[] = { 192, 96, 48, 24};
int threshold[] = { 4096, 2048, 1024, 512};
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
// temp1 holds remaining count.
__ movq(temp1, count);
// Zero length check.
__ BIND(L_tail);
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit);
__ mov64(temp2, 0);
__ movq(temp3, temp1);
// Special cases using 32 byte [masked] vector copy operations.
__ arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift,
temp4, use64byteVector, L_entry, L_exit);
// PRE-MAIN-POST loop for aligned copy.
__ BIND(L_entry);
if (MaxVectorSize > 32 && AVX3Threshold != 0) {
__ cmpq(temp1, threshold[shift]);
__ jcc(Assembler::greaterEqual, L_pre_main_post_64);
}
if (MaxVectorSize < 64 || AVX3Threshold != 0) {
// Partial copy to make dst address 32 byte aligned.
__ leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0));
__ andq(temp2, 31);
__ jcc(Assembler::equal, L_main_pre_loop);
if (shift) {
__ shrq(temp2, shift);
}
__ subq(temp1, temp2);
__ copy32_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail);
__ BIND(L_main_pre_loop);
// Main loop with aligned copy block size of 192 bytes at 32 byte granularity.
__ BIND(L_main_loop);
__ copy64_avx(to, from, temp1, xmm1, true, shift, -64);
__ copy64_avx(to, from, temp1, xmm1, true, shift, -128);
__ copy64_avx(to, from, temp1, xmm1, true, shift, -192);
__ subptr(temp1, loop_size[shift]);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop);
// Tail loop.
__ jmp(L_tail);
}
if (MaxVectorSize > 32) {
__ BIND(L_pre_main_post_64);
// Partial copy to make dst address 64 byte aligned.
__ leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0));
__ andq(temp2, 63);
__ jcc(Assembler::equal, L_main_pre_loop_64bytes);
if (shift) {
__ shrq(temp2, shift);
}
__ subq(temp1, temp2);
__ copy64_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift, 0 , true);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail64);
__ BIND(L_main_pre_loop_64bytes);
// Main loop with aligned copy block size of 192 bytes at
// 64 byte copy granularity.
__ BIND(L_main_loop_64bytes);
__ copy64_avx(to, from, temp1, xmm1, true, shift, -64 , true);
__ copy64_avx(to, from, temp1, xmm1, true, shift, -128, true);
__ copy64_avx(to, from, temp1, xmm1, true, shift, -192, true);
__ subq(temp1, loop_size[shift]);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop_64bytes);
// Zero length check.
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit);
__ BIND(L_tail64);
// Tail handling using 64 byte [masked] vector copy operations.
use64byteVector = true;
__ mov64(temp2, 0);
__ movq(temp3, temp1);
__ arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift,
temp4, use64byteVector, L_entry, L_exit);
}
__ BIND(L_exit);
}
address ucme_exit_pc = __ pc();
// When called from generic_arraycopy r11 contains specific values
// used during arraycopy epilogue, re-initializing r11.
if(is_oop) {
__ movq(r11, count);
}
bs->arraycopy_epilogue(_masm, decorators, type, from, to, count);
restore_argument_regs(type);
inc_counter_np(get_profile_ctr(shift)); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
#endif // COMPILER2_OR_JVMCI
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_byte_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_byte_copy().
//
address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(entry, "jbyte_disjoint_arraycopy_avx3", 0,
aligned, false, false);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
Label L_copy_byte, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register byte_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(byte_count, count);
__ shrptr(count, 3); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count); // make the count negative
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(byte_count, 4);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ addptr(end_from, 4);
__ addptr(end_to, 4);
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(byte_count, 2);
__ jccb(Assembler::zero, L_copy_byte);
__ movw(rax, Address(end_from, 8));
__ movw(Address(end_to, 8), rax);
__ addptr(end_from, 2);
__ addptr(end_to, 2);
// Check for and copy trailing byte
__ BIND(L_copy_byte);
__ testl(byte_count, 1);
__ jccb(Assembler::zero, L_exit);
__ movb(rax, Address(end_from, 8));
__ movb(Address(end_to, 8), rax);
}
__ BIND(L_exit);
address ucme_exit_pc = __ pc();
restore_arg_regs();
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ jmp(L_copy_4_bytes);
}
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
address* entry, const char *name) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(entry, "jbyte_conjoint_arraycopy_avx3", 0,
nooverlap_target, aligned, false, false);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register byte_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_1);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(byte_count, count);
__ shrptr(count, 3); // count => qword_count
// Copy from high to low addresses.
// Check for and copy trailing byte
__ testl(byte_count, 1);
__ jcc(Assembler::zero, L_copy_2_bytes);
__ movb(rax, Address(from, byte_count, Address::times_1, -1));
__ movb(Address(to, byte_count, Address::times_1, -1), rax);
__ decrement(byte_count); // Adjust for possible trailing word
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(byte_count, 2);
__ jcc(Assembler::zero, L_copy_4_bytes);
__ movw(rax, Address(from, byte_count, Address::times_1, -2));
__ movw(Address(to, byte_count, Address::times_1, -2), rax);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(byte_count, 4);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, qword_count, Address::times_8));
__ movl(Address(to, qword_count, Address::times_8), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_short_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_short_copy().
//
address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(entry, "jshort_disjoint_arraycopy_avx3", 1,
aligned, false, false);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register word_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(word_count, count);
__ shrptr(count, 2); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Original 'dest' is trashed, so we can't use it as a
// base register for a possible trailing word copy
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(word_count, 2);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ addptr(end_from, 4);
__ addptr(end_to, 4);
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(word_count, 1);
__ jccb(Assembler::zero, L_exit);
__ movw(rax, Address(end_from, 8));
__ movw(Address(end_to, 8), rax);
}
__ BIND(L_exit);
address ucme_exit_pc = __ pc();
restore_arg_regs();
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ jmp(L_copy_4_bytes);
}
return start;
}
address generate_fill(BasicType t, bool aligned, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
BLOCK_COMMENT("Entry:");
const Register to = c_rarg0; // source array address
const Register value = c_rarg1; // value
const Register count = c_rarg2; // elements count
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ generate_fill(t, aligned, to, value, count, rax, xmm0);
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(entry, "jshort_conjoint_arraycopy_avx3", 1,
nooverlap_target, aligned, false, false);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register word_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_2);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(word_count, count);
__ shrptr(count, 2); // count => qword_count
// Copy from high to low addresses. Use 'to' as scratch.
// Check for and copy trailing word
__ testl(word_count, 1);
__ jccb(Assembler::zero, L_copy_4_bytes);
__ movw(rax, Address(from, word_count, Address::times_2, -2));
__ movw(Address(to, word_count, Address::times_2, -2), rax);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(word_count, 2);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, qword_count, Address::times_8));
__ movl(Address(to, qword_count, Address::times_8), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
// Side Effects:
// disjoint_int_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_int_oop_copy().
//
address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
const char *name, bool dest_uninitialized = false) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(entry, "jint_disjoint_arraycopy_avx3", 2,
aligned, is_oop, dest_uninitialized);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register dword_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_INT;
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(dword_count, count);
__ shrptr(count, 1); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(dword_count, 1); // Only byte test since the value is 0 or 1
__ jccb(Assembler::zero, L_exit);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
}
__ BIND(L_exit);
address ucme_exit_pc = __ pc();
bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count);
restore_arg_regs_using_thread();
inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
__ vzeroupper();
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, false, ucme_exit_pc);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ jmp(L_copy_4_bytes);
}
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
address *entry, const char *name,
bool dest_uninitialized = false) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(entry, "jint_conjoint_arraycopy_avx3", 2,
nooverlap_target, aligned, is_oop, dest_uninitialized);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register dword_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_4);
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_INT;
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
// no registers are destroyed by this call
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
assert_clean_int(count, rax); // Make sure 'count' is clean int.
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(dword_count, count);
__ shrptr(count, 1); // count => qword_count
// Copy from high to low addresses. Use 'to' as scratch.
// Check for and copy trailing dword
__ testl(dword_count, 1);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, dword_count, Address::times_4, -4));
__ movl(Address(to, dword_count, Address::times_4, -4), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
if (is_oop) {
__ jmp(L_exit);
}
restore_arg_regs_using_thread();
inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
}
__ BIND(L_exit);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count);
restore_arg_regs_using_thread();
inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// Side Effects:
// disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
// no-overlap entry point used by generate_conjoint_long_oop_copy().
//
address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
const char *name, bool dest_uninitialized = false) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(entry, "jlong_disjoint_arraycopy_avx3", 3,
aligned, is_oop, dest_uninitialized);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register qword_count = rdx; // elements count
const Register end_from = from; // source array end address
const Register end_to = rcx; // destination array end address
const Register saved_count = r11;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
// Save no-overlap entry point for generate_conjoint_long_oop_copy()
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
// 'from', 'to' and 'qword_count' are now valid
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_LONG;
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count);
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
if (is_oop) {
__ jmp(L_exit);
} else {
restore_arg_regs_using_thread();
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
}
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
}
__ BIND(L_exit);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count);
restore_arg_regs_using_thread();
if (is_oop) {
inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
} else {
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
}
__ vzeroupper();
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
address nooverlap_target, address *entry,
const char *name, bool dest_uninitialized = false) {
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(entry, "jlong_conjoint_arraycopy_avx3", 3,
nooverlap_target, aligned, is_oop, dest_uninitialized);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register qword_count = rdx; // elements count
const Register saved_count = rcx;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_8);
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
// 'from', 'to' and 'qword_count' are now valid
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_LONG;
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count);
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
if (is_oop) {
__ jmp(L_exit);
} else {
restore_arg_regs_using_thread();
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
}
{
// UnsafeCopyMemory page error: continue after ucm
UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
}
__ BIND(L_exit);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count);
restore_arg_regs_using_thread();
if (is_oop) {
inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
} else {
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
}
__ vzeroupper();
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Helper for generating a dynamic type check.
// Smashes no registers.
void generate_type_check(Register sub_klass,
Register super_check_offset,
Register super_klass,
Label& L_success) {
assert_different_registers(sub_klass, super_check_offset, super_klass);
BLOCK_COMMENT("type_check:");
Label L_miss;
__ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
super_check_offset);
__ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
// Fall through on failure!
__ BIND(L_miss);
}
//
// Generate checkcasting array copy stub
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
// c_rarg3 - size_t ckoff (super_check_offset)
// not Win64
// c_rarg4 - oop ckval (super_klass)
// Win64
// rsp+40 - oop ckval (super_klass)
//
// Output:
// rax == 0 - success
// rax == -1^K - failure, where K is partial transfer count
//
address generate_checkcast_copy(const char *name, address *entry,
bool dest_uninitialized = false) {
Label L_load_element, L_store_element, L_do_card_marks, L_done;
// Input registers (after setup_arg_regs)
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register length = rdx; // elements count
const Register ckoff = rcx; // super_check_offset
const Register ckval = r8; // super_klass
// Registers used as temps (r13, r14 are save-on-entry)
const Register end_from = from; // source array end address
const Register end_to = r13; // destination array end address
const Register count = rdx; // -(count_remaining)
const Register r14_length = r14; // saved copy of length
// End pointers are inclusive, and if length is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
const Register rax_oop = rax; // actual oop copied
const Register r11_klass = r11; // oop._klass
//---------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the two arrays are subtypes of Object[] but the
// destination array type is not equal to or a supertype
// of the source type. Each element must be separately
// checked.
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef ASSERT
// caller guarantees that the arrays really are different
// otherwise, we would have to make conjoint checks
{ Label L;
array_overlap_test(L, TIMES_OOP);
__ stop("checkcast_copy within a single array");
__ bind(L);
}
#endif //ASSERT
setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
// ckoff => rcx, ckval => r8
// r9 and r10 may be used to save non-volatile registers
#ifdef _WIN64
// last argument (#4) is on stack on Win64
__ movptr(ckval, Address(rsp, 6 * wordSize));
#endif
// Caller of this entry point must set up the argument registers.
if (entry != NULL) {
*entry = __ pc();
BLOCK_COMMENT("Entry:");
}
// allocate spill slots for r13, r14
enum {
saved_r13_offset,
saved_r14_offset,
saved_r10_offset,
saved_rbp_offset
};
__ subptr(rsp, saved_rbp_offset * wordSize);
__ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
__ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
__ movptr(Address(rsp, saved_r10_offset * wordSize), r10);
#ifdef ASSERT
Label L2;
__ get_thread(r14);
__ cmpptr(r15_thread, r14);
__ jcc(Assembler::equal, L2);
__ stop("StubRoutines::call_stub: r15_thread is modified by call");
__ bind(L2);
#endif // ASSERT
// check that int operands are properly extended to size_t
assert_clean_int(length, rax);
assert_clean_int(ckoff, rax);
#ifdef ASSERT
BLOCK_COMMENT("assert consistent ckoff/ckval");
// The ckoff and ckval must be mutually consistent,
// even though caller generates both.
{ Label L;
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ cmpl(ckoff, Address(ckval, sco_offset));
__ jcc(Assembler::equal, L);
__ stop("super_check_offset inconsistent");
__ bind(L);
}
#endif //ASSERT
// Loop-invariant addresses. They are exclusive end pointers.
Address end_from_addr(from, length, TIMES_OOP, 0);
Address end_to_addr(to, length, TIMES_OOP, 0);
// Loop-variant addresses. They assume post-incremented count < 0.
Address from_element_addr(end_from, count, TIMES_OOP, 0);
Address to_element_addr(end_to, count, TIMES_OOP, 0);
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
BasicType type = T_OBJECT;
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
// Copy from low to high addresses, indexed from the end of each array.
__ lea(end_from, end_from_addr);
__ lea(end_to, end_to_addr);
__ movptr(r14_length, length); // save a copy of the length
assert(length == count, ""); // else fix next line:
__ negptr(count); // negate and test the length
__ jcc(Assembler::notZero, L_load_element);
// Empty array: Nothing to do.
__ xorptr(rax, rax); // return 0 on (trivial) success
__ jmp(L_done);
// ======== begin loop ========
// (Loop is rotated; its entry is L_load_element.)
// Loop control:
// for (count = -count; count != 0; count++)
// Base pointers src, dst are biased by 8*(count-1),to last element.
__ align(OptoLoopAlignment);
__ BIND(L_store_element);
__ store_heap_oop(to_element_addr, rax_oop, noreg, noreg, AS_RAW); // store the oop
__ increment(count); // increment the count toward zero
__ jcc(Assembler::zero, L_do_card_marks);
// ======== loop entry is here ========
__ BIND(L_load_element);
__ load_heap_oop(rax_oop, from_element_addr, noreg, noreg, AS_RAW); // load the oop
__ testptr(rax_oop, rax_oop);
__ jcc(Assembler::zero, L_store_element);
__ load_klass(r11_klass, rax_oop, rscratch1);// query the object klass
generate_type_check(r11_klass, ckoff, ckval, L_store_element);
// ======== end loop ========
// It was a real error; we must depend on the caller to finish the job.
// Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
// Emit GC store barriers for the oops we have copied (r14 + rdx),
// and report their number to the caller.
assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
Label L_post_barrier;
__ addptr(r14_length, count); // K = (original - remaining) oops
__ movptr(rax, r14_length); // save the value
__ notptr(rax); // report (-1^K) to caller (does not affect flags)
__ jccb(Assembler::notZero, L_post_barrier);
__ jmp(L_done); // K == 0, nothing was copied, skip post barrier
// Come here on success only.
__ BIND(L_do_card_marks);
__ xorptr(rax, rax); // return 0 on success
__ BIND(L_post_barrier);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length);
// Common exit point (success or failure).
__ BIND(L_done);
__ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
__ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
__ movptr(r10, Address(rsp, saved_r10_offset * wordSize));
restore_arg_regs();
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
//
// Generate 'unsafe' array copy stub
// Though just as safe as the other stubs, it takes an unscaled
// size_t argument instead of an element count.
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - byte count, treated as ssize_t, can be zero
//
// Examines the alignment of the operands and dispatches
// to a long, int, short, or byte copy loop.
//
address generate_unsafe_copy(const char *name,
address byte_copy_entry, address short_copy_entry,
address int_copy_entry, address long_copy_entry) {
Label L_long_aligned, L_int_aligned, L_short_aligned;
// Input registers (before setup_arg_regs)
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register size = c_rarg2; // byte count (size_t)
// Register used as a temp
const Register bits = rax; // test copy of low bits
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
__ mov(bits, from);
__ orptr(bits, to);
__ orptr(bits, size);
__ testb(bits, BytesPerLong-1);
__ jccb(Assembler::zero, L_long_aligned);
__ testb(bits, BytesPerInt-1);
__ jccb(Assembler::zero, L_int_aligned);
__ testb(bits, BytesPerShort-1);
__ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
__ BIND(L_short_aligned);
__ shrptr(size, LogBytesPerShort); // size => short_count
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_int_aligned);
__ shrptr(size, LogBytesPerInt); // size => int_count
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_long_aligned);
__ shrptr(size, LogBytesPerLong); // size => qword_count
__ jump(RuntimeAddress(long_copy_entry));
return start;
}
// Perform range checks on the proposed arraycopy.
// Kills temp, but nothing else.
// Also, clean the sign bits of src_pos and dst_pos.
void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
Register src_pos, // source position (c_rarg1)
Register dst, // destination array oo (c_rarg2)
Register dst_pos, // destination position (c_rarg3)
Register length,
Register temp,
Label& L_failed) {
BLOCK_COMMENT("arraycopy_range_checks:");
// if (src_pos + length > arrayOop(src)->length()) FAIL;
__ movl(temp, length);
__ addl(temp, src_pos); // src_pos + length
__ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// if (dst_pos + length > arrayOop(dst)->length()) FAIL;
__ movl(temp, length);
__ addl(temp, dst_pos); // dst_pos + length
__ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
// Move with sign extension can be used since they are positive.
__ movslq(src_pos, src_pos);
__ movslq(dst_pos, dst_pos);
BLOCK_COMMENT("arraycopy_range_checks done");
}
//
// Generate generic array copy stubs
//
// Input:
// c_rarg0 - src oop
// c_rarg1 - src_pos (32-bits)
// c_rarg2 - dst oop
// c_rarg3 - dst_pos (32-bits)
// not Win64
// c_rarg4 - element count (32-bits)
// Win64
// rsp+40 - element count (32-bits)
//
// Output:
// rax == 0 - success
// rax == -1^K - failure, where K is partial transfer count
//
address generate_generic_copy(const char *name,
address byte_copy_entry, address short_copy_entry,
address int_copy_entry, address oop_copy_entry,
address long_copy_entry, address checkcast_copy_entry) {
Label L_failed, L_failed_0, L_objArray;
Label L_copy_shorts, L_copy_ints, L_copy_longs;
// Input registers
const Register src = c_rarg0; // source array oop
const Register src_pos = c_rarg1; // source position
const Register dst = c_rarg2; // destination array oop
const Register dst_pos = c_rarg3; // destination position
#ifndef _WIN64
const Register length = c_rarg4;
const Register rklass_tmp = r9; // load_klass
#else
const Address length(rsp, 7 * wordSize); // elements count is on stack on Win64
const Register rklass_tmp = rdi; // load_klass
#endif
{ int modulus = CodeEntryAlignment;
int target = modulus - 5; // 5 = sizeof jmp(L_failed)
int advance = target - (__ offset() % modulus);
if (advance < 0) advance += modulus;
if (advance > 0) __ nop(advance);
}
StubCodeMark mark(this, "StubRoutines", name);
// Short-hop target to L_failed. Makes for denser prologue code.
__ BIND(L_failed_0);
__ jmp(L_failed);
assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
__ align(CodeEntryAlignment);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
__ push(rklass_tmp); // rdi is callee-save on Windows
#endif
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
//-----------------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the following conditions are met:
//
// (1) src and dst must not be null.
// (2) src_pos must not be negative.
// (3) dst_pos must not be negative.
// (4) length must not be negative.
// (5) src klass and dst klass should be the same and not NULL.
// (6) src and dst should be arrays.
// (7) src_pos + length must not exceed length of src.
// (8) dst_pos + length must not exceed length of dst.
//
// if (src == NULL) return -1;
__ testptr(src, src); // src oop
size_t j1off = __ offset();
__ jccb(Assembler::zero, L_failed_0);
// if (src_pos < 0) return -1;
__ testl(src_pos, src_pos); // src_pos (32-bits)
__ jccb(Assembler::negative, L_failed_0);
// if (dst == NULL) return -1;
__ testptr(dst, dst); // dst oop
__ jccb(Assembler::zero, L_failed_0);
// if (dst_pos < 0) return -1;
__ testl(dst_pos, dst_pos); // dst_pos (32-bits)
size_t j4off = __ offset();
__ jccb(Assembler::negative, L_failed_0);
// The first four tests are very dense code,
// but not quite dense enough to put four
// jumps in a 16-byte instruction fetch buffer.
// That's good, because some branch predicters
// do not like jumps so close together.
// Make sure of this.
guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
// registers used as temp
const Register r11_length = r11; // elements count to copy
const Register r10_src_klass = r10; // array klass
// if (length < 0) return -1;
__ movl(r11_length, length); // length (elements count, 32-bits value)
__ testl(r11_length, r11_length);
__ jccb(Assembler::negative, L_failed_0);
__ load_klass(r10_src_klass, src, rklass_tmp);
#ifdef ASSERT
// assert(src->klass() != NULL);
{
BLOCK_COMMENT("assert klasses not null {");
Label L1, L2;
__ testptr(r10_src_klass, r10_src_klass);
__ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
__ bind(L1);
__ stop("broken null klass");
__ bind(L2);
__ load_klass(rax, dst, rklass_tmp);
__ cmpq(rax, 0);
__ jcc(Assembler::equal, L1); // this would be broken also
BLOCK_COMMENT("} assert klasses not null done");
}
#endif
// Load layout helper (32-bits)
//
// |array_tag| | header_size | element_type | |log2_element_size|
// 32 30 24 16 8 2 0
//
// array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
//
const int lh_offset = in_bytes(Klass::layout_helper_offset());
// Handle objArrays completely differently...
const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
__ jcc(Assembler::equal, L_objArray);
// if (src->klass() != dst->klass()) return -1;
__ load_klass(rax, dst, rklass_tmp);
__ cmpq(r10_src_klass, rax);
__ jcc(Assembler::notEqual, L_failed);
const Register rax_lh = rax; // layout helper
__ movl(rax_lh, Address(r10_src_klass, lh_offset));
// if (!src->is_Array()) return -1;
__ cmpl(rax_lh, Klass::_lh_neutral_value);
__ jcc(Assembler::greaterEqual, L_failed);
// At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
{
BLOCK_COMMENT("assert primitive array {");
Label L;
__ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
__ jcc(Assembler::greaterEqual, L);
__ stop("must be a primitive array");
__ bind(L);
BLOCK_COMMENT("} assert primitive array done");
}
#endif
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
r10, L_failed);
// TypeArrayKlass
//
// src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
// dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
//
const Register r10_offset = r10; // array offset
const Register rax_elsize = rax_lh; // element size
__ movl(r10_offset, rax_lh);
__ shrl(r10_offset, Klass::_lh_header_size_shift);
__ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
__ addptr(src, r10_offset); // src array offset
__ addptr(dst, r10_offset); // dst array offset
BLOCK_COMMENT("choose copy loop based on element size");
__ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
#ifdef _WIN64
__ pop(rklass_tmp); // Restore callee-save rdi
#endif
// next registers should be set before the jump to corresponding stub
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register count = c_rarg2; // elements count
// 'from', 'to', 'count' registers should be set in such order
// since they are the same as 'src', 'src_pos', 'dst'.
__ cmpl(rax_elsize, 0);
__ jccb(Assembler::notEqual, L_copy_shorts);
__ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(byte_copy_entry));
__ BIND(L_copy_shorts);
__ cmpl(rax_elsize, LogBytesPerShort);
__ jccb(Assembler::notEqual, L_copy_ints);
__ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_copy_ints);
__ cmpl(rax_elsize, LogBytesPerInt);
__ jccb(Assembler::notEqual, L_copy_longs);
__ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_copy_longs);
#ifdef ASSERT
{
BLOCK_COMMENT("assert long copy {");
Label L;
__ cmpl(rax_elsize, LogBytesPerLong);
__ jcc(Assembler::equal, L);
__ stop("must be long copy, but elsize is wrong");
__ bind(L);
BLOCK_COMMENT("} assert long copy done");
}
#endif
__ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(long_copy_entry));
// ObjArrayKlass
__ BIND(L_objArray);
// live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
Label L_plain_copy, L_checkcast_copy;
// test array classes for subtyping
__ load_klass(rax, dst, rklass_tmp);
__ cmpq(r10_src_klass, rax); // usual case is exact equality
__ jcc(Assembler::notEqual, L_checkcast_copy);
// Identically typed arrays can be copied without element-wise checks.
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
r10, L_failed);
__ lea(from, Address(src, src_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
__ lea(to, Address(dst, dst_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
__ movl2ptr(count, r11_length); // length
__ BIND(L_plain_copy);
#ifdef _WIN64
__ pop(rklass_tmp); // Restore callee-save rdi
#endif
__ jump(RuntimeAddress(oop_copy_entry));
__ BIND(L_checkcast_copy);
// live at this point: r10_src_klass, r11_length, rax (dst_klass)
{
// Before looking at dst.length, make sure dst is also an objArray.
__ cmpl(Address(rax, lh_offset), objArray_lh);
__ jcc(Assembler::notEqual, L_failed);
// It is safe to examine both src.length and dst.length.
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
rax, L_failed);
const Register r11_dst_klass = r11;
__ load_klass(r11_dst_klass, dst, rklass_tmp); // reload
// Marshal the base address arguments now, freeing registers.
__ lea(from, Address(src, src_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ lea(to, Address(dst, dst_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ movl(count, length); // length (reloaded)
Register sco_temp = c_rarg3; // this register is free now
assert_different_registers(from, to, count, sco_temp,
r11_dst_klass, r10_src_klass);
assert_clean_int(count, sco_temp);
// Generate the type check.
const int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ movl(sco_temp, Address(r11_dst_klass, sco_offset));
assert_clean_int(sco_temp, rax);
generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
// Fetch destination element klass from the ObjArrayKlass header.
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
__ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
__ movl( sco_temp, Address(r11_dst_klass, sco_offset));
assert_clean_int(sco_temp, rax);
#ifdef _WIN64
__ pop(rklass_tmp); // Restore callee-save rdi
#endif
// the checkcast_copy loop needs two extra arguments:
assert(c_rarg3 == sco_temp, "#3 already in place");
// Set up arguments for checkcast_copy_entry.
setup_arg_regs(4);
__ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
__ jump(RuntimeAddress(checkcast_copy_entry));
}
__ BIND(L_failed);
#ifdef _WIN64
__ pop(rklass_tmp); // Restore callee-save rdi
#endif
__ xorptr(rax, rax);
__ notptr(rax); // return -1
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_data_cache_writeback() {
const Register src = c_rarg0; // source address
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback");
address start = __ pc();
__ enter();
__ cache_wb(Address(src, 0));
__ leave();
__ ret(0);
return start;
}
address generate_data_cache_writeback_sync() {
const Register is_pre = c_rarg0; // pre or post sync
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync");
// pre wbsync is a no-op
// post wbsync translates to an sfence
Label skip;
address start = __ pc();
__ enter();
__ cmpl(is_pre, 0);
__ jcc(Assembler::notEqual, skip);
__ cache_wbsync(false);
__ bind(skip);
__ leave();
__ ret(0);
return start;
}
void generate_arraycopy_stubs() {
address entry;
address entry_jbyte_arraycopy;
address entry_jshort_arraycopy;
address entry_jint_arraycopy;
address entry_oop_arraycopy;
address entry_jlong_arraycopy;
address entry_checkcast_arraycopy;
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
"jbyte_disjoint_arraycopy");
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
"jbyte_arraycopy");
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
"jshort_disjoint_arraycopy");
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
"jshort_arraycopy");
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
"jint_disjoint_arraycopy");
StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
&entry_jint_arraycopy, "jint_arraycopy");
StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
"jlong_disjoint_arraycopy");
StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
&entry_jlong_arraycopy, "jlong_arraycopy");
if (UseCompressedOops) {
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy");
StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
&entry_oop_arraycopy, "oop_arraycopy");
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
NULL, "oop_arraycopy_uninit",
/*dest_uninitialized*/true);
} else {
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy");
StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
&entry_oop_arraycopy, "oop_arraycopy");
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
NULL, "oop_arraycopy_uninit",
/*dest_uninitialized*/true);
}
StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
/*dest_uninitialized*/true);
StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_jlong_arraycopy);
StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_oop_arraycopy,
entry_jlong_arraycopy,
entry_checkcast_arraycopy);
StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
// We don't generate specialized code for HeapWord-aligned source
// arrays, so just use the code we've already generated
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
}
// AES intrinsic stubs
enum {AESBlockSize = 16};
address generate_key_shuffle_mask() {
__ align(16);
StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
address start = __ pc();
__ emit_data64( 0x0405060700010203, relocInfo::none );
__ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
return start;
}
address generate_counter_shuffle_mask() {
__ align(16);
StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask");
address start = __ pc();
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
__ emit_data64(0x0001020304050607, relocInfo::none);
return start;
}
// Utility routine for loading a 128-bit key word in little endian format
// can optionally specify that the shuffle mask is already in an xmmregister
void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
__ movdqu(xmmdst, Address(key, offset));
if (xmm_shuf_mask != NULL) {
__ pshufb(xmmdst, xmm_shuf_mask);
} else {
__ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
}
}
// Utility routine for increase 128bit counter (iv in CTR mode)
void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) {
__ pextrq(reg, xmmdst, 0x0);
__ addq(reg, inc_delta);
__ pinsrq(xmmdst, reg, 0x0);
__ jcc(Assembler::carryClear, next_block); // jump if no carry
__ pextrq(reg, xmmdst, 0x01); // Carry
__ addq(reg, 0x01);
__ pinsrq(xmmdst, reg, 0x01); //Carry end
__ BIND(next_block); // next instruction
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_encryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
Label L_doLast;
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register keylen = rax;
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1;
// On win64 xmm6-xmm15 must be preserved so don't use them.
const XMMRegister xmm_temp1 = xmm2;
const XMMRegister xmm_temp2 = xmm3;
const XMMRegister xmm_temp3 = xmm4;
const XMMRegister xmm_temp4 = xmm5;
__ enter(); // required for proper stackwalking of RuntimeStub frame
// keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
// For encryption, the java expanded key ordering is just what we need
// we don't know if the key is aligned, hence not using load-execute form
load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
__ pxor(xmm_result, xmm_temp1);
load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
__ aesenc(xmm_result, xmm_temp3);
__ aesenc(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
__ aesenc(xmm_result, xmm_temp3);
__ aesenc(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
__ cmpl(keylen, 44);
__ jccb(Assembler::equal, L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(keylen, 52);
__ jccb(Assembler::equal, L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
__ BIND(L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenclast(xmm_result, xmm_temp2);
__ movdqu(Address(to, 0), xmm_result); // store the result
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_decryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
Label L_doLast;
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register keylen = rax;
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1;
// On win64 xmm6-xmm15 must be preserved so don't use them.
const XMMRegister xmm_temp1 = xmm2;
const XMMRegister xmm_temp2 = xmm3;
const XMMRegister xmm_temp3 = xmm4;
const XMMRegister xmm_temp4 = xmm5;
__ enter(); // required for proper stackwalking of RuntimeStub frame
// keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_result, Address(from, 0));
// for decryption java expanded key ordering is rotated one position from what we want
// so we start from 0x10 here and hit 0x00 last
// we don't know if the key is aligned, hence not using load-execute form
load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
__ pxor (xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
__ aesdec(xmm_result, xmm_temp3);
__ aesdec(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
__ aesdec(xmm_result, xmm_temp3);
__ aesdec(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
__ cmpl(keylen, 44);
__ jccb(Assembler::equal, L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(keylen, 52);
__ jccb(Assembler::equal, L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
__ BIND(L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
// for decryption the aesdeclast operation is always on key+0x00
__ aesdeclast(xmm_result, xmm_temp3);
__ movdqu(Address(to, 0), xmm_result); // store the result
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_encryptAESCrypt() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
address start = __ pc();
Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
#ifndef _WIN64
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Register len_reg = r11; // pick the volatile windows register
#endif
const Register pos = rax;
// xmm register assignments for the loops below
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_temp = xmm1;
// keys 0-10 preloaded into xmm2-xmm12
const int XMM_REG_NUM_KEY_FIRST = 2;
const int XMM_REG_NUM_KEY_LAST = 15;
const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
#else
__ push(len_reg); // Save
#endif
const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
// load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
offset += 0x10;
}
__ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
// now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
__ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rax, 44);
__ jcc(Assembler::notEqual, L_key_192_256);
// 128 bit code follows here
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_128);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
__ aesenclast(xmm_result, xmm_key10);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_128);
__ BIND(L_exit);
__ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
#ifdef _WIN64
__ movl(rax, len_mem);
#else
__ pop(rax); // return length
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
__ BIND(L_key_192_256);
// here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(rax, 52);
__ jcc(Assembler::notEqual, L_key_256);
// 192-bit code follows here (could be changed to use more xmm registers)
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_192);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
__ aesenclast(xmm_result, xmm_key12);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_192);
__ jmp(L_exit);
__ BIND(L_key_256);
// 256-bit code follows here (could be changed to use more xmm registers)
load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_256);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
load_key(xmm_temp, key, 0xe0);
__ aesenclast(xmm_result, xmm_temp);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_256);
__ jmp(L_exit);
return start;
}
// Safefetch stubs.
void generate_safefetch(const char* name, int size, address* entry,
address* fault_pc, address* continuation_pc) {
// safefetch signatures:
// int SafeFetch32(int* adr, int errValue);
// intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
//
// arguments:
// c_rarg0 = adr
// c_rarg1 = errValue
//
// result:
// PPC_RET = *adr or errValue
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
*entry = __ pc();
// Load *adr into c_rarg1, may fault.
*fault_pc = __ pc();
switch (size) {
case 4:
// int32_t
__ movl(c_rarg1, Address(c_rarg0, 0));
break;
case 8:
// int64_t
__ movq(c_rarg1, Address(c_rarg0, 0));
break;
default:
ShouldNotReachHere();
}
// return errValue or *adr
*continuation_pc = __ pc();
__ movq(rax, c_rarg1);
__ ret(0);
}
// This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
// to hide instruction latency
//
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
#ifndef _WIN64
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Register len_reg = r11; // pick the volatile windows register
#endif
const Register pos = rax;
const int PARALLEL_FACTOR = 4;
const int ROUNDS[3] = { 10, 12, 14 }; // aes rounds for key128, key192, key256
Label L_exit;
Label L_singleBlock_loopTopHead[3]; // 128, 192, 256
Label L_singleBlock_loopTopHead2[3]; // 128, 192, 256
Label L_singleBlock_loopTop[3]; // 128, 192, 256
Label L_multiBlock_loopTopHead[3]; // 128, 192, 256
Label L_multiBlock_loopTop[3]; // 128, 192, 256
// keys 0-10 preloaded into xmm5-xmm15
const int XMM_REG_NUM_KEY_FIRST = 5;
const int XMM_REG_NUM_KEY_LAST = 15;
const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
#else
__ push(len_reg); // Save
#endif
__ push(rbx);
// the java expanded key ordering is rotated one position from what we want
// so we start from 0x10 here and hit 0x00 last
const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
// load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
offset += 0x10;
}
load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block
// registers holding the four results in the parallelized loop
const XMMRegister xmm_result0 = xmm0;
const XMMRegister xmm_result1 = xmm2;
const XMMRegister xmm_result2 = xmm3;
const XMMRegister xmm_result3 = xmm4;
__ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
__ xorptr(pos, pos);
// now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
__ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rbx, 52);
__ jcc(Assembler::equal, L_multiBlock_loopTopHead[1]);
__ cmpl(rbx, 60);
__ jcc(Assembler::equal, L_multiBlock_loopTopHead[2]);
#define DoFour(opc, src_reg) \
__ opc(xmm_result0, src_reg); \
__ opc(xmm_result1, src_reg); \
__ opc(xmm_result2, src_reg); \
__ opc(xmm_result3, src_reg); \
for (int k = 0; k < 3; ++k) {
__ BIND(L_multiBlock_loopTopHead[k]);
if (k != 0) {
__ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left
__ jcc(Assembler::less, L_singleBlock_loopTopHead2[k]);
}
if (k == 1) {
__ subptr(rsp, 6 * wordSize);
__ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15
load_key(xmm15, key, 0xb0); // 0xb0; 192-bit key goes up to 0xc0
__ movdqu(Address(rsp, 2 * wordSize), xmm15);
load_key(xmm1, key, 0xc0); // 0xc0;
__ movdqu(Address(rsp, 4 * wordSize), xmm1);
} else if (k == 2) {
__ subptr(rsp, 10 * wordSize);
__ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15
load_key(xmm15, key, 0xd0); // 0xd0; 256-bit key goes upto 0xe0
__ movdqu(Address(rsp, 6 * wordSize), xmm15);
load_key(xmm1, key, 0xe0); // 0xe0;
__ movdqu(Address(rsp, 8 * wordSize), xmm1);
load_key(xmm15, key, 0xb0); // 0xb0;
__ movdqu(Address(rsp, 2 * wordSize), xmm15);
load_key(xmm1, key, 0xc0); // 0xc0;
__ movdqu(Address(rsp, 4 * wordSize), xmm1);
}
__ align(OptoLoopAlignment);
__ BIND(L_multiBlock_loopTop[k]);
__ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left
__ jcc(Assembler::less, L_singleBlock_loopTopHead[k]);
if (k != 0) {
__ movdqu(xmm15, Address(rsp, 2 * wordSize));
__ movdqu(xmm1, Address(rsp, 4 * wordSize));
}
__ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers
__ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
__ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
__ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
DoFour(pxor, xmm_key_first);
if (k == 0) {
for (int rnum = 1; rnum < ROUNDS[k]; rnum++) {
DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
}
DoFour(aesdeclast, xmm_key_last);
} else if (k == 1) {
for (int rnum = 1; rnum <= ROUNDS[k]-2; rnum++) {
DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
}
__ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again.
DoFour(aesdec, xmm1); // key : 0xc0
__ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again
DoFour(aesdeclast, xmm_key_last);
} else if (k == 2) {
for (int rnum = 1; rnum <= ROUNDS[k] - 4; rnum++) {
DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
}
DoFour(aesdec, xmm1); // key : 0xc0
__ movdqu(xmm15, Address(rsp, 6 * wordSize));
__ movdqu(xmm1, Address(rsp, 8 * wordSize));
DoFour(aesdec, xmm15); // key : 0xd0
__ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again.
DoFour(aesdec, xmm1); // key : 0xe0
__ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again
DoFour(aesdeclast, xmm_key_last);
}
// for each result, xor with the r vector of previous cipher block
__ pxor(xmm_result0, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize));
__ pxor(xmm_result1, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize));
__ pxor(xmm_result2, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize));
__ pxor(xmm_result3, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks
if (k != 0) {
__ movdqu(Address(rvec, 0x00), xmm_prev_block_cipher);
}
__ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output
__ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
__ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
__ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
__ addptr(pos, PARALLEL_FACTOR * AESBlockSize);
__ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize);
__ jmp(L_multiBlock_loopTop[k]);
// registers used in the non-parallelized loops
// xmm register assignments for the loops below
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_prev_block_cipher_save = xmm2;
const XMMRegister xmm_key11 = xmm3;
const XMMRegister xmm_key12 = xmm4;
const XMMRegister key_tmp = xmm4;
__ BIND(L_singleBlock_loopTopHead[k]);
if (k == 1) {
__ addptr(rsp, 6 * wordSize);
} else if (k == 2) {
__ addptr(rsp, 10 * wordSize);
}
__ cmpptr(len_reg, 0); // any blocks left??
__ jcc(Assembler::equal, L_exit);
__ BIND(L_singleBlock_loopTopHead2[k]);
if (k == 1) {
load_key(xmm_key11, key, 0xb0); // 0xb0; 192-bit key goes upto 0xc0
load_key(xmm_key12, key, 0xc0); // 0xc0; 192-bit key goes upto 0xc0
}
if (k == 2) {
load_key(xmm_key11, key, 0xb0); // 0xb0; 256-bit key goes upto 0xe0
}
__ align(OptoLoopAlignment);
__ BIND(L_singleBlock_loopTop[k]);
__ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
__ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
__ pxor(xmm_result, xmm_key_first); // do the aes dec rounds
for (int rnum = 1; rnum <= 9 ; rnum++) {
__ aesdec(xmm_result, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
}
if (k == 1) {
__ aesdec(xmm_result, xmm_key11);
__ aesdec(xmm_result, xmm_key12);
}
if (k == 2) {
__ aesdec(xmm_result, xmm_key11);
load_key(key_tmp, key, 0xc0);
__ aesdec(xmm_result, key_tmp);
load_key(key_tmp, key, 0xd0);
__ aesdec(xmm_result, key_tmp);
load_key(key_tmp, key, 0xe0);
__ aesdec(xmm_result, key_tmp);
}
__ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0
__ pxor(xmm_result, xmm_prev_block_cipher); // xor with the current r vector
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_singleBlock_loopTop[k]);
if (k != 2) {
__ jmp(L_exit);
}
} //for 128/192/256
__ BIND(L_exit);
__ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
__ pop(rbx);
#ifdef _WIN64
__ movl(rax, len_mem);
#else
__ pop(rax); // return length
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_electronicCodeBook_encryptAESCrypt() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_encryptAESCrypt");
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register len = c_rarg3; // src len (must be multiple of blocksize 16)
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ aesecb_encrypt(from, to, key, len);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_electronicCodeBook_decryptAESCrypt() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_decryptAESCrypt");
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register len = c_rarg3; // src len (must be multiple of blocksize 16)
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ aesecb_decrypt(from, to, key, len);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// ofs and limit are use for multi-block byte array.
// int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
address generate_md5_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
const Register buf_param = r15;
const Address state_param(rsp, 0 * wordSize);
const Address ofs_param (rsp, 1 * wordSize );
const Address limit_param(rsp, 1 * wordSize + 4);
__ enter();
__ push(rbx);
__ push(rdi);
__ push(rsi);
__ push(r15);
__ subptr(rsp, 2 * wordSize);
__ movptr(buf_param, c_rarg0);
__ movptr(state_param, c_rarg1);
if (multi_block) {
__ movl(ofs_param, c_rarg2);
__ movl(limit_param, c_rarg3);
}
__ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
__ addptr(rsp, 2 * wordSize);
__ pop(r15);
__ pop(rsi);
__ pop(rdi);
__ pop(rbx);
__ leave();
__ ret(0);
return start;
}
address generate_upper_word_mask() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "upper_word_mask");
address start = __ pc();
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
return start;
}
address generate_shuffle_byte_flip_mask() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask");
address start = __ pc();
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
__ emit_data64(0x0001020304050607, relocInfo::none);
return start;
}
// ofs and limit are use for multi-block byte array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
address generate_sha1_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = c_rarg0;
Register state = c_rarg1;
Register ofs = c_rarg2;
Register limit = c_rarg3;
const XMMRegister abcd = xmm0;
const XMMRegister e0 = xmm1;
const XMMRegister e1 = xmm2;
const XMMRegister msg0 = xmm3;
const XMMRegister msg1 = xmm4;
const XMMRegister msg2 = xmm5;
const XMMRegister msg3 = xmm6;
const XMMRegister shuf_mask = xmm7;
__ enter();
__ subptr(rsp, 4 * wordSize);
__ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
buf, state, ofs, limit, rsp, multi_block);
__ addptr(rsp, 4 * wordSize);
__ leave();
__ ret(0);
return start;
}
address generate_pshuffle_byte_flip_mask() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask");
address start = __ pc();
__ emit_data64(0x0405060700010203, relocInfo::none);
__ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
if (VM_Version::supports_avx2()) {
__ emit_data64(0x0405060700010203, relocInfo::none); // second copy
__ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
// _SHUF_00BA
__ emit_data64(0x0b0a090803020100, relocInfo::none);
__ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
__ emit_data64(0x0b0a090803020100, relocInfo::none);
__ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
// _SHUF_DC00
__ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
__ emit_data64(0x0b0a090803020100, relocInfo::none);
__ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
__ emit_data64(0x0b0a090803020100, relocInfo::none);
}
return start;
}
//Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
address generate_pshuffle_byte_flip_mask_sha512() {
__ align(32);
StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512");
address start = __ pc();
if (VM_Version::supports_avx2()) {
__ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
__ emit_data64(0x1011121314151617, relocInfo::none);
__ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
__ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
}
return start;
}
// ofs and limit are use for multi-block byte array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
address generate_sha256_implCompress(bool multi_block, const char *name) {
assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = c_rarg0;
Register state = c_rarg1;
Register ofs = c_rarg2;
Register limit = c_rarg3;
const XMMRegister msg = xmm0;
const XMMRegister state0 = xmm1;
const XMMRegister state1 = xmm2;
const XMMRegister msgtmp0 = xmm3;
const XMMRegister msgtmp1 = xmm4;
const XMMRegister msgtmp2 = xmm5;
const XMMRegister msgtmp3 = xmm6;
const XMMRegister msgtmp4 = xmm7;
const XMMRegister shuf_mask = xmm8;
__ enter();
__ subptr(rsp, 4 * wordSize);
if (VM_Version::supports_sha()) {
__ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
buf, state, ofs, limit, rsp, multi_block, shuf_mask);
} else if (VM_Version::supports_avx2()) {
__ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
buf, state, ofs, limit, rsp, multi_block, shuf_mask);
}
__ addptr(rsp, 4 * wordSize);
__ vzeroupper();
__ leave();
__ ret(0);
return start;
}
address generate_sha512_implCompress(bool multi_block, const char *name) {
assert(VM_Version::supports_avx2(), "");
assert(VM_Version::supports_bmi2(), "");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = c_rarg0;
Register state = c_rarg1;
Register ofs = c_rarg2;
Register limit = c_rarg3;
const XMMRegister msg = xmm0;
const XMMRegister state0 = xmm1;
const XMMRegister state1 = xmm2;
const XMMRegister msgtmp0 = xmm3;
const XMMRegister msgtmp1 = xmm4;
const XMMRegister msgtmp2 = xmm5;
const XMMRegister msgtmp3 = xmm6;
const XMMRegister msgtmp4 = xmm7;
const XMMRegister shuf_mask = xmm8;
__ enter();
__ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
buf, state, ofs, limit, rsp, multi_block, shuf_mask);
__ vzeroupper();
__ leave();
__ ret(0);
return start;
}
// This mask is used for incrementing counter value(linc0, linc4, etc.)
address counter_mask_addr() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "counter_mask_addr");
address start = __ pc();
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);//lbswapmask
__ emit_data64(0x0001020304050607, relocInfo::none);
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
__ emit_data64(0x0001020304050607, relocInfo::none);
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
__ emit_data64(0x0001020304050607, relocInfo::none);
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
__ emit_data64(0x0001020304050607, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);//linc0 = counter_mask_addr+64
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000001, relocInfo::none);//counter_mask_addr() + 80
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000002, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000003, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000004, relocInfo::none);//linc4 = counter_mask_addr() + 128
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000004, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000004, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000004, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000008, relocInfo::none);//linc8 = counter_mask_addr() + 192
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000008, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000008, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000008, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000020, relocInfo::none);//linc32 = counter_mask_addr() + 256
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000020, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000020, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000020, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000010, relocInfo::none);//linc16 = counter_mask_addr() + 320
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000010, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000010, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
__ emit_data64(0x0000000000000010, relocInfo::none);
__ emit_data64(0x0000000000000000, relocInfo::none);
return start;
}
// Vector AES Counter implementation
address generate_counterMode_VectorAESCrypt() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address r8
const Register counter = c_rarg3; // counter byte array initialized from counter array address
// and updated with the incremented counter in the end
#ifndef _WIN64
const Register len_reg = c_rarg4;
const Register saved_encCounter_start = c_rarg5;
const Register used_addr = r10;
const Address used_mem(rbp, 2 * wordSize);
const Register used = r11;
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Address saved_encCounter_mem(rbp, 7 * wordSize); // saved encrypted counter is on stack on Win64
const Address used_mem(rbp, 8 * wordSize); // used length is on stack on Win64
const Register len_reg = r10; // pick the first volatile windows register
const Register saved_encCounter_start = r11;
const Register used_addr = r13;
const Register used = r14;
#endif
__ enter();
// Save state before entering routine
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
#ifdef _WIN64
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
__ movptr(saved_encCounter_start, saved_encCounter_mem);
__ movptr(used_addr, used_mem);
__ movl(used, Address(used_addr, 0));
#else
__ push(len_reg); // Save
__ movptr(used_addr, used_mem);
__ movl(used, Address(used_addr, 0));
#endif
__ push(rbx);
__ aesctr_encrypt(from, to, key, counter, len_reg, used, used_addr, saved_encCounter_start);
// Restore state before leaving routine
__ pop(rbx);
#ifdef _WIN64
__ movl(rax, len_mem); // return length
#else
__ pop(rax); // return length
#endif
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// This is a version of CTR/AES crypt which does 6 blocks in a loop at a time
// to hide instruction latency
//
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - counter vector byte array address
// Linux
// c_rarg4 - input length
// c_rarg5 - saved encryptedCounter start
// rbp + 6 * wordSize - saved used length
// Windows
// rbp + 6 * wordSize - input length
// rbp + 7 * wordSize - saved encryptedCounter start
// rbp + 8 * wordSize - saved used length
//
// Output:
// rax - input length
//
address generate_counterMode_AESCrypt_Parallel() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register counter = c_rarg3; // counter byte array initialized from counter array address
// and updated with the incremented counter in the end
#ifndef _WIN64
const Register len_reg = c_rarg4;
const Register saved_encCounter_start = c_rarg5;
const Register used_addr = r10;
const Address used_mem(rbp, 2 * wordSize);
const Register used = r11;
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Address saved_encCounter_mem(rbp, 7 * wordSize); // length is on stack on Win64
const Address used_mem(rbp, 8 * wordSize); // length is on stack on Win64
const Register len_reg = r10; // pick the first volatile windows register
const Register saved_encCounter_start = r11;
const Register used_addr = r13;
const Register used = r14;
#endif
const Register pos = rax;
const int PARALLEL_FACTOR = 6;
const XMMRegister xmm_counter_shuf_mask = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
const XMMRegister xmm_curr_counter = xmm2;
const XMMRegister xmm_key_tmp0 = xmm3;
const XMMRegister xmm_key_tmp1 = xmm4;
// registers holding the four results in the parallelized loop
const XMMRegister xmm_result0 = xmm5;
const XMMRegister xmm_result1 = xmm6;
const XMMRegister xmm_result2 = xmm7;
const XMMRegister xmm_result3 = xmm8;
const XMMRegister xmm_result4 = xmm9;
const XMMRegister xmm_result5 = xmm10;
const XMMRegister xmm_from0 = xmm11;
const XMMRegister xmm_from1 = xmm12;
const XMMRegister xmm_from2 = xmm13;
const XMMRegister xmm_from3 = xmm14; //the last one is xmm14. we have to preserve it on WIN64.
const XMMRegister xmm_from4 = xmm3; //reuse xmm3~4. Because xmm_key_tmp0~1 are useless when loading input text
const XMMRegister xmm_from5 = xmm4;
//for key_128, key_192, key_256
const int rounds[3] = {10, 12, 14};
Label L_exit_preLoop, L_preLoop_start;
Label L_multiBlock_loopTop[3];
Label L_singleBlockLoopTop[3];
Label L__incCounter[3][6]; //for 6 blocks
Label L__incCounter_single[3]; //for single block, key128, key192, key256
Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3];
Label L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3];
Label L_exit;
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
// allocate spill slots for r13, r14
enum {
saved_r13_offset,
saved_r14_offset
};
__ subptr(rsp, 2 * wordSize);
__ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
__ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
__ movptr(saved_encCounter_start, saved_encCounter_mem);
__ movptr(used_addr, used_mem);
__ movl(used, Address(used_addr, 0));
#else
__ push(len_reg); // Save
__ movptr(used_addr, used_mem);
__ movl(used, Address(used_addr, 0));
#endif
__ push(rbx); // Save RBX
__ movdqu(xmm_curr_counter, Address(counter, 0x00)); // initialize counter with initial counter
__ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()), pos); // pos as scratch
__ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled
__ movptr(pos, 0);
// Use the partially used encrpyted counter from last invocation
__ BIND(L_preLoop_start);
__ cmpptr(used, 16);
__ jcc(Assembler::aboveEqual, L_exit_preLoop);
__ cmpptr(len_reg, 0);
__ jcc(Assembler::lessEqual, L_exit_preLoop);
__ movb(rbx, Address(saved_encCounter_start, used));
__ xorb(rbx, Address(from, pos));
__ movb(Address(to, pos), rbx);
__ addptr(pos, 1);
__ addptr(used, 1);
__ subptr(len_reg, 1);
__ jmp(L_preLoop_start);
__ BIND(L_exit_preLoop);
__ movl(Address(used_addr, 0), used);
// key length could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); // rbx as scratch
__ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rbx, 52);
__ jcc(Assembler::equal, L_multiBlock_loopTop[1]);
__ cmpl(rbx, 60);
__ jcc(Assembler::equal, L_multiBlock_loopTop[2]);
#define CTR_DoSix(opc, src_reg) \
__ opc(xmm_result0, src_reg); \
__ opc(xmm_result1, src_reg); \
__ opc(xmm_result2, src_reg); \
__ opc(xmm_result3, src_reg); \
__ opc(xmm_result4, src_reg); \
__ opc(xmm_result5, src_reg);
// k == 0 : generate code for key_128
// k == 1 : generate code for key_192
// k == 2 : generate code for key_256
for (int k = 0; k < 3; ++k) {
//multi blocks starts here
__ align(OptoLoopAlignment);
__ BIND(L_multiBlock_loopTop[k]);
__ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left
__ jcc(Assembler::less, L_singleBlockLoopTop[k]);
load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask);
//load, then increase counters
CTR_DoSix(movdqa, xmm_curr_counter);
inc_counter(rbx, xmm_result1, 0x01, L__incCounter[k][0]);
inc_counter(rbx, xmm_result2, 0x02, L__incCounter[k][1]);
inc_counter(rbx, xmm_result3, 0x03, L__incCounter[k][2]);
inc_counter(rbx, xmm_result4, 0x04, L__incCounter[k][3]);
inc_counter(rbx, xmm_result5, 0x05, L__incCounter[k][4]);
inc_counter(rbx, xmm_curr_counter, 0x06, L__incCounter[k][5]);
CTR_DoSix(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR
CTR_DoSix(pxor, xmm_key_tmp0); //PXOR with Round 0 key
//load two ROUND_KEYs at a time
for (int i = 1; i < rounds[k]; ) {
load_key(xmm_key_tmp1, key, (0x10 * i), xmm_key_shuf_mask);
load_key(xmm_key_tmp0, key, (0x10 * (i+1)), xmm_key_shuf_mask);
CTR_DoSix(aesenc, xmm_key_tmp1);
i++;
if (i != rounds[k]) {
CTR_DoSix(aesenc, xmm_key_tmp0);
} else {
CTR_DoSix(aesenclast, xmm_key_tmp0);
}
i++;
}
// get next PARALLEL_FACTOR blocks into xmm_result registers
__ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
__ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
__ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
__ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
__ movdqu(xmm_from4, Address(from, pos, Address::times_1, 4 * AESBlockSize));
__ movdqu(xmm_from5, Address(from, pos, Address::times_1, 5 * AESBlockSize));
__ pxor(xmm_result0, xmm_from0);
__ pxor(xmm_result1, xmm_from1);
__ pxor(xmm_result2, xmm_from2);
__ pxor(xmm_result3, xmm_from3);
__ pxor(xmm_result4, xmm_from4);
__ pxor(xmm_result5, xmm_from5);
// store 6 results into the next 64 bytes of output
__ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
__ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
__ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
__ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
__ movdqu(Address(to, pos, Address::times_1, 4 * AESBlockSize), xmm_result4);
__ movdqu(Address(to, pos, Address::times_1, 5 * AESBlockSize), xmm_result5);
__ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text
__ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length
__ jmp(L_multiBlock_loopTop[k]);
// singleBlock starts here
__ align(OptoLoopAlignment);
__ BIND(L_singleBlockLoopTop[k]);
__ cmpptr(len_reg, 0);
__ jcc(Assembler::lessEqual, L_exit);
load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask);
__ movdqa(xmm_result0, xmm_curr_counter);
inc_counter(rbx, xmm_curr_counter, 0x01, L__incCounter_single[k]);
__ pshufb(xmm_result0, xmm_counter_shuf_mask);
__ pxor(xmm_result0, xmm_key_tmp0);
for (int i = 1; i < rounds[k]; i++) {
load_key(xmm_key_tmp0, key, (0x10 * i), xmm_key_shuf_mask);
__ aesenc(xmm_result0, xmm_key_tmp0);
}
load_key(xmm_key_tmp0, key, (rounds[k] * 0x10), xmm_key_shuf_mask);
__ aesenclast(xmm_result0, xmm_key_tmp0);
__ cmpptr(len_reg, AESBlockSize);
__ jcc(Assembler::less, L_processTail_insr[k]);
__ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
__ pxor(xmm_result0, xmm_from0);
__ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jmp(L_singleBlockLoopTop[k]);
__ BIND(L_processTail_insr[k]); // Process the tail part of the input array
__ addptr(pos, len_reg); // 1. Insert bytes from src array into xmm_from0 register
__ testptr(len_reg, 8);
__ jcc(Assembler::zero, L_processTail_4_insr[k]);
__ subptr(pos,8);
__ pinsrq(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_4_insr[k]);
__ testptr(len_reg, 4);
__ jcc(Assembler::zero, L_processTail_2_insr[k]);
__ subptr(pos,4);
__ pslldq(xmm_from0, 4);
__ pinsrd(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_2_insr[k]);
__ testptr(len_reg, 2);
__ jcc(Assembler::zero, L_processTail_1_insr[k]);
__ subptr(pos, 2);
__ pslldq(xmm_from0, 2);
__ pinsrw(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_1_insr[k]);
__ testptr(len_reg, 1);
__ jcc(Assembler::zero, L_processTail_exit_insr[k]);
__ subptr(pos, 1);
__ pslldq(xmm_from0, 1);
__ pinsrb(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_exit_insr[k]);
__ movdqu(Address(saved_encCounter_start, 0), xmm_result0); // 2. Perform pxor of the encrypted counter and plaintext Bytes.
__ pxor(xmm_result0, xmm_from0); // Also the encrypted counter is saved for next invocation.
__ testptr(len_reg, 8);
__ jcc(Assembler::zero, L_processTail_4_extr[k]); // 3. Extract bytes from xmm_result0 into the dest. array
__ pextrq(Address(to, pos), xmm_result0, 0);
__ psrldq(xmm_result0, 8);
__ addptr(pos, 8);
__ BIND(L_processTail_4_extr[k]);
__ testptr(len_reg, 4);
__ jcc(Assembler::zero, L_processTail_2_extr[k]);
__ pextrd(Address(to, pos), xmm_result0, 0);
__ psrldq(xmm_result0, 4);
__ addptr(pos, 4);
__ BIND(L_processTail_2_extr[k]);
__ testptr(len_reg, 2);
__ jcc(Assembler::zero, L_processTail_1_extr[k]);
__ pextrw(Address(to, pos), xmm_result0, 0);
__ psrldq(xmm_result0, 2);
__ addptr(pos, 2);
__ BIND(L_processTail_1_extr[k]);
__ testptr(len_reg, 1);
__ jcc(Assembler::zero, L_processTail_exit_extr[k]);
__ pextrb(Address(to, pos), xmm_result0, 0);
__ BIND(L_processTail_exit_extr[k]);
__ movl(Address(used_addr, 0), len_reg);
__ jmp(L_exit);
}
__ BIND(L_exit);
__ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back.
__ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back
__ pop(rbx); // pop the saved RBX.
#ifdef _WIN64
__ movl(rax, len_mem);
__ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
__ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
__ addptr(rsp, 2 * wordSize);
#else
__ pop(rax); // return 'len'
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
void roundDec(XMMRegister xmm_reg) {
__ vaesdec(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit);
__ vaesdec(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit);
}
void roundDeclast(XMMRegister xmm_reg) {
__ vaesdeclast(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit);
__ vaesdeclast(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit);
}
void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask = NULL) {
__ movdqu(xmmdst, Address(key, offset));
if (xmm_shuf_mask != NULL) {
__ pshufb(xmmdst, xmm_shuf_mask);
} else {
__ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
}
__ evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit);
}
address generate_cipherBlockChaining_decryptVectorAESCrypt() {
assert(VM_Version::supports_avx512_vaes(), "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
#ifndef _WIN64
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Register len_reg = r11; // pick the volatile windows register
#endif
Label Loop, Loop1, L_128, L_256, L_192, KEY_192, KEY_256, Loop2, Lcbc_dec_rem_loop,
Lcbc_dec_rem_last, Lcbc_dec_ret, Lcbc_dec_rem, Lcbc_exit;
__ enter();
#ifdef _WIN64
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
#else
__ push(len_reg); // Save
#endif
__ push(rbx);
__ vzeroupper();
// Temporary variable declaration for swapping key bytes
const XMMRegister xmm_key_shuf_mask = xmm1;
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
// Calculate number of rounds from key size: 44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds
const Register rounds = rbx;
__ movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
const XMMRegister IV = xmm0;
// Load IV and broadcast value to 512-bits
__ evbroadcasti64x2(IV, Address(rvec, 0), Assembler::AVX_512bit);
// Temporary variables for storing round keys
const XMMRegister RK0 = xmm30;
const XMMRegister RK1 = xmm9;
const XMMRegister RK2 = xmm18;
const XMMRegister RK3 = xmm19;
const XMMRegister RK4 = xmm20;
const XMMRegister RK5 = xmm21;
const XMMRegister RK6 = xmm22;
const XMMRegister RK7 = xmm23;
const XMMRegister RK8 = xmm24;
const XMMRegister RK9 = xmm25;
const XMMRegister RK10 = xmm26;
// Load and shuffle key
// the java expanded key ordering is rotated one position from what we want
// so we start from 1*16 here and hit 0*16 last
ev_load_key(RK1, key, 1 * 16, xmm_key_shuf_mask);
ev_load_key(RK2, key, 2 * 16, xmm_key_shuf_mask);
ev_load_key(RK3, key, 3 * 16, xmm_key_shuf_mask);
ev_load_key(RK4, key, 4 * 16, xmm_key_shuf_mask);
ev_load_key(RK5, key, 5 * 16, xmm_key_shuf_mask);
ev_load_key(RK6, key, 6 * 16, xmm_key_shuf_mask);
ev_load_key(RK7, key, 7 * 16, xmm_key_shuf_mask);
ev_load_key(RK8, key, 8 * 16, xmm_key_shuf_mask);
ev_load_key(RK9, key, 9 * 16, xmm_key_shuf_mask);
ev_load_key(RK10, key, 10 * 16, xmm_key_shuf_mask);
ev_load_key(RK0, key, 0*16, xmm_key_shuf_mask);
// Variables for storing source cipher text
const XMMRegister S0 = xmm10;
const XMMRegister S1 = xmm11;
const XMMRegister S2 = xmm12;
const XMMRegister S3 = xmm13;
const XMMRegister S4 = xmm14;
const XMMRegister S5 = xmm15;
const XMMRegister S6 = xmm16;
const XMMRegister S7 = xmm17;
// Variables for storing decrypted text
const XMMRegister B0 = xmm1;
const XMMRegister B1 = xmm2;
const XMMRegister B2 = xmm3;
const XMMRegister B3 = xmm4;
const XMMRegister B4 = xmm5;
const XMMRegister B5 = xmm6;
const XMMRegister B6 = xmm7;
const XMMRegister B7 = xmm8;
__ cmpl(rounds, 44);
__ jcc(Assembler::greater, KEY_192);
__ jmp(Loop);
__ BIND(KEY_192);
const XMMRegister RK11 = xmm27;
const XMMRegister RK12 = xmm28;
ev_load_key(RK11, key, 11*16, xmm_key_shuf_mask);
ev_load_key(RK12, key, 12*16, xmm_key_shuf_mask);
__ cmpl(rounds, 52);
__ jcc(Assembler::greater, KEY_256);
__ jmp(Loop);
__ BIND(KEY_256);
const XMMRegister RK13 = xmm29;
const XMMRegister RK14 = xmm31;
ev_load_key(RK13, key, 13*16, xmm_key_shuf_mask);
ev_load_key(RK14, key, 14*16, xmm_key_shuf_mask);
__ BIND(Loop);
__ cmpl(len_reg, 512);
__ jcc(Assembler::below, Lcbc_dec_rem);
__ BIND(Loop1);
__ subl(len_reg, 512);
__ evmovdquq(S0, Address(from, 0 * 64), Assembler::AVX_512bit);
__ evmovdquq(S1, Address(from, 1 * 64), Assembler::AVX_512bit);
__ evmovdquq(S2, Address(from, 2 * 64), Assembler::AVX_512bit);
__ evmovdquq(S3, Address(from, 3 * 64), Assembler::AVX_512bit);
__ evmovdquq(S4, Address(from, 4 * 64), Assembler::AVX_512bit);
__ evmovdquq(S5, Address(from, 5 * 64), Assembler::AVX_512bit);
__ evmovdquq(S6, Address(from, 6 * 64), Assembler::AVX_512bit);
__ evmovdquq(S7, Address(from, 7 * 64), Assembler::AVX_512bit);
__ leaq(from, Address(from, 8 * 64));
__ evpxorq(B0, S0, RK1, Assembler::AVX_512bit);
__ evpxorq(B1, S1, RK1, Assembler::AVX_512bit);
__ evpxorq(B2, S2, RK1, Assembler::AVX_512bit);
__ evpxorq(B3, S3, RK1, Assembler::AVX_512bit);
__ evpxorq(B4, S4, RK1, Assembler::AVX_512bit);
__ evpxorq(B5, S5, RK1, Assembler::AVX_512bit);
__ evpxorq(B6, S6, RK1, Assembler::AVX_512bit);
__ evpxorq(B7, S7, RK1, Assembler::AVX_512bit);
__ evalignq(IV, S0, IV, 0x06);
__ evalignq(S0, S1, S0, 0x06);
__ evalignq(S1, S2, S1, 0x06);
__ evalignq(S2, S3, S2, 0x06);
__ evalignq(S3, S4, S3, 0x06);
__ evalignq(S4, S5, S4, 0x06);
__ evalignq(S5, S6, S5, 0x06);
__ evalignq(S6, S7, S6, 0x06);
roundDec(RK2);
roundDec(RK3);
roundDec(RK4);
roundDec(RK5);
roundDec(RK6);
roundDec(RK7);
roundDec(RK8);
roundDec(RK9);
roundDec(RK10);
__ cmpl(rounds, 44);
__ jcc(Assembler::belowEqual, L_128);
roundDec(RK11);
roundDec(RK12);
__ cmpl(rounds, 52);
__ jcc(Assembler::belowEqual, L_192);
roundDec(RK13);
roundDec(RK14);
__ BIND(L_256);
roundDeclast(RK0);
__ jmp(Loop2);
__ BIND(L_128);
roundDeclast(RK0);
__ jmp(Loop2);
__ BIND(L_192);
roundDeclast(RK0);
__ BIND(Loop2);
__ evpxorq(B0, B0, IV, Assembler::AVX_512bit);
__ evpxorq(B1, B1, S0, Assembler::AVX_512bit);
__ evpxorq(B2, B2, S1, Assembler::AVX_512bit);
__ evpxorq(B3, B3, S2, Assembler::AVX_512bit);
__ evpxorq(B4, B4, S3, Assembler::AVX_512bit);
__ evpxorq(B5, B5, S4, Assembler::AVX_512bit);
__ evpxorq(B6, B6, S5, Assembler::AVX_512bit);
__ evpxorq(B7, B7, S6, Assembler::AVX_512bit);
__ evmovdquq(IV, S7, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 0 * 64), B0, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 1 * 64), B1, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 2 * 64), B2, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 3 * 64), B3, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 4 * 64), B4, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 5 * 64), B5, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 6 * 64), B6, Assembler::AVX_512bit);
__ evmovdquq(Address(to, 7 * 64), B7, Assembler::AVX_512bit);
__ leaq(to, Address(to, 8 * 64));
__ jmp(Loop);
__ BIND(Lcbc_dec_rem);
__ evshufi64x2(IV, IV, IV, 0x03, Assembler::AVX_512bit);
__ BIND(Lcbc_dec_rem_loop);
__ subl(len_reg, 16);
__ jcc(Assembler::carrySet, Lcbc_dec_ret);
__ movdqu(S0, Address(from, 0));
__ evpxorq(B0, S0, RK1, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK2, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK3, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK4, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK5, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK6, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK7, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK8, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK9, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK10, Assembler::AVX_512bit);
__ cmpl(rounds, 44);
__ jcc(Assembler::belowEqual, Lcbc_dec_rem_last);
__ vaesdec(B0, B0, RK11, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK12, Assembler::AVX_512bit);
__ cmpl(rounds, 52);
__ jcc(Assembler::belowEqual, Lcbc_dec_rem_last);
__ vaesdec(B0, B0, RK13, Assembler::AVX_512bit);
__ vaesdec(B0, B0, RK14, Assembler::AVX_512bit);
__ BIND(Lcbc_dec_rem_last);
__ vaesdeclast(B0, B0, RK0, Assembler::AVX_512bit);
__ evpxorq(B0, B0, IV, Assembler::AVX_512bit);
__ evmovdquq(IV, S0, Assembler::AVX_512bit);
__ movdqu(Address(to, 0), B0);
__ leaq(from, Address(from, 16));
__ leaq(to, Address(to, 16));
__ jmp(Lcbc_dec_rem_loop);
__ BIND(Lcbc_dec_ret);
__ movdqu(Address(rvec, 0), IV);
// Zero out the round keys
__ evpxorq(RK0, RK0, RK0, Assembler::AVX_512bit);
__ evpxorq(RK1, RK1, RK1, Assembler::AVX_512bit);
__ evpxorq(RK2, RK2, RK2, Assembler::AVX_512bit);
__ evpxorq(RK3, RK3, RK3, Assembler::AVX_512bit);
__ evpxorq(RK4, RK4, RK4, Assembler::AVX_512bit);
__ evpxorq(RK5, RK5, RK5, Assembler::AVX_512bit);
__ evpxorq(RK6, RK6, RK6, Assembler::AVX_512bit);
__ evpxorq(RK7, RK7, RK7, Assembler::AVX_512bit);
__ evpxorq(RK8, RK8, RK8, Assembler::AVX_512bit);
__ evpxorq(RK9, RK9, RK9, Assembler::AVX_512bit);
__ evpxorq(RK10, RK10, RK10, Assembler::AVX_512bit);
__ cmpl(rounds, 44);
__ jcc(Assembler::belowEqual, Lcbc_exit);
__ evpxorq(RK11, RK11, RK11, Assembler::AVX_512bit);
__ evpxorq(RK12, RK12, RK12, Assembler::AVX_512bit);
__ cmpl(rounds, 52);
__ jcc(Assembler::belowEqual, Lcbc_exit);
__ evpxorq(RK13, RK13, RK13, Assembler::AVX_512bit);
__ evpxorq(RK14, RK14, RK14, Assembler::AVX_512bit);
__ BIND(Lcbc_exit);
__ pop(rbx);
#ifdef _WIN64
__ movl(rax, len_mem);
#else
__ pop(rax); // return length
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Polynomial x^128+x^127+x^126+x^121+1
address ghash_polynomial_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "_ghash_poly_addr");
address start = __ pc();
__ emit_data64(0x0000000000000001, relocInfo::none);
__ emit_data64(0xc200000000000000, relocInfo::none);
return start;
}
address ghash_shufflemask_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "_ghash_shuffmask_addr");
address start = __ pc();
__ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none);
__ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none);
return start;
}
// Ghash single and multi block operations using AVX instructions
address generate_avx_ghash_processBlocks() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
// arguments
const Register state = c_rarg0;
const Register htbl = c_rarg1;
const Register data = c_rarg2;
const Register blocks = c_rarg3;
__ enter();
// Save state before entering routine
__ avx_ghash(state, htbl, data, blocks);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// byte swap x86 long
address generate_ghash_long_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
address start = __ pc();
__ emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none );
__ emit_data64(0x0706050403020100, relocInfo::none );
return start;
}
// byte swap x86 byte array
address generate_ghash_byte_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
address start = __ pc();
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none );
__ emit_data64(0x0001020304050607, relocInfo::none );
return start;
}
/* Single and multi-block ghash operations */
address generate_ghash_processBlocks() {
__ align(CodeEntryAlignment);
Label L_ghash_loop, L_exit;
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
const Register state = c_rarg0;
const Register subkeyH = c_rarg1;
const Register data = c_rarg2;
const Register blocks = c_rarg3;
const XMMRegister xmm_temp0 = xmm0;
const XMMRegister xmm_temp1 = xmm1;
const XMMRegister xmm_temp2 = xmm2;
const XMMRegister xmm_temp3 = xmm3;
const XMMRegister xmm_temp4 = xmm4;
const XMMRegister xmm_temp5 = xmm5;
const XMMRegister xmm_temp6 = xmm6;
const XMMRegister xmm_temp7 = xmm7;
const XMMRegister xmm_temp8 = xmm8;
const XMMRegister xmm_temp9 = xmm9;
const XMMRegister xmm_temp10 = xmm10;
__ enter();
__ movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ movdqu(xmm_temp0, Address(state, 0));
__ pshufb(xmm_temp0, xmm_temp10);
__ BIND(L_ghash_loop);
__ movdqu(xmm_temp2, Address(data, 0));
__ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
__ movdqu(xmm_temp1, Address(subkeyH, 0));
__ pshufb(xmm_temp1, xmm_temp10);
__ pxor(xmm_temp0, xmm_temp2);
//
// Multiply with the hash key
//
__ movdqu(xmm_temp3, xmm_temp0);
__ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0
__ movdqu(xmm_temp4, xmm_temp0);
__ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1
__ movdqu(xmm_temp5, xmm_temp0);
__ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0
__ movdqu(xmm_temp6, xmm_temp0);
__ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1
__ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0
__ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5
__ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right
__ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left
__ pxor(xmm_temp3, xmm_temp5);
__ pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result
// of the carry-less multiplication of
// xmm0 by xmm1.
// We shift the result of the multiplication by one bit position
// to the left to cope for the fact that the bits are reversed.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp8, xmm_temp6);
__ pslld(xmm_temp3, 1);
__ pslld(xmm_temp6, 1);
__ psrld(xmm_temp7, 31);
__ psrld(xmm_temp8, 31);
__ movdqu(xmm_temp9, xmm_temp7);
__ pslldq(xmm_temp8, 4);
__ pslldq(xmm_temp7, 4);
__ psrldq(xmm_temp9, 12);
__ por(xmm_temp3, xmm_temp7);
__ por(xmm_temp6, xmm_temp8);
__ por(xmm_temp6, xmm_temp9);
//
// First phase of the reduction
//
// Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts
// independently.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp8, xmm_temp3);
__ movdqu(xmm_temp9, xmm_temp3);
__ pslld(xmm_temp7, 31); // packed right shift shifting << 31
__ pslld(xmm_temp8, 30); // packed right shift shifting << 30
__ pslld(xmm_temp9, 25); // packed right shift shifting << 25
__ pxor(xmm_temp7, xmm_temp8); // xor the shifted versions
__ pxor(xmm_temp7, xmm_temp9);
__ movdqu(xmm_temp8, xmm_temp7);
__ pslldq(xmm_temp7, 12);
__ psrldq(xmm_temp8, 4);
__ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete
//
// Second phase of the reduction
//
// Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these
// shift operations.
__ movdqu(xmm_temp2, xmm_temp3);
__ movdqu(xmm_temp4, xmm_temp3);
__ movdqu(xmm_temp5, xmm_temp3);
__ psrld(xmm_temp2, 1); // packed left shifting >> 1
__ psrld(xmm_temp4, 2); // packed left shifting >> 2
__ psrld(xmm_temp5, 7); // packed left shifting >> 7
__ pxor(xmm_temp2, xmm_temp4); // xor the shifted versions
__ pxor(xmm_temp2, xmm_temp5);
__ pxor(xmm_temp2, xmm_temp8);
__ pxor(xmm_temp3, xmm_temp2);
__ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6
__ decrement(blocks);
__ jcc(Assembler::zero, L_exit);
__ movdqu(xmm_temp0, xmm_temp6);
__ addptr(data, 16);
__ jmp(L_ghash_loop);
__ BIND(L_exit);
__ pshufb(xmm_temp6, xmm_temp10); // Byte swap 16-byte result
__ movdqu(Address(state, 0), xmm_temp6); // store the result
__ leave();
__ ret(0);
return start;
}
//base64 character set
address base64_charset_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "base64_charset");
address start = __ pc();
__ emit_data64(0x0000004200000041, relocInfo::none);
__ emit_data64(0x0000004400000043, relocInfo::none);
__ emit_data64(0x0000004600000045, relocInfo::none);
__ emit_data64(0x0000004800000047, relocInfo::none);
__ emit_data64(0x0000004a00000049, relocInfo::none);
__ emit_data64(0x0000004c0000004b, relocInfo::none);
__ emit_data64(0x0000004e0000004d, relocInfo::none);
__ emit_data64(0x000000500000004f, relocInfo::none);
__ emit_data64(0x0000005200000051, relocInfo::none);
__ emit_data64(0x0000005400000053, relocInfo::none);
__ emit_data64(0x0000005600000055, relocInfo::none);
__ emit_data64(0x0000005800000057, relocInfo::none);
__ emit_data64(0x0000005a00000059, relocInfo::none);
__ emit_data64(0x0000006200000061, relocInfo::none);
__ emit_data64(0x0000006400000063, relocInfo::none);
__ emit_data64(0x0000006600000065, relocInfo::none);
__ emit_data64(0x0000006800000067, relocInfo::none);
__ emit_data64(0x0000006a00000069, relocInfo::none);
__ emit_data64(0x0000006c0000006b, relocInfo::none);
__ emit_data64(0x0000006e0000006d, relocInfo::none);
__ emit_data64(0x000000700000006f, relocInfo::none);
__ emit_data64(0x0000007200000071, relocInfo::none);
__ emit_data64(0x0000007400000073, relocInfo::none);
__ emit_data64(0x0000007600000075, relocInfo::none);
__ emit_data64(0x0000007800000077, relocInfo::none);
__ emit_data64(0x0000007a00000079, relocInfo::none);
__ emit_data64(0x0000003100000030, relocInfo::none);
__ emit_data64(0x0000003300000032, relocInfo::none);
__ emit_data64(0x0000003500000034, relocInfo::none);
__ emit_data64(0x0000003700000036, relocInfo::none);
__ emit_data64(0x0000003900000038, relocInfo::none);
__ emit_data64(0x0000002f0000002b, relocInfo::none);
return start;
}
//base64 url character set
address base64url_charset_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "base64url_charset");
address start = __ pc();
__ emit_data64(0x0000004200000041, relocInfo::none);
__ emit_data64(0x0000004400000043, relocInfo::none);
__ emit_data64(0x0000004600000045, relocInfo::none);
__ emit_data64(0x0000004800000047, relocInfo::none);
__ emit_data64(0x0000004a00000049, relocInfo::none);
__ emit_data64(0x0000004c0000004b, relocInfo::none);
__ emit_data64(0x0000004e0000004d, relocInfo::none);
__ emit_data64(0x000000500000004f, relocInfo::none);
__ emit_data64(0x0000005200000051, relocInfo::none);
__ emit_data64(0x0000005400000053, relocInfo::none);
__ emit_data64(0x0000005600000055, relocInfo::none);
__ emit_data64(0x0000005800000057, relocInfo::none);
__ emit_data64(0x0000005a00000059, relocInfo::none);
__ emit_data64(0x0000006200000061, relocInfo::none);
__ emit_data64(0x0000006400000063, relocInfo::none);
__ emit_data64(0x0000006600000065, relocInfo::none);
__ emit_data64(0x0000006800000067, relocInfo::none);
__ emit_data64(0x0000006a00000069, relocInfo::none);
__ emit_data64(0x0000006c0000006b, relocInfo::none);
__ emit_data64(0x0000006e0000006d, relocInfo::none);
__ emit_data64(0x000000700000006f, relocInfo::none);
__ emit_data64(0x0000007200000071, relocInfo::none);
__ emit_data64(0x0000007400000073, relocInfo::none);
__ emit_data64(0x0000007600000075, relocInfo::none);
__ emit_data64(0x0000007800000077, relocInfo::none);
__ emit_data64(0x0000007a00000079, relocInfo::none);
__ emit_data64(0x0000003100000030, relocInfo::none);
__ emit_data64(0x0000003300000032, relocInfo::none);
__ emit_data64(0x0000003500000034, relocInfo::none);
__ emit_data64(0x0000003700000036, relocInfo::none);
__ emit_data64(0x0000003900000038, relocInfo::none);
__ emit_data64(0x0000005f0000002d, relocInfo::none);
return start;
}
address base64_bswap_mask_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "bswap_mask_base64");
address start = __ pc();
__ emit_data64(0x0504038002010080, relocInfo::none);
__ emit_data64(0x0b0a098008070680, relocInfo::none);
__ emit_data64(0x0908078006050480, relocInfo::none);
__ emit_data64(0x0f0e0d800c0b0a80, relocInfo::none);
__ emit_data64(0x0605048003020180, relocInfo::none);
__ emit_data64(0x0c0b0a8009080780, relocInfo::none);
__ emit_data64(0x0504038002010080, relocInfo::none);
__ emit_data64(0x0b0a098008070680, relocInfo::none);
return start;
}
address base64_right_shift_mask_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "right_shift_mask");
address start = __ pc();
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
__ emit_data64(0x0006000400020000, relocInfo::none);
return start;
}
address base64_left_shift_mask_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "left_shift_mask");
address start = __ pc();
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
__ emit_data64(0x0000000200040000, relocInfo::none);
return start;
}
address base64_and_mask_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "and_mask");
address start = __ pc();
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
__ emit_data64(0x3f003f003f000000, relocInfo::none);
return start;
}
address base64_gather_mask_addr() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "gather_mask");
address start = __ pc();
__ emit_data64(0xffffffffffffffff, relocInfo::none);
return start;
}
// Code for generating Base64 encoding.
// Intrinsic function prototype in Base64.java:
// private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL) {
address generate_base64_encodeBlock() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "implEncode");
address start = __ pc();
__ enter();
// Save callee-saved registers before using them
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
// arguments
const Register source = c_rarg0; // Source Array
const Register start_offset = c_rarg1; // start offset
const Register end_offset = c_rarg2; // end offset
const Register dest = c_rarg3; // destination array
#ifndef _WIN64
const Register dp = c_rarg4; // Position for writing to dest array
const Register isURL = c_rarg5;// Base64 or URL character set
#else
const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Address isURL_mem(rbp, 7 * wordSize);
const Register isURL = r10; // pick the volatile windows register
const Register dp = r12;
__ movl(dp, dp_mem);
__ movl(isURL, isURL_mem);
#endif
const Register length = r14;
Label L_process80, L_process32, L_process3, L_exit, L_processdata;
// calculate length from offsets
__ movl(length, end_offset);
__ subl(length, start_offset);
__ cmpl(length, 0);
__ jcc(Assembler::lessEqual, L_exit);
__ lea(r11, ExternalAddress(StubRoutines::x86::base64_charset_addr()));
// check if base64 charset(isURL=0) or base64 url charset(isURL=1) needs to be loaded
__ cmpl(isURL, 0);
__ jcc(Assembler::equal, L_processdata);
__ lea(r11, ExternalAddress(StubRoutines::x86::base64url_charset_addr()));
// load masks required for encoding data
__ BIND(L_processdata);
__ movdqu(xmm16, ExternalAddress(StubRoutines::x86::base64_gather_mask_addr()));
// Set 64 bits of K register.
__ evpcmpeqb(k3, xmm16, xmm16, Assembler::AVX_512bit);
__ evmovdquq(xmm12, ExternalAddress(StubRoutines::x86::base64_bswap_mask_addr()), Assembler::AVX_256bit, r13);
__ evmovdquq(xmm13, ExternalAddress(StubRoutines::x86::base64_right_shift_mask_addr()), Assembler::AVX_512bit, r13);
__ evmovdquq(xmm14, ExternalAddress(StubRoutines::x86::base64_left_shift_mask_addr()), Assembler::AVX_512bit, r13);
__ evmovdquq(xmm15, ExternalAddress(StubRoutines::x86::base64_and_mask_addr()), Assembler::AVX_512bit, r13);
// Vector Base64 implementation, producing 96 bytes of encoded data
__ BIND(L_process80);
__ cmpl(length, 80);
__ jcc(Assembler::below, L_process32);
__ evmovdquq(xmm0, Address(source, start_offset, Address::times_1, 0), Assembler::AVX_256bit);
__ evmovdquq(xmm1, Address(source, start_offset, Address::times_1, 24), Assembler::AVX_256bit);
__ evmovdquq(xmm2, Address(source, start_offset, Address::times_1, 48), Assembler::AVX_256bit);
//permute the input data in such a manner that we have continuity of the source
__ vpermq(xmm3, xmm0, 148, Assembler::AVX_256bit);
__ vpermq(xmm4, xmm1, 148, Assembler::AVX_256bit);
__ vpermq(xmm5, xmm2, 148, Assembler::AVX_256bit);
//shuffle input and group 3 bytes of data and to it add 0 as the 4th byte.
//we can deal with 12 bytes at a time in a 128 bit register
__ vpshufb(xmm3, xmm3, xmm12, Assembler::AVX_256bit);
__ vpshufb(xmm4, xmm4, xmm12, Assembler::AVX_256bit);
__ vpshufb(xmm5, xmm5, xmm12, Assembler::AVX_256bit);
//convert byte to word. Each 128 bit register will have 6 bytes for processing
__ vpmovzxbw(xmm3, xmm3, Assembler::AVX_512bit);
__ vpmovzxbw(xmm4, xmm4, Assembler::AVX_512bit);
__ vpmovzxbw(xmm5, xmm5, Assembler::AVX_512bit);
// Extract bits in the following pattern 6, 4+2, 2+4, 6 to convert 3, 8 bit numbers to 4, 6 bit numbers
__ evpsrlvw(xmm0, xmm3, xmm13, Assembler::AVX_512bit);
__ evpsrlvw(xmm1, xmm4, xmm13, Assembler::AVX_512bit);
__ evpsrlvw(xmm2, xmm5, xmm13, Assembler::AVX_512bit);
__ evpsllvw(xmm3, xmm3, xmm14, Assembler::AVX_512bit);
__ evpsllvw(xmm4, xmm4, xmm14, Assembler::AVX_512bit);
__ evpsllvw(xmm5, xmm5, xmm14, Assembler::AVX_512bit);
__ vpsrlq(xmm0, xmm0, 8, Assembler::AVX_512bit);
__ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit);
__ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit);
__ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit);
__ vpsllq(xmm4, xmm4, 8, Assembler::AVX_512bit);
__ vpsllq(xmm5, xmm5, 8, Assembler::AVX_512bit);
__ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit);
__ vpandq(xmm4, xmm4, xmm15, Assembler::AVX_512bit);
__ vpandq(xmm5, xmm5, xmm15, Assembler::AVX_512bit);
// Get the final 4*6 bits base64 encoding
__ vporq(xmm3, xmm3, xmm0, Assembler::AVX_512bit);
__ vporq(xmm4, xmm4, xmm1, Assembler::AVX_512bit);
__ vporq(xmm5, xmm5, xmm2, Assembler::AVX_512bit);
// Shift
__ vpsrlq(xmm3, xmm3, 8, Assembler::AVX_512bit);
__ vpsrlq(xmm4, xmm4, 8, Assembler::AVX_512bit);
__ vpsrlq(xmm5, xmm5, 8, Assembler::AVX_512bit);
// look up 6 bits in the base64 character set to fetch the encoding
// we are converting word to dword as gather instructions need dword indices for looking up encoding
__ vextracti64x4(xmm6, xmm3, 0);
__ vpmovzxwd(xmm0, xmm6, Assembler::AVX_512bit);
__ vextracti64x4(xmm6, xmm3, 1);
__ vpmovzxwd(xmm1, xmm6, Assembler::AVX_512bit);
__ vextracti64x4(xmm6, xmm4, 0);
__ vpmovzxwd(xmm2, xmm6, Assembler::AVX_512bit);
__ vextracti64x4(xmm6, xmm4, 1);
__ vpmovzxwd(xmm3, xmm6, Assembler::AVX_512bit);
__ vextracti64x4(xmm4, xmm5, 0);
__ vpmovzxwd(xmm6, xmm4, Assembler::AVX_512bit);
__ vextracti64x4(xmm4, xmm5, 1);
__ vpmovzxwd(xmm7, xmm4, Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm4, k2, Address(r11, xmm0, Address::times_4, 0), Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm5, k2, Address(r11, xmm1, Address::times_4, 0), Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm8, k2, Address(r11, xmm2, Address::times_4, 0), Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm9, k2, Address(r11, xmm3, Address::times_4, 0), Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm10, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm11, k2, Address(r11, xmm7, Address::times_4, 0), Assembler::AVX_512bit);
//Down convert dword to byte. Final output is 16*6 = 96 bytes long
__ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm4, Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm5, Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 32), xmm8, Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 48), xmm9, Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 64), xmm10, Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 80), xmm11, Assembler::AVX_512bit);
__ addq(dest, 96);
__ addq(source, 72);
__ subq(length, 72);
__ jmp(L_process80);
// Vector Base64 implementation generating 32 bytes of encoded data
__ BIND(L_process32);
__ cmpl(length, 32);
__ jcc(Assembler::below, L_process3);
__ evmovdquq(xmm0, Address(source, start_offset), Assembler::AVX_256bit);
__ vpermq(xmm0, xmm0, 148, Assembler::AVX_256bit);
__ vpshufb(xmm6, xmm0, xmm12, Assembler::AVX_256bit);
__ vpmovzxbw(xmm6, xmm6, Assembler::AVX_512bit);
__ evpsrlvw(xmm2, xmm6, xmm13, Assembler::AVX_512bit);
__ evpsllvw(xmm3, xmm6, xmm14, Assembler::AVX_512bit);
__ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit);
__ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit);
__ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit);
__ vporq(xmm1, xmm2, xmm3, Assembler::AVX_512bit);
__ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit);
__ vextracti64x4(xmm9, xmm1, 0);
__ vpmovzxwd(xmm6, xmm9, Assembler::AVX_512bit);
__ vextracti64x4(xmm9, xmm1, 1);
__ vpmovzxwd(xmm5, xmm9, Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm8, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit);
__ kmovql(k2, k3);
__ evpgatherdd(xmm10, k2, Address(r11, xmm5, Address::times_4, 0), Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm8, Assembler::AVX_512bit);
__ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm10, Assembler::AVX_512bit);
__ subq(length, 24);
__ addq(dest, 32);
__ addq(source, 24);
__ jmp(L_process32);
// Scalar data processing takes 3 bytes at a time and produces 4 bytes of encoded data
/* This code corresponds to the scalar version of the following snippet in Base64.java
** int bits = (src[sp0++] & 0xff) << 16 |(src[sp0++] & 0xff) << 8 |(src[sp0++] & 0xff);
** dst[dp0++] = (byte)base64[(bits >> > 18) & 0x3f];
** dst[dp0++] = (byte)base64[(bits >> > 12) & 0x3f];
** dst[dp0++] = (byte)base64[(bits >> > 6) & 0x3f];
** dst[dp0++] = (byte)base64[bits & 0x3f];*/
__ BIND(L_process3);
__ cmpl(length, 3);
__ jcc(Assembler::below, L_exit);
// Read 1 byte at a time
__ movzbl(rax, Address(source, start_offset));
__ shll(rax, 0x10);
__ movl(r15, rax);
__ movzbl(rax, Address(source, start_offset, Address::times_1, 1));
__ shll(rax, 0x8);
__ movzwl(rax, rax);
__ orl(r15, rax);
__ movzbl(rax, Address(source, start_offset, Address::times_1, 2));
__ orl(rax, r15);
// Save 3 bytes read in r15
__ movl(r15, rax);
__ shrl(rax, 0x12);
__ andl(rax, 0x3f);
// rax contains the index, r11 contains base64 lookup table
__ movb(rax, Address(r11, rax, Address::times_4));
// Write the encoded byte to destination
__ movb(Address(dest, dp, Address::times_1, 0), rax);
__ movl(rax, r15);
__ shrl(rax, 0xc);
__ andl(rax, 0x3f);
__ movb(rax, Address(r11, rax, Address::times_4));
__ movb(Address(dest, dp, Address::times_1, 1), rax);
__ movl(rax, r15);
__ shrl(rax, 0x6);
__ andl(rax, 0x3f);
__ movb(rax, Address(r11, rax, Address::times_4));
__ movb(Address(dest, dp, Address::times_1, 2), rax);
__ movl(rax, r15);
__ andl(rax, 0x3f);
__ movb(rax, Address(r11, rax, Address::times_4));
__ movb(Address(dest, dp, Address::times_1, 3), rax);
__ subl(length, 3);
__ addq(dest, 4);
__ addq(source, 3);
__ jmp(L_process3);
__ BIND(L_exit);
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ leave();
__ ret(0);
return start;
}
/**
* Arguments:
*
* Inputs:
* c_rarg0 - int crc
* c_rarg1 - byte* buf
* c_rarg2 - int length
*
* Ouput:
* rax - int crc result
*/
address generate_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
address start = __ pc();
// Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
// Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
// rscratch1: r10
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register table = c_rarg3; // crc_table address (reuse register)
const Register tmp1 = r11;
const Register tmp2 = r10;
assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
VM_Version::supports_avx512bw() &&
VM_Version::supports_avx512vl()) {
__ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
} else {
__ kernel_crc32(crc, buf, len, table, tmp1);
}
__ movl(rax, crc);
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
/**
* Arguments:
*
* Inputs:
* c_rarg0 - int crc
* c_rarg1 - byte* buf
* c_rarg2 - long length
* c_rarg3 - table_start - optional (present only when doing a library_call,
* not used by x86 algorithm)
*
* Ouput:
* rax - int crc result
*/
address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
assert(UseCRC32CIntrinsics, "need SSE4_2");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
address start = __ pc();
//reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs
//Windows RCX RDX R8 R9 none none XMM0..XMM3
//Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register a = rax;
const Register j = r9;
const Register k = r10;
const Register l = r11;
#ifdef _WIN64
const Register y = rdi;
const Register z = rsi;
#else
const Register y = rcx;
const Register z = r8;
#endif
assert_different_registers(crc, buf, len, a, j, k, l, y, z);
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
__ push(y);
__ push(z);
#endif
__ crc32c_ipl_alg2_alt2(crc, buf, len,
a, j, k,
l, y, z,
c_farg0, c_farg1, c_farg2,
is_pclmulqdq_supported);
__ movl(rax, crc);
#ifdef _WIN64
__ pop(z);
__ pop(y);
#endif
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
/**
* Arguments:
*
* Input:
* c_rarg0 - x address
* c_rarg1 - x length
* c_rarg2 - y address
* c_rarg3 - y length
* not Win64
* c_rarg4 - z address
* c_rarg5 - z length
* Win64
* rsp+40 - z address
* rsp+48 - z length
*/
address generate_multiplyToLen() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
address start = __ pc();
// Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
// Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
const Register x = rdi;
const Register xlen = rax;
const Register y = rsi;
const Register ylen = rcx;
const Register z = r8;
const Register zlen = r11;
// Next registers will be saved on stack in multiply_to_len().
const Register tmp1 = r12;
const Register tmp2 = r13;
const Register tmp3 = r14;
const Register tmp4 = r15;
const Register tmp5 = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifndef _WIN64
__ movptr(zlen, r9); // Save r9 in r11 - zlen
#endif
setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
// ylen => rcx, z => r8, zlen => r11
// r9 and r10 may be used to save non-volatile registers
#ifdef _WIN64
// last 2 arguments (#4, #5) are on stack on Win64
__ movptr(z, Address(rsp, 6 * wordSize));
__ movptr(zlen, Address(rsp, 7 * wordSize));
#endif
__ movptr(xlen, rsi);
__ movptr(y, rdx);
__ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
restore_arg_regs();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
/**
* Arguments:
*
* Input:
* c_rarg0 - obja address
* c_rarg1 - objb address
* c_rarg3 - length length
* c_rarg4 - scale log2_array_indxscale
*
* Output:
* rax - int >= mismatched index, < 0 bitwise complement of tail
*/
address generate_vectorizedMismatch() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch");
address start = __ pc();
BLOCK_COMMENT("Entry:");
__ enter();
#ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
const Register scale = c_rarg0; //rcx, will exchange with r9
const Register objb = c_rarg1; //rdx
const Register length = c_rarg2; //r8
const Register obja = c_rarg3; //r9
__ xchgq(obja, scale); //now obja and scale contains the correct contents
const Register tmp1 = r10;
const Register tmp2 = r11;
#endif
#ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
const Register obja = c_rarg0; //U:rdi
const Register objb = c_rarg1; //U:rsi
const Register length = c_rarg2; //U:rdx
const Register scale = c_rarg3; //U:rcx
const Register tmp1 = r8;
const Register tmp2 = r9;
#endif
const Register result = rax; //return value
const XMMRegister vec0 = xmm0;
const XMMRegister vec1 = xmm1;
const XMMRegister vec2 = xmm2;
__ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
__ vzeroupper();
__ leave();
__ ret(0);
return start;
}
/**
* Arguments:
*
// Input:
// c_rarg0 - x address
// c_rarg1 - x length
// c_rarg2 - z address
// c_rarg3 - z lenth
*
*/
address generate_squareToLen() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "squareToLen");
address start = __ pc();
// Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
// Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
const Register x = rdi;
const Register len = rsi;
const Register z = r8;
const Register zlen = rcx;
const Register tmp1 = r12;
const Register tmp2 = r13;
const Register tmp3 = r14;
const Register tmp4 = r15;
const Register tmp5 = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
// zlen => rcx
// r9 and r10 may be used to save non-volatile registers
__ movptr(r8, rdx);
__ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
restore_arg_regs();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_method_entry_barrier() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier");
Label deoptimize_label;
address start = __ pc();
__ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
BLOCK_COMMENT("Entry:");
__ enter(); // save rbp
// save c_rarg0, because we want to use that value.
// We could do without it but then we depend on the number of slots used by pusha
__ push(c_rarg0);
__ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
__ pusha();
// The method may have floats as arguments, and we must spill them before calling
// the VM runtime.
assert(Argument::n_float_register_parameters_j == 8, "Assumption");
const int xmm_size = wordSize * 2;
const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
__ subptr(rsp, xmm_spill_size);
__ movdqu(Address(rsp, xmm_size * 7), xmm7);
__ movdqu(Address(rsp, xmm_size * 6), xmm6);
__ movdqu(Address(rsp, xmm_size * 5), xmm5);
__ movdqu(Address(rsp, xmm_size * 4), xmm4);
__ movdqu(Address(rsp, xmm_size * 3), xmm3);
__ movdqu(Address(rsp, xmm_size * 2), xmm2);
__ movdqu(Address(rsp, xmm_size * 1), xmm1);
__ movdqu(Address(rsp, xmm_size * 0), xmm0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
__ movdqu(xmm0, Address(rsp, xmm_size * 0));
__ movdqu(xmm1, Address(rsp, xmm_size * 1));
__ movdqu(xmm2, Address(rsp, xmm_size * 2));
__ movdqu(xmm3, Address(rsp, xmm_size * 3));
__ movdqu(xmm4, Address(rsp, xmm_size * 4));
__ movdqu(xmm5, Address(rsp, xmm_size * 5));
__ movdqu(xmm6, Address(rsp, xmm_size * 6));
__ movdqu(xmm7, Address(rsp, xmm_size * 7));
__ addptr(rsp, xmm_spill_size);
__ cmpl(rax, 1); // 1 means deoptimize
__ jcc(Assembler::equal, deoptimize_label);
__ popa();
__ pop(c_rarg0);
__ leave();
__ addptr(rsp, 1 * wordSize); // cookie
__ ret(0);
__ BIND(deoptimize_label);
__ popa();
__ pop(c_rarg0);
__ leave();
// this can be taken out, but is good for verification purposes. getting a SIGSEGV
// here while still having a correct stack is valuable
__ testptr(rsp, Address(rsp, 0));
__ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
__ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
return start;
}
/**
* Arguments:
*
* Input:
* c_rarg0 - out address
* c_rarg1 - in address
* c_rarg2 - offset
* c_rarg3 - len
* not Win64
* c_rarg4 - k
* Win64
* rsp+40 - k
*/
address generate_mulAdd() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "mulAdd");
address start = __ pc();
// Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
// Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
const Register out = rdi;
const Register in = rsi;
const Register offset = r11;
const Register len = rcx;
const Register k = r8;
// Next registers will be saved on stack in mul_add().
const Register tmp1 = r12;
const Register tmp2 = r13;
const Register tmp3 = r14;
const Register tmp4 = r15;
const Register tmp5 = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
// len => rcx, k => r8
// r9 and r10 may be used to save non-volatile registers
#ifdef _WIN64
// last argument is on stack on Win64
__ movl(k, Address(rsp, 6 * wordSize));
#endif
__ movptr(r11, rdx); // move offset in rdx to offset(r11)
__ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
restore_arg_regs();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_bigIntegerRightShift() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker");
address start = __ pc();
Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
// For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
const Register newArr = rdi;
const Register oldArr = rsi;
const Register newIdx = rdx;
const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
const Register totalNumIter = r8;
// For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
// For everything else, we prefer using r9 and r10 since we do not have to save them before use.
const Register tmp1 = r11; // Caller save.
const Register tmp2 = rax; // Caller save.
const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9); // Windows: Callee save. Linux: Caller save.
const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10); // Windows: Callee save. Linux: Caller save.
const Register tmp5 = r14; // Callee save.
const Register tmp6 = r15;
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WINDOWS
setup_arg_regs(4);
// For windows, since last argument is on stack, we need to move it to the appropriate register.
__ movl(totalNumIter, Address(rsp, 6 * wordSize));
// Save callee save registers.
__ push(tmp3);
__ push(tmp4);
#endif
__ push(tmp5);
// Rename temps used throughout the code.
const Register idx = tmp1;
const Register nIdx = tmp2;
__ xorl(idx, idx);
// Start right shift from end of the array.
// For example, if #iteration = 4 and newIdx = 1
// then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32)
// if #iteration = 4 and newIdx = 0
// then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32)
__ movl(idx, totalNumIter);
__ movl(nIdx, idx);
__ addl(nIdx, newIdx);
// If vectorization is enabled, check if the number of iterations is at least 64
// If not, then go to ShifTwo processing 2 iterations
if (VM_Version::supports_avx512_vbmi2()) {
__ cmpptr(totalNumIter, (AVX3Threshold/64));
__ jcc(Assembler::less, ShiftTwo);
if (AVX3Threshold < 16 * 64) {
__ cmpl(totalNumIter, 16);
__ jcc(Assembler::less, ShiftTwo);
}
__ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
__ subl(idx, 16);
__ subl(nIdx, 16);
__ BIND(Shift512Loop);
__ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
__ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
__ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
__ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
__ subl(nIdx, 16);
__ subl(idx, 16);
__ jcc(Assembler::greaterEqual, Shift512Loop);
__ addl(idx, 16);
__ addl(nIdx, 16);
}
__ BIND(ShiftTwo);
__ cmpl(idx, 2);
__ jcc(Assembler::less, ShiftOne);
__ subl(idx, 2);
__ subl(nIdx, 2);
__ BIND(ShiftTwoLoop);
__ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
__ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
__ movl(tmp3, Address(oldArr, idx, Address::times_4));
__ shrdl(tmp5, tmp4);
__ shrdl(tmp4, tmp3);
__ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
__ movl(Address(newArr, nIdx, Address::times_4), tmp4);
__ subl(nIdx, 2);
__ subl(idx, 2);
__ jcc(Assembler::greaterEqual, ShiftTwoLoop);
__ addl(idx, 2);
__ addl(nIdx, 2);
// Do the last iteration
__ BIND(ShiftOne);
__ cmpl(idx, 1);
__ jcc(Assembler::less, Exit);
__ subl(idx, 1);
__ subl(nIdx, 1);
__ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
__ movl(tmp3, Address(oldArr, idx, Address::times_4));
__ shrdl(tmp4, tmp3);
__ movl(Address(newArr, nIdx, Address::times_4), tmp4);
__ BIND(Exit);
// Restore callee save registers.
__ pop(tmp5);
#ifdef _WINDOWS
__ pop(tmp4);
__ pop(tmp3);
restore_arg_regs();
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
/**
* Arguments:
*
* Input:
* c_rarg0 - newArr address
* c_rarg1 - oldArr address
* c_rarg2 - newIdx
* c_rarg3 - shiftCount
* not Win64
* c_rarg4 - numIter
* Win64
* rsp40 - numIter
*/
address generate_bigIntegerLeftShift() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker");
address start = __ pc();
Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
// For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
const Register newArr = rdi;
const Register oldArr = rsi;
const Register newIdx = rdx;
const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
const Register totalNumIter = r8;
// For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
// For everything else, we prefer using r9 and r10 since we do not have to save them before use.
const Register tmp1 = r11; // Caller save.
const Register tmp2 = rax; // Caller save.
const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9); // Windows: Callee save. Linux: Caller save.
const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10); // Windows: Callee save. Linux: Caller save.
const Register tmp5 = r14; // Callee save.
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WINDOWS
setup_arg_regs(4);
// For windows, since last argument is on stack, we need to move it to the appropriate register.
__ movl(totalNumIter, Address(rsp, 6 * wordSize));
// Save callee save registers.
__ push(tmp3);
__ push(tmp4);
#endif
__ push(tmp5);
// Rename temps used throughout the code
const Register idx = tmp1;
const Register numIterTmp = tmp2;
// Start idx from zero.
__ xorl(idx, idx);
// Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
__ lea(newArr, Address(newArr, newIdx, Address::times_4));
__ movl(numIterTmp, totalNumIter);
// If vectorization is enabled, check if the number of iterations is at least 64
// If not, then go to ShiftTwo shifting two numbers at a time
if (VM_Version::supports_avx512_vbmi2()) {
__ cmpl(totalNumIter, (AVX3Threshold/64));
__ jcc(Assembler::less, ShiftTwo);
if (AVX3Threshold < 16 * 64) {
__ cmpl(totalNumIter, 16);
__ jcc(Assembler::less, ShiftTwo);
}
__ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
__ subl(numIterTmp, 16);
__ BIND(Shift512Loop);
__ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
__ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
__ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
__ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
__ addl(idx, 16);
__ subl(numIterTmp, 16);
__ jcc(Assembler::greaterEqual, Shift512Loop);
__ addl(numIterTmp, 16);
}
__ BIND(ShiftTwo);
__ cmpl(totalNumIter, 1);
__ jcc(Assembler::less, Exit);
__ movl(tmp3, Address(oldArr, idx, Address::times_4));
__ subl(numIterTmp, 2);
__ jcc(Assembler::less, ShiftOne);
__ BIND(ShiftTwoLoop);
__ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
__ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
__ shldl(tmp3, tmp4);
__ shldl(tmp4, tmp5);
__ movl(Address(newArr, idx, Address::times_4), tmp3);
__ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
__ movl(tmp3, tmp5);
__ addl(idx, 2);
__ subl(numIterTmp, 2);
__ jcc(Assembler::greaterEqual, ShiftTwoLoop);
// Do the last iteration
__ BIND(ShiftOne);
__ addl(numIterTmp, 2);
__ cmpl(numIterTmp, 1);
__ jcc(Assembler::less, Exit);
__ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
__ shldl(tmp3, tmp4);
__ movl(Address(newArr, idx, Address::times_4), tmp3);
__ BIND(Exit);
// Restore callee save registers.
__ pop(tmp5);
#ifdef _WINDOWS
__ pop(tmp4);
__ pop(tmp3);
restore_arg_regs();
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmExp() {
StubCodeMark mark(this, "StubRoutines", "libmExp");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = r11;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmLog() {
StubCodeMark mark(this, "StubRoutines", "libmLog");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp1 = r11;
const Register tmp2 = r8;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmLog10() {
StubCodeMark mark(this, "StubRoutines", "libmLog10");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = r11;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmPow() {
StubCodeMark mark(this, "StubRoutines", "libmPow");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp1 = r8;
const Register tmp2 = r9;
const Register tmp3 = r10;
const Register tmp4 = r11;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmSin() {
StubCodeMark mark(this, "StubRoutines", "libmSin");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp1 = r8;
const Register tmp2 = r9;
const Register tmp3 = r10;
const Register tmp4 = r11;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
__ push(rsi);
__ push(rdi);
#endif
__ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
#ifdef _WIN64
__ pop(rdi);
__ pop(rsi);
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmCos() {
StubCodeMark mark(this, "StubRoutines", "libmCos");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp1 = r8;
const Register tmp2 = r9;
const Register tmp3 = r10;
const Register tmp4 = r11;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
__ push(rsi);
__ push(rdi);
#endif
__ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
#ifdef _WIN64
__ pop(rdi);
__ pop(rsi);
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmTan() {
StubCodeMark mark(this, "StubRoutines", "libmTan");
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp1 = r8;
const Register tmp2 = r9;
const Register tmp3 = r10;
const Register tmp4 = r11;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
__ push(rsi);
__ push(rdi);
#endif
__ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
#ifdef _WIN64
__ pop(rdi);
__ pop(rsi);
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
#undef __
#define __ masm->
// Continuation point for throwing of implicit exceptions that are
// not handled in the current activation. Fabricates an exception
// oop and initiates normal exception dispatching in this
// frame. Since we need to preserve callee-saved values (currently
// only for C2, but done for C1 as well) we need a callee-saved oop
// map and therefore have to make these stubs into RuntimeStubs
// rather than BufferBlobs. If the compiler needs all registers to
// be preserved between the fault point and the exception handler
// then it must assume responsibility for that in
// AbstractCompiler::continuation_for_implicit_null_exception or
// continuation_for_implicit_division_by_zero_exception. All other
// implicit exceptions (e.g., NullPointerException or
// AbstractMethodError on entry) are either at call sites or
// otherwise assume that stack unwinding will be initiated, so
// caller saved registers were assumed volatile in the compiler.
address generate_throw_exception(const char* name,
address runtime_entry,
Register arg1 = noreg,
Register arg2 = noreg) {
// Information about frame layout at time of blocking runtime call.
// Note that we only have to preserve callee-saved registers since
// the compilers are responsible for supplying a continuation point
// if they expect all registers to be preserved.
enum layout {
rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
rbp_off2,
return_off,
return_off2,
framesize // inclusive of return address
};
int insts_size = 512;
int locs_size = 64;
CodeBuffer code(name, insts_size, locs_size);
OopMapSet* oop_maps = new OopMapSet();
MacroAssembler* masm = new MacroAssembler(&code);
address start = __ pc();
// This is an inlined and slightly modified version of call_VM
// which has the ability to fetch the return PC out of
// thread-local storage and also sets up last_Java_sp slightly
// differently than the real call_VM
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert(is_even(framesize/2), "sp not 16-byte aligned");
// return address and rbp are already in place
__ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
int frame_complete = __ pc() - start;
// Set up last_Java_sp and last_Java_fp
address the_pc = __ pc();
__ set_last_Java_frame(rsp, rbp, the_pc);
__ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
// Call runtime
if (arg1 != noreg) {
assert(arg2 != c_rarg1, "clobbered");
__ movptr(c_rarg1, arg1);
}
if (arg2 != noreg) {
__ movptr(c_rarg2, arg2);
}
__ movptr(c_rarg0, r15_thread);
BLOCK_COMMENT("call runtime_entry");
__ call(RuntimeAddress(runtime_entry));
// Generate oop map
OopMap* map = new OopMap(framesize, 0);
oop_maps->add_gc_map(the_pc - start, map);
__ reset_last_Java_frame(true);
__ leave(); // required for proper stackwalking of RuntimeStub frame
// check for pending exceptions
#ifdef ASSERT
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
(int32_t) NULL_WORD);
__ jcc(Assembler::notEqual, L);
__ should_not_reach_here();
__ bind(L);
#endif // ASSERT
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
// codeBlob framesize is in words (not VMRegImpl::slot_size)
RuntimeStub* stub =
RuntimeStub::new_runtime_stub(name,
&code,
frame_complete,
(framesize >> (LogBytesPerWord - LogBytesPerInt)),
oop_maps, false);
return stub->entry_point();
}
void create_control_words() {
// Round to nearest, 53-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
// Round to zero, 53-bit mode, exception mased
StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
// Round to nearest, 24-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
// Round to nearest, 64-bit mode, exceptions masked
StubRoutines::_mxcsr_std = 0x1F80;
// Note: the following two constants are 80-bit values
// layout is critical for correct loading by FPU.
// Bias for strict fp multiply/divide
StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
// Un-Bias for strict fp multiply/divide
StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
}
// Initialization
void generate_initial() {
// Generates all stubs and initializes the entry points
// This platform-specific settings are needed by generate_call_stub()
create_control_words();
// entry points that exist in all platforms Note: This is code
// that could be shared among different platforms - however the
// benefit seems to be smaller than the disadvantage of having a
// much more complicated generator structure. See also comment in
// stubRoutines.hpp.
StubRoutines::_forward_exception_entry = generate_forward_exception();
StubRoutines::_call_stub_entry =
generate_call_stub(StubRoutines::_call_stub_return_address);
// is referenced by megamorphic call
StubRoutines::_catch_exception_entry = generate_catch_exception();
// atomic calls
StubRoutines::_fence_entry = generate_orderaccess_fence();
// platform dependent
StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
// Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry =
generate_throw_exception("StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_StackOverflowError));
StubRoutines::_throw_delayed_StackOverflowError_entry =
generate_throw_exception("delayed StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_delayed_StackOverflowError));
if (UseCRC32Intrinsics) {
// set table address before stub generation which use it
StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
}
if (UseCRC32CIntrinsics) {
bool supports_clmul = VM_Version::supports_clmul();
StubRoutines::x86::generate_CRC32C_table(supports_clmul);
StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
}
if (UseLibmIntrinsic && InlineIntrinsics) {
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
StubRoutines::x86::_ONEHALF_adr = (address)StubRoutines::x86::_ONEHALF;
StubRoutines::x86::_P_2_adr = (address)StubRoutines::x86::_P_2;
StubRoutines::x86::_SC_4_adr = (address)StubRoutines::x86::_SC_4;
StubRoutines::x86::_Ctable_adr = (address)StubRoutines::x86::_Ctable;
StubRoutines::x86::_SC_2_adr = (address)StubRoutines::x86::_SC_2;
StubRoutines::x86::_SC_3_adr = (address)StubRoutines::x86::_SC_3;
StubRoutines::x86::_SC_1_adr = (address)StubRoutines::x86::_SC_1;
StubRoutines::x86::_PI_INV_TABLE_adr = (address)StubRoutines::x86::_PI_INV_TABLE;
StubRoutines::x86::_PI_4_adr = (address)StubRoutines::x86::_PI_4;
StubRoutines::x86::_PI32INV_adr = (address)StubRoutines::x86::_PI32INV;
StubRoutines::x86::_SIGN_MASK_adr = (address)StubRoutines::x86::_SIGN_MASK;
StubRoutines::x86::_P_1_adr = (address)StubRoutines::x86::_P_1;
StubRoutines::x86::_P_3_adr = (address)StubRoutines::x86::_P_3;
StubRoutines::x86::_NEG_ZERO_adr = (address)StubRoutines::x86::_NEG_ZERO;
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
StubRoutines::_dexp = generate_libmExp();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
StubRoutines::_dlog = generate_libmLog();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
StubRoutines::_dlog10 = generate_libmLog10();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
StubRoutines::_dpow = generate_libmPow();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
StubRoutines::_dsin = generate_libmSin();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
StubRoutines::_dcos = generate_libmCos();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
StubRoutines::_dtan = generate_libmTan();
}
}
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
&StubRoutines::_safefetch32_continuation_pc);
generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
&StubRoutines::_safefetchN_fault_pc,
&StubRoutines::_safefetchN_continuation_pc);
}
void generate_all() {
// Generates all stubs and initializes the entry points
// These entry points require SharedInfo::stack0 to be set up in
// non-core builds and need to be relocatable, so they each
// fabricate a RuntimeStub internally.
StubRoutines::_throw_AbstractMethodError_entry =
generate_throw_exception("AbstractMethodError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_AbstractMethodError));
StubRoutines::_throw_IncompatibleClassChangeError_entry =
generate_throw_exception("IncompatibleClassChangeError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_IncompatibleClassChangeError));
StubRoutines::_throw_NullPointerException_at_call_entry =
generate_throw_exception("NullPointerException at call throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_NullPointerException_at_call));
// entry points that are platform specific
StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF);
StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000);
StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF);
StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000);
StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF);
StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff);
StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask");
StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff);
StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff);
StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit,
0xFFFFFFFF, 0, 0, 0);
StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit,
0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100);
StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100);
StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000);
StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000);
StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices");
// support for verify_oop (must happen after universe_init)
if (VerifyOops) {
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
}
// data cache line writeback
StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
// don't bother generating these AES intrinsic stubs unless global flag is set
if (UseAESIntrinsics) {
StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others
StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512vl() && VM_Version::supports_avx512dq() ) {
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptVectorAESCrypt();
StubRoutines::_electronicCodeBook_encryptAESCrypt = generate_electronicCodeBook_encryptAESCrypt();
StubRoutines::_electronicCodeBook_decryptAESCrypt = generate_electronicCodeBook_decryptAESCrypt();
} else {
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
}
}
if (UseAESCTRIntrinsics) {
if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512bw() && VM_Version::supports_avx512vl()) {
StubRoutines::x86::_counter_mask_addr = counter_mask_addr();
StubRoutines::_counterMode_AESCrypt = generate_counterMode_VectorAESCrypt();
} else {
StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask();
StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel();
}
}
if (UseMD5Intrinsics) {
StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress");
StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB");
}
if (UseSHA1Intrinsics) {
StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
}
if (UseSHA256Intrinsics) {
StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
char* dst = (char*)StubRoutines::x86::_k256_W;
char* src = (char*)StubRoutines::x86::_k256;
for (int ii = 0; ii < 16; ++ii) {
memcpy(dst + 32 * ii, src + 16 * ii, 16);
memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
}
StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
}
if (UseSHA512Intrinsics) {
StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress");
StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
}
// Generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
if (VM_Version::supports_avx()) {
StubRoutines::x86::_ghash_shuffmask_addr = ghash_shufflemask_addr();
StubRoutines::x86::_ghash_poly_addr = ghash_polynomial_addr();
StubRoutines::_ghash_processBlocks = generate_avx_ghash_processBlocks();
} else {
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
}
if (UseBASE64Intrinsics) {
StubRoutines::x86::_and_mask = base64_and_mask_addr();
StubRoutines::x86::_bswap_mask = base64_bswap_mask_addr();
StubRoutines::x86::_base64_charset = base64_charset_addr();
StubRoutines::x86::_url_charset = base64url_charset_addr();
StubRoutines::x86::_gather_mask = base64_gather_mask_addr();
StubRoutines::x86::_left_shift_mask = base64_left_shift_mask_addr();
StubRoutines::x86::_right_shift_mask = base64_right_shift_mask_addr();
StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
}
BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
if (bs_nm != NULL) {
StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier();
}
#ifdef COMPILER2
if (UseMultiplyToLenIntrinsic) {
StubRoutines::_multiplyToLen = generate_multiplyToLen();
}
if (UseSquareToLenIntrinsic) {
StubRoutines::_squareToLen = generate_squareToLen();
}
if (UseMulAddIntrinsic) {
StubRoutines::_mulAdd = generate_mulAdd();
}
if (VM_Version::supports_avx512_vbmi2()) {
StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
}
if (UseMontgomeryMultiplyIntrinsic) {
StubRoutines::_montgomeryMultiply
= CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
}
if (UseMontgomerySquareIntrinsic) {
StubRoutines::_montgomerySquare
= CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
}
#endif // COMPILER2
if (UseVectorizedMismatchIntrinsic) {
StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
}
}
public:
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
if (all) {
generate_all();
} else {
generate_initial();
}
}
}; // end class declaration
#define UCM_TABLE_MAX_ENTRIES 16
void StubGenerator_generate(CodeBuffer* code, bool all) {
if (UnsafeCopyMemory::_table == NULL) {
UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES);
}
StubGenerator g(code, all);
}