| /* |
| * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "classfile/vmSymbols.hpp" |
| #include "jfr/jfrEvents.hpp" |
| #include "logging/log.hpp" |
| #include "logging/logStream.hpp" |
| #include "memory/allocation.inline.hpp" |
| #include "memory/metaspaceShared.hpp" |
| #include "memory/padded.hpp" |
| #include "memory/resourceArea.hpp" |
| #include "memory/universe.hpp" |
| #include "oops/markWord.hpp" |
| #include "oops/oop.inline.hpp" |
| #include "runtime/atomic.hpp" |
| #include "runtime/biasedLocking.hpp" |
| #include "runtime/handles.inline.hpp" |
| #include "runtime/handshake.hpp" |
| #include "runtime/interfaceSupport.inline.hpp" |
| #include "runtime/mutexLocker.hpp" |
| #include "runtime/objectMonitor.hpp" |
| #include "runtime/objectMonitor.inline.hpp" |
| #include "runtime/osThread.hpp" |
| #include "runtime/safepointMechanism.inline.hpp" |
| #include "runtime/safepointVerifiers.hpp" |
| #include "runtime/sharedRuntime.hpp" |
| #include "runtime/stubRoutines.hpp" |
| #include "runtime/synchronizer.hpp" |
| #include "runtime/thread.inline.hpp" |
| #include "runtime/timer.hpp" |
| #include "runtime/vframe.hpp" |
| #include "runtime/vmThread.hpp" |
| #include "utilities/align.hpp" |
| #include "utilities/dtrace.hpp" |
| #include "utilities/events.hpp" |
| #include "utilities/preserveException.hpp" |
| |
| class MonitorList { |
| ObjectMonitor* volatile _head; |
| volatile size_t _count; |
| volatile size_t _max; |
| |
| public: |
| void add(ObjectMonitor* monitor); |
| size_t unlink_deflated(Thread* self, LogStream* ls, elapsedTimer* timer_p, |
| GrowableArray<ObjectMonitor*>* unlinked_list); |
| size_t count() const; |
| size_t max() const; |
| |
| class Iterator; |
| Iterator iterator() const; |
| }; |
| |
| class MonitorList::Iterator { |
| ObjectMonitor* _current; |
| |
| public: |
| Iterator(ObjectMonitor* head) : _current(head) {} |
| bool has_next() const { return _current != NULL; } |
| ObjectMonitor* next(); |
| }; |
| |
| void MonitorList::add(ObjectMonitor* m) { |
| ObjectMonitor* head; |
| do { |
| head = Atomic::load(&_head); |
| m->set_next_om(head); |
| } while (Atomic::cmpxchg(&_head, head, m) != head); |
| |
| size_t count = Atomic::add(&_count, 1u); |
| if (count > max()) { |
| Atomic::inc(&_max); |
| } |
| } |
| |
| size_t MonitorList::count() const { |
| return Atomic::load(&_count); |
| } |
| |
| size_t MonitorList::max() const { |
| return Atomic::load(&_max); |
| } |
| |
| // Walk the in-use list and unlink (at most MonitorDeflationMax) deflated |
| // ObjectMonitors. Returns the number of unlinked ObjectMonitors. |
| size_t MonitorList::unlink_deflated(Thread* self, LogStream* ls, |
| elapsedTimer* timer_p, |
| GrowableArray<ObjectMonitor*>* unlinked_list) { |
| size_t unlinked_count = 0; |
| ObjectMonitor* prev = NULL; |
| ObjectMonitor* head = Atomic::load_acquire(&_head); |
| ObjectMonitor* m = head; |
| // The in-use list head can be NULL during the final audit. |
| while (m != NULL) { |
| if (m->is_being_async_deflated()) { |
| // Find next live ObjectMonitor. |
| ObjectMonitor* next = m; |
| do { |
| ObjectMonitor* next_next = next->next_om(); |
| unlinked_count++; |
| unlinked_list->append(next); |
| next = next_next; |
| if (unlinked_count >= (size_t)MonitorDeflationMax) { |
| // Reached the max so bail out on the gathering loop. |
| break; |
| } |
| } while (next != NULL && next->is_being_async_deflated()); |
| if (prev == NULL) { |
| ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, head, next); |
| if (prev_head != head) { |
| // Find new prev ObjectMonitor that just got inserted. |
| for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { |
| prev = n; |
| } |
| prev->set_next_om(next); |
| } |
| } else { |
| prev->set_next_om(next); |
| } |
| if (unlinked_count >= (size_t)MonitorDeflationMax) { |
| // Reached the max so bail out on the searching loop. |
| break; |
| } |
| m = next; |
| } else { |
| prev = m; |
| m = m->next_om(); |
| } |
| |
| if (self->is_Java_thread()) { |
| // A JavaThread must check for a safepoint/handshake and honor it. |
| ObjectSynchronizer::chk_for_block_req(self->as_Java_thread(), "unlinking", |
| "unlinked_count", unlinked_count, |
| ls, timer_p); |
| } |
| } |
| Atomic::sub(&_count, unlinked_count); |
| return unlinked_count; |
| } |
| |
| MonitorList::Iterator MonitorList::iterator() const { |
| return Iterator(Atomic::load_acquire(&_head)); |
| } |
| |
| ObjectMonitor* MonitorList::Iterator::next() { |
| ObjectMonitor* current = _current; |
| _current = current->next_om(); |
| return current; |
| } |
| |
| // The "core" versions of monitor enter and exit reside in this file. |
| // The interpreter and compilers contain specialized transliterated |
| // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp |
| // fast_lock(...) for instance. If you make changes here, make sure to modify the |
| // interpreter, and both C1 and C2 fast-path inline locking code emission. |
| // |
| // ----------------------------------------------------------------------------- |
| |
| #ifdef DTRACE_ENABLED |
| |
| // Only bother with this argument setup if dtrace is available |
| // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. |
| |
| #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ |
| char* bytes = NULL; \ |
| int len = 0; \ |
| jlong jtid = SharedRuntime::get_java_tid(thread); \ |
| Symbol* klassname = obj->klass()->name(); \ |
| if (klassname != NULL) { \ |
| bytes = (char*)klassname->bytes(); \ |
| len = klassname->utf8_length(); \ |
| } |
| |
| #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ |
| { \ |
| if (DTraceMonitorProbes) { \ |
| DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
| HOTSPOT_MONITOR_WAIT(jtid, \ |
| (uintptr_t)(monitor), bytes, len, (millis)); \ |
| } \ |
| } |
| |
| #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY |
| #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL |
| #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED |
| |
| #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ |
| { \ |
| if (DTraceMonitorProbes) { \ |
| DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
| HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ |
| (uintptr_t)(monitor), bytes, len); \ |
| } \ |
| } |
| |
| #else // ndef DTRACE_ENABLED |
| |
| #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} |
| #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} |
| |
| #endif // ndef DTRACE_ENABLED |
| |
| // This exists only as a workaround of dtrace bug 6254741 |
| int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) { |
| DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); |
| return 0; |
| } |
| |
| static const int NINFLATIONLOCKS = 256; |
| static os::PlatformMutex* gInflationLocks[NINFLATIONLOCKS]; |
| |
| void ObjectSynchronizer::initialize() { |
| for (int i = 0; i < NINFLATIONLOCKS; i++) { |
| gInflationLocks[i] = new os::PlatformMutex(); |
| } |
| // Start the ceiling with the estimate for one thread. |
| set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); |
| } |
| |
| static MonitorList _in_use_list; |
| // monitors_used_above_threshold() policy is as follows: |
| // |
| // The ratio of the current _in_use_list count to the ceiling is used |
| // to determine if we are above MonitorUsedDeflationThreshold and need |
| // to do an async monitor deflation cycle. The ceiling is increased by |
| // AvgMonitorsPerThreadEstimate when a thread is added to the system |
| // and is decreased by AvgMonitorsPerThreadEstimate when a thread is |
| // removed from the system. |
| // |
| // Note: If the _in_use_list max exceeds the ceiling, then |
| // monitors_used_above_threshold() will use the in_use_list max instead |
| // of the thread count derived ceiling because we have used more |
| // ObjectMonitors than the estimated average. |
| // |
| // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax |
| // no-progress async monitor deflation cycles in a row, then the ceiling |
| // is adjusted upwards by monitors_used_above_threshold(). |
| // |
| // Start the ceiling with the estimate for one thread in initialize() |
| // which is called after cmd line options are processed. |
| static size_t _in_use_list_ceiling = 0; |
| bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; |
| bool volatile ObjectSynchronizer::_is_final_audit = false; |
| jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; |
| static uintx _no_progress_cnt = 0; |
| |
| // =====================> Quick functions |
| |
| // The quick_* forms are special fast-path variants used to improve |
| // performance. In the simplest case, a "quick_*" implementation could |
| // simply return false, in which case the caller will perform the necessary |
| // state transitions and call the slow-path form. |
| // The fast-path is designed to handle frequently arising cases in an efficient |
| // manner and is just a degenerate "optimistic" variant of the slow-path. |
| // returns true -- to indicate the call was satisfied. |
| // returns false -- to indicate the call needs the services of the slow-path. |
| // A no-loitering ordinance is in effect for code in the quick_* family |
| // operators: safepoints or indefinite blocking (blocking that might span a |
| // safepoint) are forbidden. Generally the thread_state() is _in_Java upon |
| // entry. |
| // |
| // Consider: An interesting optimization is to have the JIT recognize the |
| // following common idiom: |
| // synchronized (someobj) { .... ; notify(); } |
| // That is, we find a notify() or notifyAll() call that immediately precedes |
| // the monitorexit operation. In that case the JIT could fuse the operations |
| // into a single notifyAndExit() runtime primitive. |
| |
| bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) { |
| assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); |
| assert(self->as_Java_thread()->thread_state() == _thread_in_Java, "invariant"); |
| NoSafepointVerifier nsv; |
| if (obj == NULL) return false; // slow-path for invalid obj |
| const markWord mark = obj->mark(); |
| |
| if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) { |
| // Degenerate notify |
| // stack-locked by caller so by definition the implied waitset is empty. |
| return true; |
| } |
| |
| if (mark.has_monitor()) { |
| ObjectMonitor* const mon = mark.monitor(); |
| assert(mon->object() == oop(obj), "invariant"); |
| if (mon->owner() != self) return false; // slow-path for IMS exception |
| |
| if (mon->first_waiter() != NULL) { |
| // We have one or more waiters. Since this is an inflated monitor |
| // that we own, we can transfer one or more threads from the waitset |
| // to the entrylist here and now, avoiding the slow-path. |
| if (all) { |
| DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self); |
| } else { |
| DTRACE_MONITOR_PROBE(notify, mon, obj, self); |
| } |
| int free_count = 0; |
| do { |
| mon->INotify(self); |
| ++free_count; |
| } while (mon->first_waiter() != NULL && all); |
| OM_PERFDATA_OP(Notifications, inc(free_count)); |
| } |
| return true; |
| } |
| |
| // biased locking and any other IMS exception states take the slow-path |
| return false; |
| } |
| |
| |
| // The LockNode emitted directly at the synchronization site would have |
| // been too big if it were to have included support for the cases of inflated |
| // recursive enter and exit, so they go here instead. |
| // Note that we can't safely call AsyncPrintJavaStack() from within |
| // quick_enter() as our thread state remains _in_Java. |
| |
| bool ObjectSynchronizer::quick_enter(oop obj, Thread* self, |
| BasicLock * lock) { |
| assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); |
| assert(self->as_Java_thread()->thread_state() == _thread_in_Java, "invariant"); |
| NoSafepointVerifier nsv; |
| if (obj == NULL) return false; // Need to throw NPE |
| |
| if (obj->klass()->is_value_based()) { |
| return false; |
| } |
| |
| const markWord mark = obj->mark(); |
| |
| if (mark.has_monitor()) { |
| ObjectMonitor* const m = mark.monitor(); |
| // An async deflation or GC can race us before we manage to make |
| // the ObjectMonitor busy by setting the owner below. If we detect |
| // that race we just bail out to the slow-path here. |
| if (m->object_peek() == NULL) { |
| return false; |
| } |
| Thread* const owner = (Thread *) m->owner_raw(); |
| |
| // Lock contention and Transactional Lock Elision (TLE) diagnostics |
| // and observability |
| // Case: light contention possibly amenable to TLE |
| // Case: TLE inimical operations such as nested/recursive synchronization |
| |
| if (owner == self) { |
| m->_recursions++; |
| return true; |
| } |
| |
| // This Java Monitor is inflated so obj's header will never be |
| // displaced to this thread's BasicLock. Make the displaced header |
| // non-NULL so this BasicLock is not seen as recursive nor as |
| // being locked. We do this unconditionally so that this thread's |
| // BasicLock cannot be mis-interpreted by any stack walkers. For |
| // performance reasons, stack walkers generally first check for |
| // Biased Locking in the object's header, the second check is for |
| // stack-locking in the object's header, the third check is for |
| // recursive stack-locking in the displaced header in the BasicLock, |
| // and last are the inflated Java Monitor (ObjectMonitor) checks. |
| lock->set_displaced_header(markWord::unused_mark()); |
| |
| if (owner == NULL && m->try_set_owner_from(NULL, self) == NULL) { |
| assert(m->_recursions == 0, "invariant"); |
| return true; |
| } |
| } |
| |
| // Note that we could inflate in quick_enter. |
| // This is likely a useful optimization |
| // Critically, in quick_enter() we must not: |
| // -- perform bias revocation, or |
| // -- block indefinitely, or |
| // -- reach a safepoint |
| |
| return false; // revert to slow-path |
| } |
| |
| // Handle notifications when synchronizing on value based classes |
| void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, Thread* current) { |
| JavaThread* self = current->as_Java_thread(); |
| |
| frame last_frame = self->last_frame(); |
| bool bcp_was_adjusted = false; |
| // Don't decrement bcp if it points to the frame's first instruction. This happens when |
| // handle_sync_on_value_based_class() is called because of a synchronized method. There |
| // is no actual monitorenter instruction in the byte code in this case. |
| if (last_frame.is_interpreted_frame() && |
| (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { |
| // adjust bcp to point back to monitorenter so that we print the correct line numbers |
| last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); |
| bcp_was_adjusted = true; |
| } |
| |
| if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { |
| ResourceMark rm(self); |
| stringStream ss; |
| self->print_stack_on(&ss); |
| char* base = (char*)strstr(ss.base(), "at"); |
| char* newline = (char*)strchr(ss.base(), '\n'); |
| if (newline != NULL) { |
| *newline = '\0'; |
| } |
| fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); |
| } else { |
| assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); |
| ResourceMark rm(self); |
| Log(valuebasedclasses) vblog; |
| |
| vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); |
| if (self->has_last_Java_frame()) { |
| LogStream info_stream(vblog.info()); |
| self->print_stack_on(&info_stream); |
| } else { |
| vblog.info("Cannot find the last Java frame"); |
| } |
| |
| EventSyncOnValueBasedClass event; |
| if (event.should_commit()) { |
| event.set_valueBasedClass(obj->klass()); |
| event.commit(); |
| } |
| } |
| |
| if (bcp_was_adjusted) { |
| last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Monitor Enter/Exit |
| // The interpreter and compiler assembly code tries to lock using the fast path |
| // of this algorithm. Make sure to update that code if the following function is |
| // changed. The implementation is extremely sensitive to race condition. Be careful. |
| |
| void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) { |
| if (obj->klass()->is_value_based()) { |
| handle_sync_on_value_based_class(obj, THREAD); |
| } |
| |
| if (UseBiasedLocking) { |
| if (!SafepointSynchronize::is_at_safepoint()) { |
| BiasedLocking::revoke(obj, THREAD); |
| } else { |
| BiasedLocking::revoke_at_safepoint(obj); |
| } |
| } |
| |
| markWord mark = obj->mark(); |
| assert(!mark.has_bias_pattern(), "should not see bias pattern here"); |
| |
| if (mark.is_neutral()) { |
| // Anticipate successful CAS -- the ST of the displaced mark must |
| // be visible <= the ST performed by the CAS. |
| lock->set_displaced_header(mark); |
| if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { |
| return; |
| } |
| // Fall through to inflate() ... |
| } else if (mark.has_locker() && |
| THREAD->is_lock_owned((address)mark.locker())) { |
| assert(lock != mark.locker(), "must not re-lock the same lock"); |
| assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock"); |
| lock->set_displaced_header(markWord::from_pointer(NULL)); |
| return; |
| } |
| |
| // The object header will never be displaced to this lock, |
| // so it does not matter what the value is, except that it |
| // must be non-zero to avoid looking like a re-entrant lock, |
| // and must not look locked either. |
| lock->set_displaced_header(markWord::unused_mark()); |
| // An async deflation can race after the inflate() call and before |
| // enter() can make the ObjectMonitor busy. enter() returns false if |
| // we have lost the race to async deflation and we simply try again. |
| while (true) { |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_monitor_enter); |
| if (monitor->enter(THREAD)) { |
| return; |
| } |
| } |
| } |
| |
| void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) { |
| markWord mark = object->mark(); |
| // We cannot check for Biased Locking if we are racing an inflation. |
| assert(mark == markWord::INFLATING() || |
| !mark.has_bias_pattern(), "should not see bias pattern here"); |
| |
| markWord dhw = lock->displaced_header(); |
| if (dhw.value() == 0) { |
| // If the displaced header is NULL, then this exit matches up with |
| // a recursive enter. No real work to do here except for diagnostics. |
| #ifndef PRODUCT |
| if (mark != markWord::INFLATING()) { |
| // Only do diagnostics if we are not racing an inflation. Simply |
| // exiting a recursive enter of a Java Monitor that is being |
| // inflated is safe; see the has_monitor() comment below. |
| assert(!mark.is_neutral(), "invariant"); |
| assert(!mark.has_locker() || |
| THREAD->is_lock_owned((address)mark.locker()), "invariant"); |
| if (mark.has_monitor()) { |
| // The BasicLock's displaced_header is marked as a recursive |
| // enter and we have an inflated Java Monitor (ObjectMonitor). |
| // This is a special case where the Java Monitor was inflated |
| // after this thread entered the stack-lock recursively. When a |
| // Java Monitor is inflated, we cannot safely walk the Java |
| // Monitor owner's stack and update the BasicLocks because a |
| // Java Monitor can be asynchronously inflated by a thread that |
| // does not own the Java Monitor. |
| ObjectMonitor* m = mark.monitor(); |
| assert(m->object()->mark() == mark, "invariant"); |
| assert(m->is_entered(THREAD), "invariant"); |
| } |
| } |
| #endif |
| return; |
| } |
| |
| if (mark == markWord::from_pointer(lock)) { |
| // If the object is stack-locked by the current thread, try to |
| // swing the displaced header from the BasicLock back to the mark. |
| assert(dhw.is_neutral(), "invariant"); |
| if (object->cas_set_mark(dhw, mark) == mark) { |
| return; |
| } |
| } |
| |
| // We have to take the slow-path of possible inflation and then exit. |
| // The ObjectMonitor* can't be async deflated until ownership is |
| // dropped inside exit() and the ObjectMonitor* must be !is_busy(). |
| ObjectMonitor* monitor = inflate(THREAD, object, inflate_cause_vm_internal); |
| monitor->exit(true, THREAD); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Class Loader support to workaround deadlocks on the class loader lock objects |
| // Also used by GC |
| // complete_exit()/reenter() are used to wait on a nested lock |
| // i.e. to give up an outer lock completely and then re-enter |
| // Used when holding nested locks - lock acquisition order: lock1 then lock2 |
| // 1) complete_exit lock1 - saving recursion count |
| // 2) wait on lock2 |
| // 3) when notified on lock2, unlock lock2 |
| // 4) reenter lock1 with original recursion count |
| // 5) lock lock2 |
| // NOTE: must use heavy weight monitor to handle complete_exit/reenter() |
| intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| |
| // The ObjectMonitor* can't be async deflated until ownership is |
| // dropped inside exit() and the ObjectMonitor* must be !is_busy(). |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal); |
| intptr_t ret_code = monitor->complete_exit(THREAD); |
| return ret_code; |
| } |
| |
| // NOTE: must use heavy weight monitor to handle complete_exit/reenter() |
| void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| |
| // An async deflation can race after the inflate() call and before |
| // reenter() -> enter() can make the ObjectMonitor busy. reenter() -> |
| // enter() returns false if we have lost the race to async deflation |
| // and we simply try again. |
| while (true) { |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal); |
| if (monitor->reenter(recursions, THREAD)) { |
| return; |
| } |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // JNI locks on java objects |
| // NOTE: must use heavy weight monitor to handle jni monitor enter |
| void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { |
| if (obj->klass()->is_value_based()) { |
| handle_sync_on_value_based_class(obj, THREAD); |
| } |
| |
| // the current locking is from JNI instead of Java code |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| THREAD->set_current_pending_monitor_is_from_java(false); |
| // An async deflation can race after the inflate() call and before |
| // enter() can make the ObjectMonitor busy. enter() returns false if |
| // we have lost the race to async deflation and we simply try again. |
| while (true) { |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_jni_enter); |
| if (monitor->enter(THREAD)) { |
| break; |
| } |
| } |
| THREAD->set_current_pending_monitor_is_from_java(true); |
| } |
| |
| // NOTE: must use heavy weight monitor to handle jni monitor exit |
| void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) { |
| if (UseBiasedLocking) { |
| Handle h_obj(THREAD, obj); |
| BiasedLocking::revoke(h_obj, THREAD); |
| obj = h_obj(); |
| } |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| |
| // The ObjectMonitor* can't be async deflated until ownership is |
| // dropped inside exit() and the ObjectMonitor* must be !is_busy(). |
| ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit); |
| // If this thread has locked the object, exit the monitor. We |
| // intentionally do not use CHECK here because we must exit the |
| // monitor even if an exception is pending. |
| if (monitor->check_owner(THREAD)) { |
| monitor->exit(true, THREAD); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Internal VM locks on java objects |
| // standard constructor, allows locking failures |
| ObjectLocker::ObjectLocker(Handle obj, Thread* thread) { |
| _thread = thread; |
| _thread->check_for_valid_safepoint_state(); |
| _obj = obj; |
| |
| if (_obj() != NULL) { |
| ObjectSynchronizer::enter(_obj, &_lock, _thread); |
| } |
| } |
| |
| ObjectLocker::~ObjectLocker() { |
| if (_obj() != NULL) { |
| ObjectSynchronizer::exit(_obj(), &_lock, _thread); |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Wait/Notify/NotifyAll |
| // NOTE: must use heavy weight monitor to handle wait() |
| int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| if (millis < 0) { |
| THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); |
| } |
| // The ObjectMonitor* can't be async deflated because the _waiters |
| // field is incremented before ownership is dropped and decremented |
| // after ownership is regained. |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait); |
| |
| DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis); |
| monitor->wait(millis, true, THREAD); |
| |
| // This dummy call is in place to get around dtrace bug 6254741. Once |
| // that's fixed we can uncomment the following line, remove the call |
| // and change this function back into a "void" func. |
| // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); |
| int ret_code = dtrace_waited_probe(monitor, obj, THREAD); |
| return ret_code; |
| } |
| |
| void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| if (millis < 0) { |
| THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); |
| } |
| // The ObjectMonitor* can't be async deflated because the _waiters |
| // field is incremented before ownership is dropped and decremented |
| // after ownership is regained. |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait); |
| monitor->wait(millis, false, THREAD); |
| } |
| |
| void ObjectSynchronizer::notify(Handle obj, TRAPS) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| |
| markWord mark = obj->mark(); |
| if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) { |
| return; |
| } |
| // The ObjectMonitor* can't be async deflated until ownership is |
| // dropped by the calling thread. |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify); |
| monitor->notify(THREAD); |
| } |
| |
| // NOTE: see comment of notify() |
| void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(obj, THREAD); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| |
| markWord mark = obj->mark(); |
| if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) { |
| return; |
| } |
| // The ObjectMonitor* can't be async deflated until ownership is |
| // dropped by the calling thread. |
| ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify); |
| monitor->notifyAll(THREAD); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Hash Code handling |
| |
| struct SharedGlobals { |
| char _pad_prefix[OM_CACHE_LINE_SIZE]; |
| // This is a highly shared mostly-read variable. |
| // To avoid false-sharing it needs to be the sole occupant of a cache line. |
| volatile int stw_random; |
| DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); |
| // Hot RW variable -- Sequester to avoid false-sharing |
| volatile int hc_sequence; |
| DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); |
| }; |
| |
| static SharedGlobals GVars; |
| |
| static markWord read_stable_mark(oop obj) { |
| markWord mark = obj->mark(); |
| if (!mark.is_being_inflated()) { |
| return mark; // normal fast-path return |
| } |
| |
| int its = 0; |
| for (;;) { |
| markWord mark = obj->mark(); |
| if (!mark.is_being_inflated()) { |
| return mark; // normal fast-path return |
| } |
| |
| // The object is being inflated by some other thread. |
| // The caller of read_stable_mark() must wait for inflation to complete. |
| // Avoid live-lock. |
| |
| ++its; |
| if (its > 10000 || !os::is_MP()) { |
| if (its & 1) { |
| os::naked_yield(); |
| } else { |
| // Note that the following code attenuates the livelock problem but is not |
| // a complete remedy. A more complete solution would require that the inflating |
| // thread hold the associated inflation lock. The following code simply restricts |
| // the number of spinners to at most one. We'll have N-2 threads blocked |
| // on the inflationlock, 1 thread holding the inflation lock and using |
| // a yield/park strategy, and 1 thread in the midst of inflation. |
| // A more refined approach would be to change the encoding of INFLATING |
| // to allow encapsulation of a native thread pointer. Threads waiting for |
| // inflation to complete would use CAS to push themselves onto a singly linked |
| // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag |
| // and calling park(). When inflation was complete the thread that accomplished inflation |
| // would detach the list and set the markword to inflated with a single CAS and |
| // then for each thread on the list, set the flag and unpark() the thread. |
| |
| // Index into the lock array based on the current object address. |
| static_assert(is_power_of_2(NINFLATIONLOCKS), "must be"); |
| int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1); |
| int YieldThenBlock = 0; |
| assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant"); |
| gInflationLocks[ix]->lock(); |
| while (obj->mark() == markWord::INFLATING()) { |
| // Beware: naked_yield() is advisory and has almost no effect on some platforms |
| // so we periodically call self->_ParkEvent->park(1). |
| // We use a mixed spin/yield/block mechanism. |
| if ((YieldThenBlock++) >= 16) { |
| Thread::current()->_ParkEvent->park(1); |
| } else { |
| os::naked_yield(); |
| } |
| } |
| gInflationLocks[ix]->unlock(); |
| } |
| } else { |
| SpinPause(); // SMP-polite spinning |
| } |
| } |
| } |
| |
| // hashCode() generation : |
| // |
| // Possibilities: |
| // * MD5Digest of {obj,stw_random} |
| // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. |
| // * A DES- or AES-style SBox[] mechanism |
| // * One of the Phi-based schemes, such as: |
| // 2654435761 = 2^32 * Phi (golden ratio) |
| // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; |
| // * A variation of Marsaglia's shift-xor RNG scheme. |
| // * (obj ^ stw_random) is appealing, but can result |
| // in undesirable regularity in the hashCode values of adjacent objects |
| // (objects allocated back-to-back, in particular). This could potentially |
| // result in hashtable collisions and reduced hashtable efficiency. |
| // There are simple ways to "diffuse" the middle address bits over the |
| // generated hashCode values: |
| |
| static inline intptr_t get_next_hash(Thread* self, oop obj) { |
| intptr_t value = 0; |
| if (hashCode == 0) { |
| // This form uses global Park-Miller RNG. |
| // On MP system we'll have lots of RW access to a global, so the |
| // mechanism induces lots of coherency traffic. |
| value = os::random(); |
| } else if (hashCode == 1) { |
| // This variation has the property of being stable (idempotent) |
| // between STW operations. This can be useful in some of the 1-0 |
| // synchronization schemes. |
| intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; |
| value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; |
| } else if (hashCode == 2) { |
| value = 1; // for sensitivity testing |
| } else if (hashCode == 3) { |
| value = ++GVars.hc_sequence; |
| } else if (hashCode == 4) { |
| value = cast_from_oop<intptr_t>(obj); |
| } else { |
| // Marsaglia's xor-shift scheme with thread-specific state |
| // This is probably the best overall implementation -- we'll |
| // likely make this the default in future releases. |
| unsigned t = self->_hashStateX; |
| t ^= (t << 11); |
| self->_hashStateX = self->_hashStateY; |
| self->_hashStateY = self->_hashStateZ; |
| self->_hashStateZ = self->_hashStateW; |
| unsigned v = self->_hashStateW; |
| v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); |
| self->_hashStateW = v; |
| value = v; |
| } |
| |
| value &= markWord::hash_mask; |
| if (value == 0) value = 0xBAD; |
| assert(value != markWord::no_hash, "invariant"); |
| return value; |
| } |
| |
| intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) { |
| if (UseBiasedLocking) { |
| // NOTE: many places throughout the JVM do not expect a safepoint |
| // to be taken here. However, we only ever bias Java instances and all |
| // of the call sites of identity_hash that might revoke biases have |
| // been checked to make sure they can handle a safepoint. The |
| // added check of the bias pattern is to avoid useless calls to |
| // thread-local storage. |
| if (obj->mark().has_bias_pattern()) { |
| // Handle for oop obj in case of STW safepoint |
| Handle hobj(self, obj); |
| if (SafepointSynchronize::is_at_safepoint()) { |
| BiasedLocking::revoke_at_safepoint(hobj); |
| } else { |
| BiasedLocking::revoke(hobj, self); |
| } |
| obj = hobj(); |
| assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| } |
| |
| while (true) { |
| ObjectMonitor* monitor = NULL; |
| markWord temp, test; |
| intptr_t hash; |
| markWord mark = read_stable_mark(obj); |
| |
| // object should remain ineligible for biased locking |
| assert(!mark.has_bias_pattern(), "invariant"); |
| |
| if (mark.is_neutral()) { // if this is a normal header |
| hash = mark.hash(); |
| if (hash != 0) { // if it has a hash, just return it |
| return hash; |
| } |
| hash = get_next_hash(self, obj); // get a new hash |
| temp = mark.copy_set_hash(hash); // merge the hash into header |
| // try to install the hash |
| test = obj->cas_set_mark(temp, mark); |
| if (test == mark) { // if the hash was installed, return it |
| return hash; |
| } |
| // Failed to install the hash. It could be that another thread |
| // installed the hash just before our attempt or inflation has |
| // occurred or... so we fall thru to inflate the monitor for |
| // stability and then install the hash. |
| } else if (mark.has_monitor()) { |
| monitor = mark.monitor(); |
| temp = monitor->header(); |
| assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); |
| hash = temp.hash(); |
| if (hash != 0) { |
| // It has a hash. |
| |
| // Separate load of dmw/header above from the loads in |
| // is_being_async_deflated(). |
| |
| // dmw/header and _contentions may get written by different threads. |
| // Make sure to observe them in the same order when having several observers. |
| OrderAccess::loadload_for_IRIW(); |
| |
| if (monitor->is_being_async_deflated()) { |
| // But we can't safely use the hash if we detect that async |
| // deflation has occurred. So we attempt to restore the |
| // header/dmw to the object's header so that we only retry |
| // once if the deflater thread happens to be slow. |
| monitor->install_displaced_markword_in_object(obj); |
| continue; |
| } |
| return hash; |
| } |
| // Fall thru so we only have one place that installs the hash in |
| // the ObjectMonitor. |
| } else if (self->is_lock_owned((address)mark.locker())) { |
| // This is a stack lock owned by the calling thread so fetch the |
| // displaced markWord from the BasicLock on the stack. |
| temp = mark.displaced_mark_helper(); |
| assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); |
| hash = temp.hash(); |
| if (hash != 0) { // if it has a hash, just return it |
| return hash; |
| } |
| // WARNING: |
| // The displaced header in the BasicLock on a thread's stack |
| // is strictly immutable. It CANNOT be changed in ANY cases. |
| // So we have to inflate the stack lock into an ObjectMonitor |
| // even if the current thread owns the lock. The BasicLock on |
| // a thread's stack can be asynchronously read by other threads |
| // during an inflate() call so any change to that stack memory |
| // may not propagate to other threads correctly. |
| } |
| |
| // Inflate the monitor to set the hash. |
| |
| // An async deflation can race after the inflate() call and before we |
| // can update the ObjectMonitor's header with the hash value below. |
| monitor = inflate(self, obj, inflate_cause_hash_code); |
| // Load ObjectMonitor's header/dmw field and see if it has a hash. |
| mark = monitor->header(); |
| assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); |
| hash = mark.hash(); |
| if (hash == 0) { // if it does not have a hash |
| hash = get_next_hash(self, obj); // get a new hash |
| temp = mark.copy_set_hash(hash); // merge the hash into header |
| assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); |
| uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value()); |
| test = markWord(v); |
| if (test != mark) { |
| // The attempt to update the ObjectMonitor's header/dmw field |
| // did not work. This can happen if another thread managed to |
| // merge in the hash just before our cmpxchg(). |
| // If we add any new usages of the header/dmw field, this code |
| // will need to be updated. |
| hash = test.hash(); |
| assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); |
| assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); |
| } |
| if (monitor->is_being_async_deflated()) { |
| // If we detect that async deflation has occurred, then we |
| // attempt to restore the header/dmw to the object's header |
| // so that we only retry once if the deflater thread happens |
| // to be slow. |
| monitor->install_displaced_markword_in_object(obj); |
| continue; |
| } |
| } |
| // We finally get the hash. |
| return hash; |
| } |
| } |
| |
| // Deprecated -- use FastHashCode() instead. |
| |
| intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) { |
| return FastHashCode(Thread::current(), obj()); |
| } |
| |
| |
| bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread, |
| Handle h_obj) { |
| if (UseBiasedLocking) { |
| BiasedLocking::revoke(h_obj, thread); |
| assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| |
| assert(thread == JavaThread::current(), "Can only be called on current thread"); |
| oop obj = h_obj(); |
| |
| markWord mark = read_stable_mark(obj); |
| |
| // Uncontended case, header points to stack |
| if (mark.has_locker()) { |
| return thread->is_lock_owned((address)mark.locker()); |
| } |
| // Contended case, header points to ObjectMonitor (tagged pointer) |
| if (mark.has_monitor()) { |
| // The first stage of async deflation does not affect any field |
| // used by this comparison so the ObjectMonitor* is usable here. |
| ObjectMonitor* monitor = mark.monitor(); |
| return monitor->is_entered(thread) != 0; |
| } |
| // Unlocked case, header in place |
| assert(mark.is_neutral(), "sanity check"); |
| return false; |
| } |
| |
| // Be aware of this method could revoke bias of the lock object. |
| // This method queries the ownership of the lock handle specified by 'h_obj'. |
| // If the current thread owns the lock, it returns owner_self. If no |
| // thread owns the lock, it returns owner_none. Otherwise, it will return |
| // owner_other. |
| ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership |
| (JavaThread *self, Handle h_obj) { |
| // The caller must beware this method can revoke bias, and |
| // revocation can result in a safepoint. |
| assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); |
| assert(self->thread_state() != _thread_blocked, "invariant"); |
| |
| // Possible mark states: neutral, biased, stack-locked, inflated |
| |
| if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) { |
| // CASE: biased |
| BiasedLocking::revoke(h_obj, self); |
| assert(!h_obj->mark().has_bias_pattern(), |
| "biases should be revoked by now"); |
| } |
| |
| assert(self == JavaThread::current(), "Can only be called on current thread"); |
| oop obj = h_obj(); |
| markWord mark = read_stable_mark(obj); |
| |
| // CASE: stack-locked. Mark points to a BasicLock on the owner's stack. |
| if (mark.has_locker()) { |
| return self->is_lock_owned((address)mark.locker()) ? |
| owner_self : owner_other; |
| } |
| |
| // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor. |
| if (mark.has_monitor()) { |
| // The first stage of async deflation does not affect any field |
| // used by this comparison so the ObjectMonitor* is usable here. |
| ObjectMonitor* monitor = mark.monitor(); |
| void* owner = monitor->owner(); |
| if (owner == NULL) return owner_none; |
| return (owner == self || |
| self->is_lock_owned((address)owner)) ? owner_self : owner_other; |
| } |
| |
| // CASE: neutral |
| assert(mark.is_neutral(), "sanity check"); |
| return owner_none; // it's unlocked |
| } |
| |
| // FIXME: jvmti should call this |
| JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { |
| if (UseBiasedLocking) { |
| if (SafepointSynchronize::is_at_safepoint()) { |
| BiasedLocking::revoke_at_safepoint(h_obj); |
| } else { |
| BiasedLocking::revoke(h_obj, JavaThread::current()); |
| } |
| assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); |
| } |
| |
| oop obj = h_obj(); |
| address owner = NULL; |
| |
| markWord mark = read_stable_mark(obj); |
| |
| // Uncontended case, header points to stack |
| if (mark.has_locker()) { |
| owner = (address) mark.locker(); |
| } |
| |
| // Contended case, header points to ObjectMonitor (tagged pointer) |
| else if (mark.has_monitor()) { |
| // The first stage of async deflation does not affect any field |
| // used by this comparison so the ObjectMonitor* is usable here. |
| ObjectMonitor* monitor = mark.monitor(); |
| assert(monitor != NULL, "monitor should be non-null"); |
| owner = (address) monitor->owner(); |
| } |
| |
| if (owner != NULL) { |
| // owning_thread_from_monitor_owner() may also return NULL here |
| return Threads::owning_thread_from_monitor_owner(t_list, owner); |
| } |
| |
| // Unlocked case, header in place |
| // Cannot have assertion since this object may have been |
| // locked by another thread when reaching here. |
| // assert(mark.is_neutral(), "sanity check"); |
| |
| return NULL; |
| } |
| |
| // Visitors ... |
| |
| void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) { |
| MonitorList::Iterator iter = _in_use_list.iterator(); |
| while (iter.has_next()) { |
| ObjectMonitor* mid = iter.next(); |
| if (!mid->is_being_async_deflated() && mid->object_peek() != NULL) { |
| // Only process with closure if the object is set. |
| |
| // monitors_iterate() is only called at a safepoint or when the |
| // target thread is suspended or when the target thread is |
| // operating on itself. The current closures in use today are |
| // only interested in an owned ObjectMonitor and ownership |
| // cannot be dropped under the calling contexts so the |
| // ObjectMonitor cannot be async deflated. |
| closure->do_monitor(mid); |
| } |
| } |
| } |
| |
| static bool monitors_used_above_threshold(MonitorList* list) { |
| if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy |
| return false; |
| } |
| // Start with ceiling based on a per-thread estimate: |
| size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); |
| size_t old_ceiling = ceiling; |
| if (ceiling < list->max()) { |
| // The max used by the system has exceeded the ceiling so use that: |
| ceiling = list->max(); |
| } |
| size_t monitors_used = list->count(); |
| if (monitors_used == 0) { // empty list is easy |
| return false; |
| } |
| if (NoAsyncDeflationProgressMax != 0 && |
| _no_progress_cnt >= NoAsyncDeflationProgressMax) { |
| float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; |
| size_t new_ceiling = ceiling + (ceiling * remainder) + 1; |
| ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); |
| log_info(monitorinflation)("Too many deflations without progress; " |
| "bumping in_use_list_ceiling from " SIZE_FORMAT |
| " to " SIZE_FORMAT, old_ceiling, new_ceiling); |
| _no_progress_cnt = 0; |
| ceiling = new_ceiling; |
| } |
| |
| // Check if our monitor usage is above the threshold: |
| size_t monitor_usage = (monitors_used * 100LL) / ceiling; |
| return int(monitor_usage) > MonitorUsedDeflationThreshold; |
| } |
| |
| size_t ObjectSynchronizer::in_use_list_ceiling() { |
| return _in_use_list_ceiling; |
| } |
| |
| void ObjectSynchronizer::dec_in_use_list_ceiling() { |
| Atomic::add(&_in_use_list_ceiling, -AvgMonitorsPerThreadEstimate); |
| } |
| |
| void ObjectSynchronizer::inc_in_use_list_ceiling() { |
| Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); |
| } |
| |
| void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { |
| _in_use_list_ceiling = new_value; |
| } |
| |
| bool ObjectSynchronizer::is_async_deflation_needed() { |
| if (is_async_deflation_requested()) { |
| // Async deflation request. |
| return true; |
| } |
| if (AsyncDeflationInterval > 0 && |
| time_since_last_async_deflation_ms() > AsyncDeflationInterval && |
| monitors_used_above_threshold(&_in_use_list)) { |
| // It's been longer than our specified deflate interval and there |
| // are too many monitors in use. We don't deflate more frequently |
| // than AsyncDeflationInterval (unless is_async_deflation_requested) |
| // in order to not swamp the MonitorDeflationThread. |
| return true; |
| } |
| return false; |
| } |
| |
| bool ObjectSynchronizer::request_deflate_idle_monitors() { |
| Thread* self = Thread::current(); |
| bool ret_code = false; |
| |
| jlong last_time = last_async_deflation_time_ns(); |
| set_is_async_deflation_requested(true); |
| { |
| MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); |
| ml.notify_all(); |
| } |
| const int N_CHECKS = 5; |
| for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds |
| if (last_async_deflation_time_ns() > last_time) { |
| log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); |
| ret_code = true; |
| break; |
| } |
| if (self->is_Java_thread()) { |
| // JavaThread has to honor the blocking protocol. |
| ThreadBlockInVM tbivm(self->as_Java_thread()); |
| os::naked_short_sleep(999); // sleep for almost 1 second |
| } else { |
| os::naked_short_sleep(999); // sleep for almost 1 second |
| } |
| } |
| if (!ret_code) { |
| log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); |
| } |
| |
| return ret_code; |
| } |
| |
| jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { |
| return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); |
| } |
| |
| static void post_monitor_inflate_event(EventJavaMonitorInflate* event, |
| const oop obj, |
| ObjectSynchronizer::InflateCause cause) { |
| assert(event != NULL, "invariant"); |
| assert(event->should_commit(), "invariant"); |
| event->set_monitorClass(obj->klass()); |
| event->set_address((uintptr_t)(void*)obj); |
| event->set_cause((u1)cause); |
| event->commit(); |
| } |
| |
| // Fast path code shared by multiple functions |
| void ObjectSynchronizer::inflate_helper(oop obj) { |
| markWord mark = obj->mark(); |
| if (mark.has_monitor()) { |
| ObjectMonitor* monitor = mark.monitor(); |
| markWord dmw = monitor->header(); |
| assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); |
| return; |
| } |
| (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); |
| } |
| |
| ObjectMonitor* ObjectSynchronizer::inflate(Thread* self, oop object, |
| const InflateCause cause) { |
| EventJavaMonitorInflate event; |
| |
| for (;;) { |
| const markWord mark = object->mark(); |
| assert(!mark.has_bias_pattern(), "invariant"); |
| |
| // The mark can be in one of the following states: |
| // * Inflated - just return |
| // * Stack-locked - coerce it to inflated |
| // * INFLATING - busy wait for conversion to complete |
| // * Neutral - aggressively inflate the object. |
| // * BIASED - Illegal. We should never see this |
| |
| // CASE: inflated |
| if (mark.has_monitor()) { |
| ObjectMonitor* inf = mark.monitor(); |
| markWord dmw = inf->header(); |
| assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); |
| return inf; |
| } |
| |
| // CASE: inflation in progress - inflating over a stack-lock. |
| // Some other thread is converting from stack-locked to inflated. |
| // Only that thread can complete inflation -- other threads must wait. |
| // The INFLATING value is transient. |
| // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. |
| // We could always eliminate polling by parking the thread on some auxiliary list. |
| if (mark == markWord::INFLATING()) { |
| read_stable_mark(object); |
| continue; |
| } |
| |
| // CASE: stack-locked |
| // Could be stack-locked either by this thread or by some other thread. |
| // |
| // Note that we allocate the ObjectMonitor speculatively, _before_ attempting |
| // to install INFLATING into the mark word. We originally installed INFLATING, |
| // allocated the ObjectMonitor, and then finally STed the address of the |
| // ObjectMonitor into the mark. This was correct, but artificially lengthened |
| // the interval in which INFLATING appeared in the mark, thus increasing |
| // the odds of inflation contention. |
| |
| LogStreamHandle(Trace, monitorinflation) lsh; |
| |
| if (mark.has_locker()) { |
| ObjectMonitor* m = new ObjectMonitor(object); |
| // Optimistically prepare the ObjectMonitor - anticipate successful CAS |
| // We do this before the CAS in order to minimize the length of time |
| // in which INFLATING appears in the mark. |
| |
| markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); |
| if (cmp != mark) { |
| delete m; |
| continue; // Interference -- just retry |
| } |
| |
| // We've successfully installed INFLATING (0) into the mark-word. |
| // This is the only case where 0 will appear in a mark-word. |
| // Only the singular thread that successfully swings the mark-word |
| // to 0 can perform (or more precisely, complete) inflation. |
| // |
| // Why do we CAS a 0 into the mark-word instead of just CASing the |
| // mark-word from the stack-locked value directly to the new inflated state? |
| // Consider what happens when a thread unlocks a stack-locked object. |
| // It attempts to use CAS to swing the displaced header value from the |
| // on-stack BasicLock back into the object header. Recall also that the |
| // header value (hash code, etc) can reside in (a) the object header, or |
| // (b) a displaced header associated with the stack-lock, or (c) a displaced |
| // header in an ObjectMonitor. The inflate() routine must copy the header |
| // value from the BasicLock on the owner's stack to the ObjectMonitor, all |
| // the while preserving the hashCode stability invariants. If the owner |
| // decides to release the lock while the value is 0, the unlock will fail |
| // and control will eventually pass from slow_exit() to inflate. The owner |
| // will then spin, waiting for the 0 value to disappear. Put another way, |
| // the 0 causes the owner to stall if the owner happens to try to |
| // drop the lock (restoring the header from the BasicLock to the object) |
| // while inflation is in-progress. This protocol avoids races that might |
| // would otherwise permit hashCode values to change or "flicker" for an object. |
| // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. |
| // 0 serves as a "BUSY" inflate-in-progress indicator. |
| |
| |
| // fetch the displaced mark from the owner's stack. |
| // The owner can't die or unwind past the lock while our INFLATING |
| // object is in the mark. Furthermore the owner can't complete |
| // an unlock on the object, either. |
| markWord dmw = mark.displaced_mark_helper(); |
| // Catch if the object's header is not neutral (not locked and |
| // not marked is what we care about here). |
| assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); |
| |
| // Setup monitor fields to proper values -- prepare the monitor |
| m->set_header(dmw); |
| |
| // Optimization: if the mark.locker stack address is associated |
| // with this thread we could simply set m->_owner = self. |
| // Note that a thread can inflate an object |
| // that it has stack-locked -- as might happen in wait() -- directly |
| // with CAS. That is, we can avoid the xchg-NULL .... ST idiom. |
| m->set_owner_from(NULL, mark.locker()); |
| // TODO-FIXME: assert BasicLock->dhw != 0. |
| |
| // Must preserve store ordering. The monitor state must |
| // be stable at the time of publishing the monitor address. |
| guarantee(object->mark() == markWord::INFLATING(), "invariant"); |
| // Release semantics so that above set_object() is seen first. |
| object->release_set_mark(markWord::encode(m)); |
| |
| // Once ObjectMonitor is configured and the object is associated |
| // with the ObjectMonitor, it is safe to allow async deflation: |
| _in_use_list.add(m); |
| |
| // Hopefully the performance counters are allocated on distinct cache lines |
| // to avoid false sharing on MP systems ... |
| OM_PERFDATA_OP(Inflations, inc()); |
| if (log_is_enabled(Trace, monitorinflation)) { |
| ResourceMark rm(self); |
| lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" |
| INTPTR_FORMAT ", type='%s'", p2i(object), |
| object->mark().value(), object->klass()->external_name()); |
| } |
| if (event.should_commit()) { |
| post_monitor_inflate_event(&event, object, cause); |
| } |
| return m; |
| } |
| |
| // CASE: neutral |
| // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. |
| // If we know we're inflating for entry it's better to inflate by swinging a |
| // pre-locked ObjectMonitor pointer into the object header. A successful |
| // CAS inflates the object *and* confers ownership to the inflating thread. |
| // In the current implementation we use a 2-step mechanism where we CAS() |
| // to inflate and then CAS() again to try to swing _owner from NULL to self. |
| // An inflateTry() method that we could call from enter() would be useful. |
| |
| // Catch if the object's header is not neutral (not locked and |
| // not marked is what we care about here). |
| assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); |
| ObjectMonitor* m = new ObjectMonitor(object); |
| // prepare m for installation - set monitor to initial state |
| m->set_header(mark); |
| |
| if (object->cas_set_mark(markWord::encode(m), mark) != mark) { |
| delete m; |
| m = NULL; |
| continue; |
| // interference - the markword changed - just retry. |
| // The state-transitions are one-way, so there's no chance of |
| // live-lock -- "Inflated" is an absorbing state. |
| } |
| |
| // Once the ObjectMonitor is configured and object is associated |
| // with the ObjectMonitor, it is safe to allow async deflation: |
| _in_use_list.add(m); |
| |
| // Hopefully the performance counters are allocated on distinct |
| // cache lines to avoid false sharing on MP systems ... |
| OM_PERFDATA_OP(Inflations, inc()); |
| if (log_is_enabled(Trace, monitorinflation)) { |
| ResourceMark rm(self); |
| lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" |
| INTPTR_FORMAT ", type='%s'", p2i(object), |
| object->mark().value(), object->klass()->external_name()); |
| } |
| if (event.should_commit()) { |
| post_monitor_inflate_event(&event, object, cause); |
| } |
| return m; |
| } |
| } |
| |
| void ObjectSynchronizer::chk_for_block_req(JavaThread* self, const char* op_name, |
| const char* cnt_name, size_t cnt, |
| LogStream* ls, elapsedTimer* timer_p) { |
| if (!SafepointMechanism::should_process(self)) { |
| return; |
| } |
| |
| // A safepoint/handshake has started. |
| if (ls != NULL) { |
| timer_p->stop(); |
| ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" |
| SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, |
| op_name, cnt_name, cnt, in_use_list_ceiling(), |
| _in_use_list.count(), _in_use_list.max()); |
| } |
| |
| { |
| // Honor block request. |
| ThreadBlockInVM tbivm(self); |
| } |
| |
| if (ls != NULL) { |
| ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT |
| ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, |
| in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); |
| timer_p->start(); |
| } |
| } |
| |
| // Walk the in-use list and deflate (at most MonitorDeflationMax) idle |
| // ObjectMonitors. Returns the number of deflated ObjectMonitors. |
| size_t ObjectSynchronizer::deflate_monitor_list(Thread *self, LogStream* ls, |
| elapsedTimer* timer_p) { |
| MonitorList::Iterator iter = _in_use_list.iterator(); |
| size_t deflated_count = 0; |
| |
| while (iter.has_next()) { |
| if (deflated_count >= (size_t)MonitorDeflationMax) { |
| break; |
| } |
| ObjectMonitor* mid = iter.next(); |
| if (mid->deflate_monitor()) { |
| deflated_count++; |
| } |
| |
| if (self->is_Java_thread()) { |
| // A JavaThread must check for a safepoint/handshake and honor it. |
| chk_for_block_req(self->as_Java_thread(), "deflation", "deflated_count", |
| deflated_count, ls, timer_p); |
| } |
| } |
| |
| return deflated_count; |
| } |
| |
| class HandshakeForDeflation : public HandshakeClosure { |
| public: |
| HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} |
| |
| void do_thread(Thread* thread) { |
| log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" |
| INTPTR_FORMAT, p2i(thread)); |
| } |
| }; |
| |
| // This function is called by the MonitorDeflationThread to deflate |
| // ObjectMonitors. It is also called via do_final_audit_and_print_stats() |
| // by the VMThread. |
| size_t ObjectSynchronizer::deflate_idle_monitors() { |
| Thread* self = Thread::current(); |
| if (self->is_Java_thread()) { |
| // The async deflation request has been processed. |
| _last_async_deflation_time_ns = os::javaTimeNanos(); |
| set_is_async_deflation_requested(false); |
| } |
| |
| LogStreamHandle(Debug, monitorinflation) lsh_debug; |
| LogStreamHandle(Info, monitorinflation) lsh_info; |
| LogStream* ls = NULL; |
| if (log_is_enabled(Debug, monitorinflation)) { |
| ls = &lsh_debug; |
| } else if (log_is_enabled(Info, monitorinflation)) { |
| ls = &lsh_info; |
| } |
| |
| elapsedTimer timer; |
| if (ls != NULL) { |
| ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, |
| in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); |
| timer.start(); |
| } |
| |
| // Deflate some idle ObjectMonitors. |
| size_t deflated_count = deflate_monitor_list(self, ls, &timer); |
| if (deflated_count > 0 || is_final_audit()) { |
| // There are ObjectMonitors that have been deflated or this is the |
| // final audit and all the remaining ObjectMonitors have been |
| // deflated, BUT the MonitorDeflationThread blocked for the final |
| // safepoint during unlinking. |
| |
| // Unlink deflated ObjectMonitors from the in-use list. |
| ResourceMark rm; |
| GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); |
| size_t unlinked_count = _in_use_list.unlink_deflated(self, ls, &timer, |
| &delete_list); |
| if (self->is_Java_thread()) { |
| if (ls != NULL) { |
| timer.stop(); |
| ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT |
| ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" |
| SIZE_FORMAT ", max=" SIZE_FORMAT, |
| unlinked_count, in_use_list_ceiling(), |
| _in_use_list.count(), _in_use_list.max()); |
| } |
| |
| // A JavaThread needs to handshake in order to safely free the |
| // ObjectMonitors that were deflated in this cycle. |
| HandshakeForDeflation hfd_hc; |
| Handshake::execute(&hfd_hc); |
| |
| if (ls != NULL) { |
| ls->print_cr("after handshaking: in_use_list stats: ceiling=" |
| SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, |
| in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); |
| timer.start(); |
| } |
| } |
| |
| // After the handshake, safely free the ObjectMonitors that were |
| // deflated in this cycle. |
| size_t deleted_count = 0; |
| for (ObjectMonitor* monitor: delete_list) { |
| delete monitor; |
| deleted_count++; |
| |
| if (self->is_Java_thread()) { |
| // A JavaThread must check for a safepoint/handshake and honor it. |
| chk_for_block_req(self->as_Java_thread(), "deletion", "deleted_count", |
| deleted_count, ls, &timer); |
| } |
| } |
| } |
| |
| if (ls != NULL) { |
| timer.stop(); |
| if (deflated_count != 0 || log_is_enabled(Debug, monitorinflation)) { |
| ls->print_cr("deflated " SIZE_FORMAT " monitors in %3.7f secs", |
| deflated_count, timer.seconds()); |
| } |
| ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, |
| in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); |
| } |
| |
| OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); |
| OM_PERFDATA_OP(Deflations, inc(deflated_count)); |
| |
| GVars.stw_random = os::random(); |
| |
| if (deflated_count != 0) { |
| _no_progress_cnt = 0; |
| } else { |
| _no_progress_cnt++; |
| } |
| |
| return deflated_count; |
| } |
| |
| // Monitor cleanup on JavaThread::exit |
| |
| // Iterate through monitor cache and attempt to release thread's monitors |
| // Gives up on a particular monitor if an exception occurs, but continues |
| // the overall iteration, swallowing the exception. |
| class ReleaseJavaMonitorsClosure: public MonitorClosure { |
| private: |
| TRAPS; |
| |
| public: |
| ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {} |
| void do_monitor(ObjectMonitor* mid) { |
| if (mid->owner() == THREAD) { |
| (void)mid->complete_exit(CHECK); |
| } |
| } |
| }; |
| |
| // Release all inflated monitors owned by THREAD. Lightweight monitors are |
| // ignored. This is meant to be called during JNI thread detach which assumes |
| // all remaining monitors are heavyweight. All exceptions are swallowed. |
| // Scanning the extant monitor list can be time consuming. |
| // A simple optimization is to add a per-thread flag that indicates a thread |
| // called jni_monitorenter() during its lifetime. |
| // |
| // Instead of NoSafepointVerifier it might be cheaper to |
| // use an idiom of the form: |
| // auto int tmp = SafepointSynchronize::_safepoint_counter ; |
| // <code that must not run at safepoint> |
| // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; |
| // Since the tests are extremely cheap we could leave them enabled |
| // for normal product builds. |
| |
| void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) { |
| assert(THREAD == JavaThread::current(), "must be current Java thread"); |
| NoSafepointVerifier nsv; |
| ReleaseJavaMonitorsClosure rjmc(THREAD); |
| ObjectSynchronizer::monitors_iterate(&rjmc); |
| THREAD->clear_pending_exception(); |
| } |
| |
| const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { |
| switch (cause) { |
| case inflate_cause_vm_internal: return "VM Internal"; |
| case inflate_cause_monitor_enter: return "Monitor Enter"; |
| case inflate_cause_wait: return "Monitor Wait"; |
| case inflate_cause_notify: return "Monitor Notify"; |
| case inflate_cause_hash_code: return "Monitor Hash Code"; |
| case inflate_cause_jni_enter: return "JNI Monitor Enter"; |
| case inflate_cause_jni_exit: return "JNI Monitor Exit"; |
| default: |
| ShouldNotReachHere(); |
| } |
| return "Unknown"; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Debugging code |
| |
| u_char* ObjectSynchronizer::get_gvars_addr() { |
| return (u_char*)&GVars; |
| } |
| |
| u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { |
| return (u_char*)&GVars.hc_sequence; |
| } |
| |
| size_t ObjectSynchronizer::get_gvars_size() { |
| return sizeof(SharedGlobals); |
| } |
| |
| u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { |
| return (u_char*)&GVars.stw_random; |
| } |
| |
| // Do the final audit and print of ObjectMonitor stats; must be done |
| // by the VMThread at VM exit time. |
| void ObjectSynchronizer::do_final_audit_and_print_stats() { |
| assert(Thread::current()->is_VM_thread(), "sanity check"); |
| |
| if (is_final_audit()) { // Only do the audit once. |
| return; |
| } |
| set_is_final_audit(); |
| |
| if (log_is_enabled(Info, monitorinflation)) { |
| // Do a deflation in order to reduce the in-use monitor population |
| // that is reported by ObjectSynchronizer::log_in_use_monitor_details() |
| // which is called by ObjectSynchronizer::audit_and_print_stats(). |
| while (ObjectSynchronizer::deflate_idle_monitors() != 0) { |
| ; // empty |
| } |
| // The other audit_and_print_stats() call is done at the Debug |
| // level at a safepoint in ObjectSynchronizer::do_safepoint_work(). |
| ObjectSynchronizer::audit_and_print_stats(true /* on_exit */); |
| } |
| } |
| |
| // This function can be called at a safepoint or it can be called when |
| // we are trying to exit the VM. When we are trying to exit the VM, the |
| // list walker functions can run in parallel with the other list |
| // operations so spin-locking is used for safety. |
| // |
| // Calls to this function can be added in various places as a debugging |
| // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor |
| // details logged at the Info level and 'false' for the 'on_exit' |
| // parameter to have in-use monitor details logged at the Trace level. |
| // |
| void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { |
| assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant"); |
| |
| LogStreamHandle(Debug, monitorinflation) lsh_debug; |
| LogStreamHandle(Info, monitorinflation) lsh_info; |
| LogStreamHandle(Trace, monitorinflation) lsh_trace; |
| LogStream* ls = NULL; |
| if (log_is_enabled(Trace, monitorinflation)) { |
| ls = &lsh_trace; |
| } else if (log_is_enabled(Debug, monitorinflation)) { |
| ls = &lsh_debug; |
| } else if (log_is_enabled(Info, monitorinflation)) { |
| ls = &lsh_info; |
| } |
| assert(ls != NULL, "sanity check"); |
| |
| int error_cnt = 0; |
| |
| ls->print_cr("Checking in_use_list:"); |
| chk_in_use_list(ls, &error_cnt); |
| |
| if (error_cnt == 0) { |
| ls->print_cr("No errors found in in_use_list checks."); |
| } else { |
| log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); |
| } |
| |
| if ((on_exit && log_is_enabled(Info, monitorinflation)) || |
| (!on_exit && log_is_enabled(Trace, monitorinflation))) { |
| // When exiting this log output is at the Info level. When called |
| // at a safepoint, this log output is at the Trace level since |
| // there can be a lot of it. |
| log_in_use_monitor_details(ls); |
| } |
| |
| ls->flush(); |
| |
| guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); |
| } |
| |
| // Check the in_use_list; log the results of the checks. |
| void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { |
| size_t l_in_use_count = _in_use_list.count(); |
| size_t l_in_use_max = _in_use_list.max(); |
| out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, |
| l_in_use_max); |
| |
| size_t ck_in_use_count = 0; |
| MonitorList::Iterator iter = _in_use_list.iterator(); |
| while (iter.has_next()) { |
| ObjectMonitor* mid = iter.next(); |
| chk_in_use_entry(mid, out, error_cnt_p); |
| ck_in_use_count++; |
| } |
| |
| if (l_in_use_count == ck_in_use_count) { |
| out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" |
| SIZE_FORMAT, l_in_use_count, ck_in_use_count); |
| } else { |
| out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " |
| "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, |
| ck_in_use_count); |
| } |
| |
| size_t ck_in_use_max = _in_use_list.max(); |
| if (l_in_use_max == ck_in_use_max) { |
| out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" |
| SIZE_FORMAT, l_in_use_max, ck_in_use_max); |
| } else { |
| out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " |
| "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); |
| } |
| } |
| |
| // Check an in-use monitor entry; log any errors. |
| void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, |
| int* error_cnt_p) { |
| if (n->owner_is_DEFLATER_MARKER()) { |
| // This should not happen, but if it does, it is not fatal. |
| out->print_cr("WARNING: monitor=" INTPTR_FORMAT ": in-use monitor is " |
| "deflated.", p2i(n)); |
| return; |
| } |
| if (n->header().value() == 0) { |
| out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " |
| "have non-NULL _header field.", p2i(n)); |
| *error_cnt_p = *error_cnt_p + 1; |
| } |
| const oop obj = n->object_peek(); |
| if (obj != NULL) { |
| const markWord mark = obj->mark(); |
| if (!mark.has_monitor()) { |
| out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " |
| "object does not think it has a monitor: obj=" |
| INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), |
| p2i(obj), mark.value()); |
| *error_cnt_p = *error_cnt_p + 1; |
| } |
| ObjectMonitor* const obj_mon = mark.monitor(); |
| if (n != obj_mon) { |
| out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " |
| "object does not refer to the same monitor: obj=" |
| INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" |
| INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); |
| *error_cnt_p = *error_cnt_p + 1; |
| } |
| } |
| } |
| |
| // Log details about ObjectMonitors on the in_use_list. The 'BHL' |
| // flags indicate why the entry is in-use, 'object' and 'object type' |
| // indicate the associated object and its type. |
| void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out) { |
| stringStream ss; |
| if (_in_use_list.count() > 0) { |
| out->print_cr("In-use monitor info:"); |
| out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); |
| out->print_cr("%18s %s %18s %18s", |
| "monitor", "BHL", "object", "object type"); |
| out->print_cr("================== === ================== =================="); |
| MonitorList::Iterator iter = _in_use_list.iterator(); |
| while (iter.has_next()) { |
| ObjectMonitor* mid = iter.next(); |
| const oop obj = mid->object_peek(); |
| const markWord mark = mid->header(); |
| ResourceMark rm; |
| out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(mid), |
| mid->is_busy() != 0, mark.hash() != 0, mid->owner() != NULL, |
| p2i(obj), obj == NULL ? "" : obj->klass()->external_name()); |
| if (mid->is_busy() != 0) { |
| out->print(" (%s)", mid->is_busy_to_string(&ss)); |
| ss.reset(); |
| } |
| out->cr(); |
| } |
| } |
| |
| out->flush(); |
| } |