blob: fedb9d3fe88508ab8913e338d35cb0e14989564b [file] [log] [blame]
/*
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/allocTracer.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/gcLocker.inline.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/gcTrace.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/gcVMOperations.hpp"
#include "gc/shared/gcWhen.hpp"
#include "gc/shared/memAllocator.hpp"
#include "logging/log.hpp"
#include "memory/metaspace.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/vmThread.hpp"
#include "services/heapDumper.hpp"
#include "utilities/align.hpp"
#include "utilities/copy.hpp"
class ClassLoaderData;
size_t CollectedHeap::_filler_array_max_size = 0;
template <>
void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
st->print_cr("GC heap %s", m.is_before ? "before" : "after");
st->print_raw(m);
}
void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
if (!should_log()) {
return;
}
double timestamp = fetch_timestamp();
MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag);
int index = compute_log_index();
_records[index].thread = NULL; // Its the GC thread so it's not that interesting.
_records[index].timestamp = timestamp;
_records[index].data.is_before = before;
stringStream st(_records[index].data.buffer(), _records[index].data.size());
st.print_cr("{Heap %s GC invocations=%u (full %u):",
before ? "before" : "after",
heap->total_collections(),
heap->total_full_collections());
heap->print_on(&st);
st.print_cr("}");
}
size_t CollectedHeap::unused() const {
MutexLocker ml(Heap_lock);
return capacity() - used();
}
VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
size_t capacity_in_words = capacity() / HeapWordSize;
return VirtualSpaceSummary(
_reserved.start(), _reserved.start() + capacity_in_words, _reserved.end());
}
GCHeapSummary CollectedHeap::create_heap_summary() {
VirtualSpaceSummary heap_space = create_heap_space_summary();
return GCHeapSummary(heap_space, used());
}
MetaspaceSummary CollectedHeap::create_metaspace_summary() {
const MetaspaceSizes meta_space(
MetaspaceUtils::committed_bytes(),
MetaspaceUtils::used_bytes(),
MetaspaceUtils::reserved_bytes());
const MetaspaceSizes data_space(
MetaspaceUtils::committed_bytes(Metaspace::NonClassType),
MetaspaceUtils::used_bytes(Metaspace::NonClassType),
MetaspaceUtils::reserved_bytes(Metaspace::NonClassType));
const MetaspaceSizes class_space(
MetaspaceUtils::committed_bytes(Metaspace::ClassType),
MetaspaceUtils::used_bytes(Metaspace::ClassType),
MetaspaceUtils::reserved_bytes(Metaspace::ClassType));
const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType);
const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType);
return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
ms_chunk_free_list_summary, class_chunk_free_list_summary);
}
void CollectedHeap::print_heap_before_gc() {
Universe::print_heap_before_gc();
if (_gc_heap_log != NULL) {
_gc_heap_log->log_heap_before(this);
}
}
void CollectedHeap::print_heap_after_gc() {
Universe::print_heap_after_gc();
if (_gc_heap_log != NULL) {
_gc_heap_log->log_heap_after(this);
}
}
void CollectedHeap::print() const { print_on(tty); }
void CollectedHeap::print_on_error(outputStream* st) const {
st->print_cr("Heap:");
print_extended_on(st);
st->cr();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs != NULL) {
bs->print_on(st);
}
}
void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
const GCHeapSummary& heap_summary = create_heap_summary();
gc_tracer->report_gc_heap_summary(when, heap_summary);
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
gc_tracer->report_metaspace_summary(when, metaspace_summary);
}
void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
trace_heap(GCWhen::BeforeGC, gc_tracer);
}
void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
trace_heap(GCWhen::AfterGC, gc_tracer);
}
// Default implementation, for collectors that don't support the feature.
bool CollectedHeap::supports_concurrent_gc_breakpoints() const {
return false;
}
bool CollectedHeap::is_oop(oop object) const {
if (!is_object_aligned(object)) {
return false;
}
if (!is_in(object)) {
return false;
}
if (is_in(object->klass_or_null())) {
return false;
}
return true;
}
// Memory state functions.
CollectedHeap::CollectedHeap() :
_is_gc_active(false),
_last_whole_heap_examined_time_ns(os::javaTimeNanos()),
_total_collections(0),
_total_full_collections(0),
_gc_cause(GCCause::_no_gc),
_gc_lastcause(GCCause::_no_gc)
{
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
const size_t elements_per_word = HeapWordSize / sizeof(jint);
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
max_len / elements_per_word);
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
if (UsePerfData) {
EXCEPTION_MARK;
// create the gc cause jvmstat counters
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
80, GCCause::to_string(_gc_cause), CHECK);
_perf_gc_lastcause =
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
80, GCCause::to_string(_gc_lastcause), CHECK);
}
// Create the ring log
if (LogEvents) {
_gc_heap_log = new GCHeapLog();
} else {
_gc_heap_log = NULL;
}
}
// This interface assumes that it's being called by the
// vm thread. It collects the heap assuming that the
// heap lock is already held and that we are executing in
// the context of the vm thread.
void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
Thread* thread = Thread::current();
assert(thread->is_VM_thread(), "Precondition#1");
assert(Heap_lock->is_locked(), "Precondition#2");
GCCauseSetter gcs(this, cause);
switch (cause) {
case GCCause::_heap_inspection:
case GCCause::_heap_dump:
case GCCause::_metadata_GC_threshold : {
HandleMark hm(thread);
do_full_collection(false); // don't clear all soft refs
break;
}
case GCCause::_archive_time_gc:
case GCCause::_metadata_GC_clear_soft_refs: {
HandleMark hm(thread);
do_full_collection(true); // do clear all soft refs
break;
}
default:
ShouldNotReachHere(); // Unexpected use of this function
}
}
MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
size_t word_size,
Metaspace::MetadataType mdtype) {
uint loop_count = 0;
uint gc_count = 0;
uint full_gc_count = 0;
assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
do {
MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
if (result != NULL) {
return result;
}
if (GCLocker::is_active_and_needs_gc()) {
// If the GCLocker is active, just expand and allocate.
// If that does not succeed, wait if this thread is not
// in a critical section itself.
result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
if (result != NULL) {
return result;
}
JavaThread* jthr = JavaThread::current();
if (!jthr->in_critical()) {
// Wait for JNI critical section to be exited
GCLocker::stall_until_clear();
// The GC invoked by the last thread leaving the critical
// section will be a young collection and a full collection
// is (currently) needed for unloading classes so continue
// to the next iteration to get a full GC.
continue;
} else {
if (CheckJNICalls) {
fatal("Possible deadlock due to allocating while"
" in jni critical section");
}
return NULL;
}
}
{ // Need lock to get self consistent gc_count's
MutexLocker ml(Heap_lock);
gc_count = Universe::heap()->total_collections();
full_gc_count = Universe::heap()->total_full_collections();
}
// Generate a VM operation
VM_CollectForMetadataAllocation op(loader_data,
word_size,
mdtype,
gc_count,
full_gc_count,
GCCause::_metadata_GC_threshold);
VMThread::execute(&op);
// If GC was locked out, try again. Check before checking success because the
// prologue could have succeeded and the GC still have been locked out.
if (op.gc_locked()) {
continue;
}
if (op.prologue_succeeded()) {
return op.result();
}
loop_count++;
if ((QueuedAllocationWarningCount > 0) &&
(loop_count % QueuedAllocationWarningCount == 0)) {
log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
" size=" SIZE_FORMAT, loop_count, word_size);
}
} while (true); // Until a GC is done
}
MemoryUsage CollectedHeap::memory_usage() {
return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity());
}
#ifndef PRODUCT
void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
// please note mismatch between size (in 32/64 bit words), and ju_addr that always point to a 32 bit word
for (juint* ju_addr = reinterpret_cast<juint*>(addr); ju_addr < reinterpret_cast<juint*>(addr + size); ++ju_addr) {
assert(*ju_addr == badHeapWordVal, "Found non badHeapWordValue in pre-allocation check");
}
}
}
#endif // PRODUCT
size_t CollectedHeap::max_tlab_size() const {
// TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
// This restriction could be removed by enabling filling with multiple arrays.
// If we compute that the reasonable way as
// header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
// we'll overflow on the multiply, so we do the divide first.
// We actually lose a little by dividing first,
// but that just makes the TLAB somewhat smaller than the biggest array,
// which is fine, since we'll be able to fill that.
size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
sizeof(jint) *
((juint) max_jint / (size_t) HeapWordSize);
return align_down(max_int_size, MinObjAlignment);
}
size_t CollectedHeap::filler_array_hdr_size() {
return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
}
size_t CollectedHeap::filler_array_min_size() {
return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
}
#ifdef ASSERT
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
{
assert(words >= min_fill_size(), "too small to fill");
assert(is_object_aligned(words), "unaligned size");
}
void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
{
if (ZapFillerObjects && zap) {
Copy::fill_to_words(start + filler_array_hdr_size(),
words - filler_array_hdr_size(), 0XDEAFBABE);
}
}
#endif // ASSERT
void
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
{
assert(words >= filler_array_min_size(), "too small for an array");
assert(words <= filler_array_max_size(), "too big for a single object");
const size_t payload_size = words - filler_array_hdr_size();
const size_t len = payload_size * HeapWordSize / sizeof(jint);
assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false);
allocator.initialize(start);
DEBUG_ONLY(zap_filler_array(start, words, zap);)
}
void
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
{
assert(words <= filler_array_max_size(), "too big for a single object");
if (words >= filler_array_min_size()) {
fill_with_array(start, words, zap);
} else if (words > 0) {
assert(words == min_fill_size(), "unaligned size");
ObjAllocator allocator(SystemDictionary::Object_klass(), words);
allocator.initialize(start);
}
}
void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
{
DEBUG_ONLY(fill_args_check(start, words);)
HandleMark hm(Thread::current()); // Free handles before leaving.
fill_with_object_impl(start, words, zap);
}
void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
{
DEBUG_ONLY(fill_args_check(start, words);)
HandleMark hm(Thread::current()); // Free handles before leaving.
// Multiple objects may be required depending on the filler array maximum size. Fill
// the range up to that with objects that are filler_array_max_size sized. The
// remainder is filled with a single object.
const size_t min = min_fill_size();
const size_t max = filler_array_max_size();
while (words > max) {
const size_t cur = (words - max) >= min ? max : max - min;
fill_with_array(start, cur, zap);
start += cur;
words -= cur;
}
fill_with_object_impl(start, words, zap);
}
void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
CollectedHeap::fill_with_object(start, end, zap);
}
size_t CollectedHeap::min_dummy_object_size() const {
return oopDesc::header_size();
}
size_t CollectedHeap::tlab_alloc_reserve() const {
size_t min_size = min_dummy_object_size();
return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0;
}
HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size) {
guarantee(false, "thread-local allocation buffers not supported");
return NULL;
}
void CollectedHeap::ensure_parsability(bool retire_tlabs) {
assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
"Should only be called at a safepoint or at start-up");
ThreadLocalAllocStats stats;
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) {
BarrierSet::barrier_set()->make_parsable(thread);
if (UseTLAB) {
if (retire_tlabs) {
thread->tlab().retire(&stats);
} else {
thread->tlab().make_parsable();
}
}
}
stats.publish();
}
void CollectedHeap::resize_all_tlabs() {
assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
"Should only resize tlabs at safepoint");
if (UseTLAB && ResizeTLAB) {
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
thread->tlab().resize();
}
}
}
jlong CollectedHeap::millis_since_last_whole_heap_examined() {
return (os::javaTimeNanos() - _last_whole_heap_examined_time_ns) / NANOSECS_PER_MILLISEC;
}
void CollectedHeap::record_whole_heap_examined_timestamp() {
_last_whole_heap_examined_time_ns = os::javaTimeNanos();
}
void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
assert(timer != NULL, "timer is null");
if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
HeapDumper::dump_heap();
}
LogTarget(Trace, gc, classhisto) lt;
if (lt.is_enabled()) {
GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
ResourceMark rm;
LogStream ls(lt);
VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
inspector.doit();
}
}
void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
full_gc_dump(timer, true);
}
void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
full_gc_dump(timer, false);
}
void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) {
// It is important to do this in a way such that concurrent readers can't
// temporarily think something is in the heap. (Seen this happen in asserts.)
_reserved.set_word_size(0);
_reserved.set_start((HeapWord*)rs.base());
_reserved.set_end((HeapWord*)rs.end());
}
void CollectedHeap::post_initialize() {
initialize_serviceability();
}
#ifndef PRODUCT
bool CollectedHeap::promotion_should_fail(volatile size_t* count) {
// Access to count is not atomic; the value does not have to be exact.
if (PromotionFailureALot) {
const size_t gc_num = total_collections();
const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number;
if (elapsed_gcs >= PromotionFailureALotInterval) {
// Test for unsigned arithmetic wrap-around.
if (++*count >= PromotionFailureALotCount) {
*count = 0;
return true;
}
}
}
return false;
}
bool CollectedHeap::promotion_should_fail() {
return promotion_should_fail(&_promotion_failure_alot_count);
}
void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) {
if (PromotionFailureALot) {
_promotion_failure_alot_gc_number = total_collections();
*count = 0;
}
}
void CollectedHeap::reset_promotion_should_fail() {
reset_promotion_should_fail(&_promotion_failure_alot_count);
}
#endif // #ifndef PRODUCT
bool CollectedHeap::supports_object_pinning() const {
return false;
}
oop CollectedHeap::pin_object(JavaThread* thread, oop obj) {
ShouldNotReachHere();
return NULL;
}
void CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
ShouldNotReachHere();
}
void CollectedHeap::deduplicate_string(oop str) {
// Do nothing, unless overridden in subclass.
}
uint32_t CollectedHeap::hash_oop(oop obj) const {
const uintptr_t addr = cast_from_oop<uintptr_t>(obj);
return static_cast<uint32_t>(addr >> LogMinObjAlignment);
}