blob: 48f096473c3a97a72b82f27d50e34ec6df41ee4b [file] [log] [blame]
/*
* Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "assembler_arm.inline.hpp"
#include "code/debugInfoRec.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "vmreg_arm.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#ifdef SHARK
#include "compiler/compileBroker.hpp"
#include "shark/sharkCompiler.hpp"
#endif
#define __ masm->
class RegisterSaver {
public:
// Special registers:
// 32-bit ARM 64-bit ARM
// Rthread: R10 R28
// LR: R14 R30
// Rthread is callee saved in the C ABI and never changed by compiled code:
// no need to save it.
// 2 slots for LR: the one at LR_offset and an other one at R14/R30_offset.
// The one at LR_offset is a return address that is needed by stack walking.
// A c2 method uses LR as a standard register so it may be live when we
// branch to the runtime. The slot at R14/R30_offset is for the value of LR
// in case it's live in the method we are coming from.
#ifdef AARCH64
//
// On AArch64 registers save area has the following layout:
//
// |---------------------|
// | return address (LR) |
// | FP |
// |---------------------|
// | V31 |
// | ... |
// | V0 |
// |---------------------|
// | padding |
// | R30 (LR live value) |
// |---------------------|
// | R27 |
// | ... |
// | R0 |
// |---------------------| <-- SP
//
enum RegisterLayout {
number_of_saved_gprs = 28,
number_of_saved_fprs = FloatRegisterImpl::number_of_registers,
words_per_fpr = ConcreteRegisterImpl::words_per_fpr,
R0_offset = 0,
R30_offset = R0_offset + number_of_saved_gprs,
D0_offset = R30_offset + 2,
FP_offset = D0_offset + number_of_saved_fprs * words_per_fpr,
LR_offset = FP_offset + 1,
reg_save_size = LR_offset + 1,
};
static const int Rmethod_offset;
static const int Rtemp_offset;
#else
enum RegisterLayout {
fpu_save_size = FloatRegisterImpl::number_of_registers,
#ifndef __SOFTFP__
D0_offset = 0,
#endif
R0_offset = fpu_save_size,
R1_offset,
R2_offset,
R3_offset,
R4_offset,
R5_offset,
R6_offset,
#if (FP_REG_NUM != 7)
// if not saved as FP
R7_offset,
#endif
R8_offset,
R9_offset,
#if (FP_REG_NUM != 11)
// if not saved as FP
R11_offset,
#endif
R12_offset,
R14_offset,
FP_offset,
LR_offset,
reg_save_size,
Rmethod_offset = R9_offset,
Rtemp_offset = R12_offset,
};
// all regs but Rthread (R10), FP (R7 or R11), SP and PC
// (altFP_7_11 is the one amoung R7 and R11 which is not FP)
#define SAVED_BASE_REGS (RegisterSet(R0, R6) | RegisterSet(R8, R9) | RegisterSet(R12) | R14 | altFP_7_11)
#endif // AARCH64
// When LR may be live in the nmethod from which we are comming
// then lr_saved is true, the return address is saved before the
// call to save_live_register by the caller and LR contains the
// live value.
static OopMap* save_live_registers(MacroAssembler* masm,
int* total_frame_words,
bool lr_saved = false);
static void restore_live_registers(MacroAssembler* masm, bool restore_lr = true);
};
#ifdef AARCH64
const int RegisterSaver::Rmethod_offset = RegisterSaver::R0_offset + Rmethod->encoding();
const int RegisterSaver::Rtemp_offset = RegisterSaver::R0_offset + Rtemp->encoding();
#endif // AARCH64
OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm,
int* total_frame_words,
bool lr_saved) {
*total_frame_words = reg_save_size;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = new OopMap(VMRegImpl::slots_per_word * (*total_frame_words), 0);
#ifdef AARCH64
assert((reg_save_size * wordSize) % StackAlignmentInBytes == 0, "SP should be aligned");
if (lr_saved) {
// LR was stashed here, so that jump could use it as a scratch reg
__ ldr(LR, Address(SP, 0));
// There are two words on the stack top:
// [SP + 0]: placeholder for FP
// [SP + wordSize]: saved return address
__ str(FP, Address(SP, 0));
} else {
__ raw_push(FP, LR);
}
__ sub(SP, SP, (reg_save_size - 2) * wordSize);
for (int i = 0; i < number_of_saved_gprs; i += 2) {
int offset = R0_offset + i;
__ stp(as_Register(i), as_Register(i+1), Address(SP, offset * wordSize));
map->set_callee_saved(VMRegImpl::stack2reg((offset + 0) * VMRegImpl::slots_per_word), as_Register(i)->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg((offset + 1) * VMRegImpl::slots_per_word), as_Register(i+1)->as_VMReg());
}
__ str(R30, Address(SP, R30_offset * wordSize));
map->set_callee_saved(VMRegImpl::stack2reg(R30_offset * VMRegImpl::slots_per_word), R30->as_VMReg());
for (int i = 0; i < number_of_saved_fprs; i += 2) {
int offset1 = D0_offset + i * words_per_fpr;
int offset2 = offset1 + words_per_fpr;
Address base(SP, offset1 * wordSize);
if (words_per_fpr == 2) {
// pair of "wide" quad vector registers
__ stp_q(as_FloatRegister(i), as_FloatRegister(i+1), base);
} else {
// pair of double vector registers
__ stp_d(as_FloatRegister(i), as_FloatRegister(i+1), base);
}
map->set_callee_saved(VMRegImpl::stack2reg(offset1 * VMRegImpl::slots_per_word), as_FloatRegister(i)->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(offset2 * VMRegImpl::slots_per_word), as_FloatRegister(i+1)->as_VMReg());
}
#else
if (lr_saved) {
__ push(RegisterSet(FP));
} else {
__ push(RegisterSet(FP) | RegisterSet(LR));
}
__ push(SAVED_BASE_REGS);
if (HaveVFP) {
if (VM_Version::has_vfp3_32()) {
__ fstmdbd(SP, FloatRegisterSet(D16, 16), writeback);
} else {
if (FloatRegisterImpl::number_of_registers > 32) {
assert(FloatRegisterImpl::number_of_registers == 64, "nb fp registers should be 64");
__ sub(SP, SP, 32 * wordSize);
}
}
__ fstmdbd(SP, FloatRegisterSet(D0, 16), writeback);
} else {
__ sub(SP, SP, fpu_save_size * wordSize);
}
int i;
int j=0;
for (i = R0_offset; i <= R9_offset; i++) {
if (j == FP_REG_NUM) {
// skip the FP register, managed below.
j++;
}
map->set_callee_saved(VMRegImpl::stack2reg(i), as_Register(j)->as_VMReg());
j++;
}
assert(j == R10->encoding(), "must be");
#if (FP_REG_NUM != 11)
// add R11, if not managed as FP
map->set_callee_saved(VMRegImpl::stack2reg(R11_offset), R11->as_VMReg());
#endif
map->set_callee_saved(VMRegImpl::stack2reg(R12_offset), R12->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(R14_offset), R14->as_VMReg());
if (HaveVFP) {
for (i = 0; i < (VM_Version::has_vfp3_32() ? 64 : 32); i+=2) {
map->set_callee_saved(VMRegImpl::stack2reg(i), as_FloatRegister(i)->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(i + 1), as_FloatRegister(i)->as_VMReg()->next());
}
}
#endif // AARCH64
return map;
}
void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_lr) {
#ifdef AARCH64
for (int i = 0; i < number_of_saved_gprs; i += 2) {
__ ldp(as_Register(i), as_Register(i+1), Address(SP, (R0_offset + i) * wordSize));
}
__ ldr(R30, Address(SP, R30_offset * wordSize));
for (int i = 0; i < number_of_saved_fprs; i += 2) {
Address base(SP, (D0_offset + i * words_per_fpr) * wordSize);
if (words_per_fpr == 2) {
// pair of "wide" quad vector registers
__ ldp_q(as_FloatRegister(i), as_FloatRegister(i+1), base);
} else {
// pair of double vector registers
__ ldp_d(as_FloatRegister(i), as_FloatRegister(i+1), base);
}
}
__ add(SP, SP, (reg_save_size - 2) * wordSize);
if (restore_lr) {
__ raw_pop(FP, LR);
} else {
__ ldr(FP, Address(SP, 0));
}
#else
if (HaveVFP) {
__ fldmiad(SP, FloatRegisterSet(D0, 16), writeback);
if (VM_Version::has_vfp3_32()) {
__ fldmiad(SP, FloatRegisterSet(D16, 16), writeback);
} else {
if (FloatRegisterImpl::number_of_registers > 32) {
assert(FloatRegisterImpl::number_of_registers == 64, "nb fp registers should be 64");
__ add(SP, SP, 32 * wordSize);
}
}
} else {
__ add(SP, SP, fpu_save_size * wordSize);
}
__ pop(SAVED_BASE_REGS);
if (restore_lr) {
__ pop(RegisterSet(FP) | RegisterSet(LR));
} else {
__ pop(RegisterSet(FP));
}
#endif // AARCH64
}
#ifdef AARCH64
static void push_result_registers(MacroAssembler* masm, BasicType ret_type) {
if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
__ str_d(D0, Address(SP, -2*wordSize, pre_indexed));
} else {
__ raw_push(R0, ZR);
}
}
static void pop_result_registers(MacroAssembler* masm, BasicType ret_type) {
if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
__ ldr_d(D0, Address(SP, 2*wordSize, post_indexed));
} else {
__ raw_pop(R0, ZR);
}
}
static void push_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
__ raw_push(R0, R1);
__ raw_push(R2, R3);
__ raw_push(R4, R5);
__ raw_push(R6, R7);
assert(FPR_PARAMS == 8, "adjust this code");
assert((0 <= fp_regs_in_arguments) && (fp_regs_in_arguments <= FPR_PARAMS), "should be");
if (fp_regs_in_arguments > 6) __ stp_d(V6, V7, Address(SP, -2 * wordSize, pre_indexed));
if (fp_regs_in_arguments > 4) __ stp_d(V4, V5, Address(SP, -2 * wordSize, pre_indexed));
if (fp_regs_in_arguments > 2) __ stp_d(V2, V3, Address(SP, -2 * wordSize, pre_indexed));
if (fp_regs_in_arguments > 0) __ stp_d(V0, V1, Address(SP, -2 * wordSize, pre_indexed));
}
static void pop_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
assert(FPR_PARAMS == 8, "adjust this code");
assert((0 <= fp_regs_in_arguments) && (fp_regs_in_arguments <= FPR_PARAMS), "should be");
if (fp_regs_in_arguments > 0) __ ldp_d(V0, V1, Address(SP, 2 * wordSize, post_indexed));
if (fp_regs_in_arguments > 2) __ ldp_d(V2, V3, Address(SP, 2 * wordSize, post_indexed));
if (fp_regs_in_arguments > 4) __ ldp_d(V4, V5, Address(SP, 2 * wordSize, post_indexed));
if (fp_regs_in_arguments > 6) __ ldp_d(V6, V7, Address(SP, 2 * wordSize, post_indexed));
__ raw_pop(R6, R7);
__ raw_pop(R4, R5);
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
}
#else // AARCH64
static void push_result_registers(MacroAssembler* masm, BasicType ret_type) {
#ifdef __ABI_HARD__
if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
__ sub(SP, SP, 8);
__ fstd(D0, Address(SP));
return;
}
#endif // __ABI_HARD__
__ raw_push(R0, R1);
}
static void pop_result_registers(MacroAssembler* masm, BasicType ret_type) {
#ifdef __ABI_HARD__
if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
__ fldd(D0, Address(SP));
__ add(SP, SP, 8);
return;
}
#endif // __ABI_HARD__
__ raw_pop(R0, R1);
}
static void push_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
// R1-R3 arguments need to be saved, but we push 4 registers for 8-byte alignment
__ push(RegisterSet(R0, R3));
#ifdef __ABI_HARD__
// preserve arguments
// Likely not needed as the locking code won't probably modify volatile FP registers,
// but there is no way to guarantee that
if (fp_regs_in_arguments) {
// convert fp_regs_in_arguments to a number of double registers
int double_regs_num = (fp_regs_in_arguments + 1) >> 1;
__ fstmdbd(SP, FloatRegisterSet(D0, double_regs_num), writeback);
}
#endif // __ ABI_HARD__
}
static void pop_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
#ifdef __ABI_HARD__
if (fp_regs_in_arguments) {
int double_regs_num = (fp_regs_in_arguments + 1) >> 1;
__ fldmiad(SP, FloatRegisterSet(D0, double_regs_num), writeback);
}
#endif // __ABI_HARD__
__ pop(RegisterSet(R0, R3));
}
#endif // AARCH64
// Is vector's size (in bytes) bigger than a size saved by default?
// All vector registers are saved by default on ARM.
bool SharedRuntime::is_wide_vector(int size) {
return false;
}
size_t SharedRuntime::trampoline_size() {
return 16;
}
void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
InlinedAddress dest(destination);
__ indirect_jump(dest, Rtemp);
__ bind_literal(dest);
}
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
VMRegPair *regs2,
int total_args_passed) {
assert(regs2 == NULL, "not needed on arm");
#ifdef AARCH64
int slot = 0; // counted in 32-bit VMReg slots
int reg = 0;
int fp_reg = 0;
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_SHORT:
case T_CHAR:
case T_BYTE:
case T_BOOLEAN:
case T_INT:
if (reg < GPR_PARAMS) {
Register r = as_Register(reg);
regs[i].set1(r->as_VMReg());
reg++;
} else {
regs[i].set1(VMRegImpl::stack2reg(slot));
slot+=2;
}
break;
case T_LONG:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
// fall through
case T_ARRAY:
case T_OBJECT:
case T_ADDRESS:
if (reg < GPR_PARAMS) {
Register r = as_Register(reg);
regs[i].set2(r->as_VMReg());
reg++;
} else {
regs[i].set2(VMRegImpl::stack2reg(slot));
slot+=2;
}
break;
case T_FLOAT:
if (fp_reg < FPR_PARAMS) {
FloatRegister r = as_FloatRegister(fp_reg);
regs[i].set1(r->as_VMReg());
fp_reg++;
} else {
regs[i].set1(VMRegImpl::stack2reg(slot));
slot+=2;
}
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
if (fp_reg < FPR_PARAMS) {
FloatRegister r = as_FloatRegister(fp_reg);
regs[i].set2(r->as_VMReg());
fp_reg++;
} else {
regs[i].set2(VMRegImpl::stack2reg(slot));
slot+=2;
}
break;
case T_VOID:
assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
regs[i].set_bad();
break;
default:
ShouldNotReachHere();
}
}
return slot;
#else // AARCH64
int slot = 0;
int ireg = 0;
#ifdef __ABI_HARD__
int fp_slot = 0;
int single_fpr_slot = 0;
#endif // __ABI_HARD__
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_SHORT:
case T_CHAR:
case T_BYTE:
case T_BOOLEAN:
case T_INT:
case T_ARRAY:
case T_OBJECT:
case T_ADDRESS:
#ifndef __ABI_HARD__
case T_FLOAT:
#endif // !__ABI_HARD__
if (ireg < 4) {
Register r = as_Register(ireg);
regs[i].set1(r->as_VMReg());
ireg++;
} else {
regs[i].set1(VMRegImpl::stack2reg(slot));
slot++;
}
break;
case T_LONG:
#ifndef __ABI_HARD__
case T_DOUBLE:
#endif // !__ABI_HARD__
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
if (ireg <= 2) {
#if (ALIGN_WIDE_ARGUMENTS == 1)
if(ireg & 1) ireg++; // Aligned location required
#endif
Register r1 = as_Register(ireg);
Register r2 = as_Register(ireg + 1);
regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
ireg += 2;
#if (ALIGN_WIDE_ARGUMENTS == 0)
} else if (ireg == 3) {
// uses R3 + one stack slot
Register r = as_Register(ireg);
regs[i].set_pair(VMRegImpl::stack2reg(slot), r->as_VMReg());
ireg += 1;
slot += 1;
#endif
} else {
if (slot & 1) slot++; // Aligned location required
regs[i].set_pair(VMRegImpl::stack2reg(slot+1), VMRegImpl::stack2reg(slot));
slot += 2;
ireg = 4;
}
break;
case T_VOID:
regs[i].set_bad();
break;
#ifdef __ABI_HARD__
case T_FLOAT:
if ((fp_slot < 16)||(single_fpr_slot & 1)) {
if ((single_fpr_slot & 1) == 0) {
single_fpr_slot = fp_slot;
fp_slot += 2;
}
FloatRegister r = as_FloatRegister(single_fpr_slot);
single_fpr_slot++;
regs[i].set1(r->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(slot));
slot++;
}
break;
case T_DOUBLE:
assert(ALIGN_WIDE_ARGUMENTS == 1, "ABI_HARD not supported with unaligned wide arguments");
if (fp_slot <= 14) {
FloatRegister r1 = as_FloatRegister(fp_slot);
FloatRegister r2 = as_FloatRegister(fp_slot+1);
regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
fp_slot += 2;
} else {
if(slot & 1) slot++;
regs[i].set_pair(VMRegImpl::stack2reg(slot+1), VMRegImpl::stack2reg(slot));
slot += 2;
single_fpr_slot = 16;
}
break;
#endif // __ABI_HARD__
default:
ShouldNotReachHere();
}
}
return slot;
#endif // AARCH64
}
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed,
int is_outgoing) {
#ifdef AARCH64
// C calling convention on AArch64 is good enough.
return c_calling_convention(sig_bt, regs, NULL, total_args_passed);
#else
#ifdef __SOFTFP__
// soft float is the same as the C calling convention.
return c_calling_convention(sig_bt, regs, NULL, total_args_passed);
#endif // __SOFTFP__
(void) is_outgoing;
int slot = 0;
int ireg = 0;
int freg = 0;
int single_fpr = 0;
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_SHORT:
case T_CHAR:
case T_BYTE:
case T_BOOLEAN:
case T_INT:
case T_ARRAY:
case T_OBJECT:
case T_ADDRESS:
if (ireg < 4) {
Register r = as_Register(ireg++);
regs[i].set1(r->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(slot++));
}
break;
case T_FLOAT:
// C2 utilizes S14/S15 for mem-mem moves
if ((freg < 16 COMPILER2_PRESENT(-2)) || (single_fpr & 1)) {
if ((single_fpr & 1) == 0) {
single_fpr = freg;
freg += 2;
}
FloatRegister r = as_FloatRegister(single_fpr++);
regs[i].set1(r->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(slot++));
}
break;
case T_DOUBLE:
// C2 utilizes S14/S15 for mem-mem moves
if (freg <= 14 COMPILER2_PRESENT(-2)) {
FloatRegister r1 = as_FloatRegister(freg);
FloatRegister r2 = as_FloatRegister(freg + 1);
regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
freg += 2;
} else {
// Keep internally the aligned calling convention,
// ignoring ALIGN_WIDE_ARGUMENTS
if (slot & 1) slot++;
regs[i].set_pair(VMRegImpl::stack2reg(slot + 1), VMRegImpl::stack2reg(slot));
slot += 2;
single_fpr = 16;
}
break;
case T_LONG:
// Keep internally the aligned calling convention,
// ignoring ALIGN_WIDE_ARGUMENTS
if (ireg <= 2) {
if (ireg & 1) ireg++;
Register r1 = as_Register(ireg);
Register r2 = as_Register(ireg + 1);
regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
ireg += 2;
} else {
if (slot & 1) slot++;
regs[i].set_pair(VMRegImpl::stack2reg(slot + 1), VMRegImpl::stack2reg(slot));
slot += 2;
ireg = 4;
}
break;
case T_VOID:
regs[i].set_bad();
break;
default:
ShouldNotReachHere();
}
}
if (slot & 1) slot++;
return slot;
#endif // AARCH64
}
static void patch_callers_callsite(MacroAssembler *masm) {
Label skip;
__ ldr(Rtemp, Address(Rmethod, Method::code_offset()));
__ cbz(Rtemp, skip);
#ifdef AARCH64
push_param_registers(masm, FPR_PARAMS);
__ raw_push(LR, ZR);
#else
// Pushing an even number of registers for stack alignment.
// Selecting R9, which had to be saved anyway for some platforms.
__ push(RegisterSet(R0, R3) | R9 | LR);
#endif // AARCH64
__ mov(R0, Rmethod);
__ mov(R1, LR);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
#ifdef AARCH64
__ raw_pop(LR, ZR);
pop_param_registers(masm, FPR_PARAMS);
#else
__ pop(RegisterSet(R0, R3) | R9 | LR);
#endif // AARCH64
__ bind(skip);
}
void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed, int comp_args_on_stack,
const BasicType *sig_bt, const VMRegPair *regs) {
// TODO: ARM - May be can use ldm to load arguments
const Register tmp = Rtemp; // avoid erasing R5_mh
// Next assert may not be needed but safer. Extra analysis required
// if this there is not enough free registers and we need to use R5 here.
assert_different_registers(tmp, R5_mh);
// 6243940 We might end up in handle_wrong_method if
// the callee is deoptimized as we race thru here. If that
// happens we don't want to take a safepoint because the
// caller frame will look interpreted and arguments are now
// "compiled" so it is much better to make this transition
// invisible to the stack walking code. Unfortunately if
// we try and find the callee by normal means a safepoint
// is possible. So we stash the desired callee in the thread
// and the vm will find there should this case occur.
Address callee_target_addr(Rthread, JavaThread::callee_target_offset());
__ str(Rmethod, callee_target_addr);
#ifdef AARCH64
assert_different_registers(tmp, R0, R1, R2, R3, R4, R5, R6, R7, Rsender_sp, Rmethod);
assert_different_registers(tmp, R0, R1, R2, R3, R4, R5, R6, R7, Rsender_sp, Rparams);
if (comp_args_on_stack) {
__ sub_slow(SP, SP, round_to(comp_args_on_stack * VMRegImpl::stack_slot_size, StackAlignmentInBytes));
}
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "must be ordered");
int expr_slots_count = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 2 : 1;
Address source_addr(Rparams, Interpreter::expr_offset_in_bytes(total_args_passed - expr_slots_count - i));
VMReg r = regs[i].first();
bool full_word = regs[i].second()->is_valid();
if (r->is_stack()) {
if (full_word) {
__ ldr(tmp, source_addr);
__ str(tmp, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
} else {
__ ldr_w(tmp, source_addr);
__ str_w(tmp, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
}
} else if (r->is_Register()) {
if (full_word) {
__ ldr(r->as_Register(), source_addr);
} else {
__ ldr_w(r->as_Register(), source_addr);
}
} else if (r->is_FloatRegister()) {
if (sig_bt[i] == T_DOUBLE) {
__ ldr_d(r->as_FloatRegister(), source_addr);
} else {
__ ldr_s(r->as_FloatRegister(), source_addr);
}
} else {
assert(!r->is_valid() && !regs[i].second()->is_valid(), "must be");
}
}
__ ldr(tmp, Address(Rmethod, Method::from_compiled_offset()));
__ br(tmp);
#else
assert_different_registers(tmp, R0, R1, R2, R3, Rsender_sp, Rmethod);
const Register initial_sp = Rmethod; // temporarily scratched
// Old code was modifying R4 but this looks unsafe (particularly with JSR292)
assert_different_registers(tmp, R0, R1, R2, R3, Rsender_sp, initial_sp);
__ mov(initial_sp, SP);
if (comp_args_on_stack) {
__ sub_slow(SP, SP, comp_args_on_stack * VMRegImpl::stack_slot_size);
}
__ bic(SP, SP, StackAlignmentInBytes - 1);
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "must be ordered");
int arg_offset = Interpreter::expr_offset_in_bytes(total_args_passed - 1 - i);
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (r_1->is_stack()) {
int stack_offset = r_1->reg2stack() * VMRegImpl::stack_slot_size;
if (!r_2->is_valid()) {
__ ldr(tmp, Address(initial_sp, arg_offset));
__ str(tmp, Address(SP, stack_offset));
} else {
__ ldr(tmp, Address(initial_sp, arg_offset - Interpreter::stackElementSize));
__ str(tmp, Address(SP, stack_offset));
__ ldr(tmp, Address(initial_sp, arg_offset));
__ str(tmp, Address(SP, stack_offset + wordSize));
}
} else if (r_1->is_Register()) {
if (!r_2->is_valid()) {
__ ldr(r_1->as_Register(), Address(initial_sp, arg_offset));
} else {
__ ldr(r_1->as_Register(), Address(initial_sp, arg_offset - Interpreter::stackElementSize));
__ ldr(r_2->as_Register(), Address(initial_sp, arg_offset));
}
} else if (r_1->is_FloatRegister()) {
#ifdef __SOFTFP__
ShouldNotReachHere();
#endif // __SOFTFP__
if (!r_2->is_valid()) {
__ flds(r_1->as_FloatRegister(), Address(initial_sp, arg_offset));
} else {
__ fldd(r_1->as_FloatRegister(), Address(initial_sp, arg_offset - Interpreter::stackElementSize));
}
} else {
assert(!r_1->is_valid() && !r_2->is_valid(), "must be");
}
}
// restore Rmethod (scratched for initial_sp)
__ ldr(Rmethod, callee_target_addr);
__ ldr(PC, Address(Rmethod, Method::from_compiled_offset()));
#endif // AARCH64
}
static void gen_c2i_adapter(MacroAssembler *masm,
int total_args_passed, int comp_args_on_stack,
const BasicType *sig_bt, const VMRegPair *regs,
Label& skip_fixup) {
// TODO: ARM - May be can use stm to deoptimize arguments
const Register tmp = Rtemp;
patch_callers_callsite(masm);
__ bind(skip_fixup);
__ mov(Rsender_sp, SP); // not yet saved
#ifdef AARCH64
int extraspace = round_to(total_args_passed * Interpreter::stackElementSize, StackAlignmentInBytes);
if (extraspace) {
__ sub(SP, SP, extraspace);
}
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
int expr_slots_count = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 2 : 1;
Address dest_addr(SP, Interpreter::expr_offset_in_bytes(total_args_passed - expr_slots_count - i));
VMReg r = regs[i].first();
bool full_word = regs[i].second()->is_valid();
if (r->is_stack()) {
if (full_word) {
__ ldr(tmp, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size + extraspace));
__ str(tmp, dest_addr);
} else {
__ ldr_w(tmp, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size + extraspace));
__ str_w(tmp, dest_addr);
}
} else if (r->is_Register()) {
if (full_word) {
__ str(r->as_Register(), dest_addr);
} else {
__ str_w(r->as_Register(), dest_addr);
}
} else if (r->is_FloatRegister()) {
if (sig_bt[i] == T_DOUBLE) {
__ str_d(r->as_FloatRegister(), dest_addr);
} else {
__ str_s(r->as_FloatRegister(), dest_addr);
}
} else {
assert(!r->is_valid() && !regs[i].second()->is_valid(), "must be");
}
}
__ mov(Rparams, SP);
__ ldr(tmp, Address(Rmethod, Method::interpreter_entry_offset()));
__ br(tmp);
#else
int extraspace = total_args_passed * Interpreter::stackElementSize;
if (extraspace) {
__ sub_slow(SP, SP, extraspace);
}
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
int stack_offset = (total_args_passed - 1 - i) * Interpreter::stackElementSize;
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (r_1->is_stack()) {
int arg_offset = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
if (!r_2->is_valid()) {
__ ldr(tmp, Address(SP, arg_offset));
__ str(tmp, Address(SP, stack_offset));
} else {
__ ldr(tmp, Address(SP, arg_offset));
__ str(tmp, Address(SP, stack_offset - Interpreter::stackElementSize));
__ ldr(tmp, Address(SP, arg_offset + wordSize));
__ str(tmp, Address(SP, stack_offset));
}
} else if (r_1->is_Register()) {
if (!r_2->is_valid()) {
__ str(r_1->as_Register(), Address(SP, stack_offset));
} else {
__ str(r_1->as_Register(), Address(SP, stack_offset - Interpreter::stackElementSize));
__ str(r_2->as_Register(), Address(SP, stack_offset));
}
} else if (r_1->is_FloatRegister()) {
#ifdef __SOFTFP__
ShouldNotReachHere();
#endif // __SOFTFP__
if (!r_2->is_valid()) {
__ fsts(r_1->as_FloatRegister(), Address(SP, stack_offset));
} else {
__ fstd(r_1->as_FloatRegister(), Address(SP, stack_offset - Interpreter::stackElementSize));
}
} else {
assert(!r_1->is_valid() && !r_2->is_valid(), "must be");
}
}
__ ldr(PC, Address(Rmethod, Method::interpreter_entry_offset()));
#endif // AARCH64
}
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
AdapterFingerPrint* fingerprint) {
address i2c_entry = __ pc();
gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
address c2i_unverified_entry = __ pc();
Label skip_fixup;
const Register receiver = R0;
const Register holder_klass = Rtemp; // XXX should be OK for C2 but not 100% sure
const Register receiver_klass = AARCH64_ONLY(R8) NOT_AARCH64(R4);
__ load_klass(receiver_klass, receiver);
__ ldr(holder_klass, Address(Ricklass, CompiledICHolder::holder_klass_offset()));
__ ldr(Rmethod, Address(Ricklass, CompiledICHolder::holder_method_offset()));
__ cmp(receiver_klass, holder_klass);
#ifdef AARCH64
Label ic_miss;
__ b(ic_miss, ne);
__ ldr(Rtemp, Address(Rmethod, Method::code_offset()));
__ cbz(Rtemp, skip_fixup);
__ bind(ic_miss);
__ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, Rtemp);
#else
__ ldr(Rtemp, Address(Rmethod, Method::code_offset()), eq);
__ cmp(Rtemp, 0, eq);
__ b(skip_fixup, eq);
__ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, noreg, ne);
#endif // AARCH64
address c2i_entry = __ pc();
gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
__ flush();
return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
}
static int reg2offset_in(VMReg r) {
// Account for saved FP and LR
return r->reg2stack() * VMRegImpl::stack_slot_size + 2*wordSize;
}
static int reg2offset_out(VMReg r) {
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}
static void verify_oop_args(MacroAssembler* masm,
methodHandle method,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = Rmethod; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < method->size_of_parameters(); i++) {
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ ldr(temp_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
methodHandle method,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, method, sig_bt, regs);
vmIntrinsics::ID iid = method->intrinsic_id();
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
if (ref_kind != 0) {
member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
member_reg = Rmethod; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (iid == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
fatal("unexpected intrinsic id %d", iid);
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
VMReg r = regs[member_arg_pos].first();
if (r->is_stack()) {
__ ldr(member_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(method->size_of_parameters() > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
assert(false, "receiver always in a register");
receiver_reg = j_rarg0; // known to be free at this point
__ ldr(receiver_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, iid,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
const methodHandle& method,
int compile_id,
BasicType* in_sig_bt,
VMRegPair* in_regs,
BasicType ret_type) {
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
method,
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
// Arguments for JNI method include JNIEnv and Class if static
// Usage of Rtemp should be OK since scratched by native call
bool is_static = method->is_static();
const int total_in_args = method->size_of_parameters();
int total_c_args = total_in_args + 1;
if (is_static) {
total_c_args++;
}
BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
int argc = 0;
out_sig_bt[argc++] = T_ADDRESS;
if (is_static) {
out_sig_bt[argc++] = T_OBJECT;
}
int i;
for (i = 0; i < total_in_args; i++) {
out_sig_bt[argc++] = in_sig_bt[i];
}
int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
// Since object arguments need to be wrapped, we must preserve space
// for those object arguments which come in registers (GPR_PARAMS maximum)
// plus one more slot for Klass handle (for static methods)
int oop_handle_offset = stack_slots;
stack_slots += (GPR_PARAMS + 1) * VMRegImpl::slots_per_word;
// Plus a lock if needed
int lock_slot_offset = 0;
if (method->is_synchronized()) {
lock_slot_offset = stack_slots;
assert(sizeof(BasicLock) == wordSize, "adjust this code");
stack_slots += VMRegImpl::slots_per_word;
}
// Space to save return address and FP
stack_slots += 2 * VMRegImpl::slots_per_word;
// Calculate the final stack size taking account of alignment
stack_slots = round_to(stack_slots, StackAlignmentInBytes / VMRegImpl::stack_slot_size);
int stack_size = stack_slots * VMRegImpl::stack_slot_size;
int lock_slot_fp_offset = stack_size - 2 * wordSize -
lock_slot_offset * VMRegImpl::stack_slot_size;
// Unverified entry point
address start = __ pc();
// Inline cache check, same as in C1_MacroAssembler::inline_cache_check()
const Register receiver = R0; // see receiverOpr()
__ load_klass(Rtemp, receiver);
__ cmp(Rtemp, Ricklass);
Label verified;
__ b(verified, eq); // jump over alignment no-ops too
__ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, Rtemp);
__ align(CodeEntryAlignment);
// Verified entry point
__ bind(verified);
int vep_offset = __ pc() - start;
#ifdef AARCH64
// Extra nop for MT-safe patching in NativeJump::patch_verified_entry
__ nop();
#endif // AARCH64
if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
// Object.hashCode, System.identityHashCode can pull the hashCode from the header word
// instead of doing a full VM transition once it's been computed.
Label slow_case;
const Register obj_reg = R0;
// Unlike for Object.hashCode, System.identityHashCode is static method and
// gets object as argument instead of the receiver.
if (method->intrinsic_id() == vmIntrinsics::_identityHashCode) {
assert(method->is_static(), "method should be static");
// return 0 for null reference input, return val = R0 = obj_reg = 0
#ifdef AARCH64
Label Continue;
__ cbnz(obj_reg, Continue);
__ ret();
__ bind(Continue);
#else
__ cmp(obj_reg, 0);
__ bx(LR, eq);
#endif
}
__ ldr(Rtemp, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
assert(markOopDesc::unlocked_value == 1, "adjust this code");
__ tbz(Rtemp, exact_log2(markOopDesc::unlocked_value), slow_case);
if (UseBiasedLocking) {
assert(is_power_of_2(markOopDesc::biased_lock_bit_in_place), "adjust this code");
__ tbnz(Rtemp, exact_log2(markOopDesc::biased_lock_bit_in_place), slow_case);
}
#ifdef AARCH64
__ ands(Rtemp, Rtemp, (uintx)markOopDesc::hash_mask_in_place);
__ b(slow_case, eq);
__ logical_shift_right(R0, Rtemp, markOopDesc::hash_shift);
__ ret();
#else
__ bics(Rtemp, Rtemp, ~markOopDesc::hash_mask_in_place);
__ mov(R0, AsmOperand(Rtemp, lsr, markOopDesc::hash_shift), ne);
__ bx(LR, ne);
#endif // AARCH64
__ bind(slow_case);
}
// Bang stack pages
__ arm_stack_overflow_check(stack_size, Rtemp);
// Setup frame linkage
__ raw_push(FP, LR);
__ mov(FP, SP);
__ sub_slow(SP, SP, stack_size - 2*wordSize);
int frame_complete = __ pc() - start;
OopMapSet* oop_maps = new OopMapSet();
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
const int extra_args = is_static ? 2 : 1;
int receiver_offset = -1;
int fp_regs_in_arguments = 0;
for (i = total_in_args; --i >= 0; ) {
switch (in_sig_bt[i]) {
case T_ARRAY:
case T_OBJECT: {
VMReg src = in_regs[i].first();
VMReg dst = out_regs[i + extra_args].first();
if (src->is_stack()) {
assert(dst->is_stack(), "must be");
assert(i != 0, "Incoming receiver is always in a register");
__ ldr(Rtemp, Address(FP, reg2offset_in(src)));
__ cmp(Rtemp, 0);
#ifdef AARCH64
__ add(Rtemp, FP, reg2offset_in(src));
__ csel(Rtemp, ZR, Rtemp, eq);
#else
__ add(Rtemp, FP, reg2offset_in(src), ne);
#endif // AARCH64
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
int offset_in_older_frame = src->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
} else {
int offset = oop_handle_offset * VMRegImpl::stack_slot_size;
__ str(src->as_Register(), Address(SP, offset));
map->set_oop(VMRegImpl::stack2reg(oop_handle_offset));
if ((i == 0) && (!is_static)) {
receiver_offset = offset;
}
oop_handle_offset += VMRegImpl::slots_per_word;
#ifdef AARCH64
__ cmp(src->as_Register(), 0);
__ add(Rtemp, SP, offset);
__ csel(dst->is_stack() ? Rtemp : dst->as_Register(), ZR, Rtemp, eq);
if (dst->is_stack()) {
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
}
#else
if (dst->is_stack()) {
__ movs(Rtemp, src->as_Register());
__ add(Rtemp, SP, offset, ne);
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
} else {
__ movs(dst->as_Register(), src->as_Register());
__ add(dst->as_Register(), SP, offset, ne);
}
#endif // AARCH64
}
}
case T_VOID:
break;
#ifdef AARCH64
case T_FLOAT:
case T_DOUBLE: {
VMReg src = in_regs[i].first();
VMReg dst = out_regs[i + extra_args].first();
if (src->is_stack()) {
assert(dst->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src)));
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
} else {
assert(src->is_FloatRegister() && dst->is_FloatRegister(), "must be");
assert(src->as_FloatRegister() == dst->as_FloatRegister(), "must be");
fp_regs_in_arguments++;
}
break;
}
#else // AARCH64
#ifdef __SOFTFP__
case T_DOUBLE:
#endif
case T_LONG: {
VMReg src_1 = in_regs[i].first();
VMReg src_2 = in_regs[i].second();
VMReg dst_1 = out_regs[i + extra_args].first();
VMReg dst_2 = out_regs[i + extra_args].second();
#if (ALIGN_WIDE_ARGUMENTS == 0)
// C convention can mix a register and a stack slot for a
// 64-bits native argument.
// Note: following code should work independently of whether
// the Java calling convention follows C convention or whether
// it aligns 64-bit values.
if (dst_2->is_Register()) {
if (src_1->as_Register() != dst_1->as_Register()) {
assert(src_1->as_Register() != dst_2->as_Register() &&
src_2->as_Register() != dst_2->as_Register(), "must be");
__ mov(dst_2->as_Register(), src_2->as_Register());
__ mov(dst_1->as_Register(), src_1->as_Register());
} else {
assert(src_2->as_Register() == dst_2->as_Register(), "must be");
}
} else if (src_2->is_Register()) {
if (dst_1->is_Register()) {
// dst mixes a register and a stack slot
assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
assert(src_1->as_Register() != dst_1->as_Register(), "must be");
__ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
__ mov(dst_1->as_Register(), src_1->as_Register());
} else {
// registers to stack slots
assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
__ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
__ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
}
} else if (src_1->is_Register()) {
if (dst_1->is_Register()) {
// src and dst must be R3 + stack slot
assert(dst_1->as_Register() == src_1->as_Register(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src_2)));
__ str(Rtemp, Address(SP, reg2offset_out(dst_2)));
} else {
// <R3,stack> -> <stack,stack>
assert(dst_2->is_stack() && src_2->is_stack(), "must be");
__ ldr(LR, Address(FP, reg2offset_in(src_2)));
__ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
__ str(LR, Address(SP, reg2offset_out(dst_2)));
}
} else {
assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
__ ldr(LR, Address(FP, reg2offset_in(src_2)));
__ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
__ str(LR, Address(SP, reg2offset_out(dst_2)));
}
#else // ALIGN_WIDE_ARGUMENTS
if (src_1->is_stack()) {
assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
__ ldr(LR, Address(FP, reg2offset_in(src_2)));
__ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
__ str(LR, Address(SP, reg2offset_out(dst_2)));
} else if (dst_1->is_stack()) {
assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
__ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
__ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
} else if (src_1->as_Register() == dst_1->as_Register()) {
assert(src_2->as_Register() == dst_2->as_Register(), "must be");
} else {
assert(src_1->as_Register() != dst_2->as_Register() &&
src_2->as_Register() != dst_2->as_Register(), "must be");
__ mov(dst_2->as_Register(), src_2->as_Register());
__ mov(dst_1->as_Register(), src_1->as_Register());
}
#endif // ALIGN_WIDE_ARGUMENTS
break;
}
#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
case T_FLOAT: {
VMReg src = in_regs[i].first();
VMReg dst = out_regs[i + extra_args].first();
if (src->is_stack()) {
assert(dst->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src)));
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
} else if (dst->is_stack()) {
__ fsts(src->as_FloatRegister(), Address(SP, reg2offset_out(dst)));
} else {
assert(src->is_FloatRegister() && dst->is_Register(), "must be");
__ fmrs(dst->as_Register(), src->as_FloatRegister());
}
break;
}
case T_DOUBLE: {
VMReg src_1 = in_regs[i].first();
VMReg src_2 = in_regs[i].second();
VMReg dst_1 = out_regs[i + extra_args].first();
VMReg dst_2 = out_regs[i + extra_args].second();
if (src_1->is_stack()) {
assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
__ ldr(LR, Address(FP, reg2offset_in(src_2)));
__ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
__ str(LR, Address(SP, reg2offset_out(dst_2)));
} else if (dst_1->is_stack()) {
assert(dst_2->is_stack() && src_1->is_FloatRegister(), "must be");
__ fstd(src_1->as_FloatRegister(), Address(SP, reg2offset_out(dst_1)));
#if (ALIGN_WIDE_ARGUMENTS == 0)
} else if (dst_2->is_stack()) {
assert(! src_2->is_stack(), "must be"); // assuming internal java convention is aligned
// double register must go into R3 + one stack slot
__ fmrrd(dst_1->as_Register(), Rtemp, src_1->as_FloatRegister());
__ str(Rtemp, Address(SP, reg2offset_out(dst_2)));
#endif
} else {
assert(src_1->is_FloatRegister() && dst_1->is_Register() && dst_2->is_Register(), "must be");
__ fmrrd(dst_1->as_Register(), dst_2->as_Register(), src_1->as_FloatRegister());
}
break;
}
#endif // __SOFTFP__
#ifdef __ABI_HARD__
case T_FLOAT: {
VMReg src = in_regs[i].first();
VMReg dst = out_regs[i + extra_args].first();
if (src->is_stack()) {
if (dst->is_stack()) {
__ ldr(Rtemp, Address(FP, reg2offset_in(src)));
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
} else {
// C2 Java calling convention does not populate S14 and S15, therefore
// those need to be loaded from stack here
__ flds(dst->as_FloatRegister(), Address(FP, reg2offset_in(src)));
fp_regs_in_arguments++;
}
} else {
assert(src->is_FloatRegister(), "must be");
fp_regs_in_arguments++;
}
break;
}
case T_DOUBLE: {
VMReg src_1 = in_regs[i].first();
VMReg src_2 = in_regs[i].second();
VMReg dst_1 = out_regs[i + extra_args].first();
VMReg dst_2 = out_regs[i + extra_args].second();
if (src_1->is_stack()) {
if (dst_1->is_stack()) {
assert(dst_2->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
__ ldr(LR, Address(FP, reg2offset_in(src_2)));
__ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
__ str(LR, Address(SP, reg2offset_out(dst_2)));
} else {
// C2 Java calling convention does not populate S14 and S15, therefore
// those need to be loaded from stack here
__ fldd(dst_1->as_FloatRegister(), Address(FP, reg2offset_in(src_1)));
fp_regs_in_arguments += 2;
}
} else {
assert(src_1->is_FloatRegister() && src_2->is_FloatRegister(), "must be");
fp_regs_in_arguments += 2;
}
break;
}
#endif // __ABI_HARD__
#endif // AARCH64
default: {
assert(in_sig_bt[i] != T_ADDRESS, "found T_ADDRESS in java args");
VMReg src = in_regs[i].first();
VMReg dst = out_regs[i + extra_args].first();
if (src->is_stack()) {
assert(dst->is_stack(), "must be");
__ ldr(Rtemp, Address(FP, reg2offset_in(src)));
__ str(Rtemp, Address(SP, reg2offset_out(dst)));
} else if (dst->is_stack()) {
__ str(src->as_Register(), Address(SP, reg2offset_out(dst)));
} else {
assert(src->is_Register() && dst->is_Register(), "must be");
__ mov(dst->as_Register(), src->as_Register());
}
}
}
}
// Get Klass mirror
int klass_offset = -1;
if (is_static) {
klass_offset = oop_handle_offset * VMRegImpl::stack_slot_size;
__ mov_oop(Rtemp, JNIHandles::make_local(method->method_holder()->java_mirror()));
__ add(c_rarg1, SP, klass_offset);
__ str(Rtemp, Address(SP, klass_offset));
map->set_oop(VMRegImpl::stack2reg(oop_handle_offset));
}
// the PC offset given to add_gc_map must match the PC saved in set_last_Java_frame
int pc_offset = __ set_last_Java_frame(SP, FP, true, Rtemp);
assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
oop_maps->add_gc_map(pc_offset, map);
#ifndef AARCH64
// Order last_Java_pc store with the thread state transition (to _thread_in_native)
__ membar(MacroAssembler::StoreStore, Rtemp);
#endif // !AARCH64
// RedefineClasses() tracing support for obsolete method entry
if (log_is_enabled(Trace, redefine, class, obsolete)) {
#ifdef AARCH64
__ NOT_TESTED();
#endif
__ save_caller_save_registers();
__ mov(R0, Rthread);
__ mov_metadata(R1, method());
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), R0, R1);
__ restore_caller_save_registers();
}
const Register sync_handle = AARCH64_ONLY(R20) NOT_AARCH64(R5);
const Register sync_obj = AARCH64_ONLY(R21) NOT_AARCH64(R6);
const Register disp_hdr = AARCH64_ONLY(R22) NOT_AARCH64(altFP_7_11);
const Register tmp = AARCH64_ONLY(R23) NOT_AARCH64(R8);
Label slow_lock, slow_lock_biased, lock_done, fast_lock, leave;
if (method->is_synchronized()) {
// The first argument is a handle to sync object (a class or an instance)
__ ldr(sync_obj, Address(R1));
// Remember the handle for the unlocking code
__ mov(sync_handle, R1);
if(UseBiasedLocking) {
__ biased_locking_enter(sync_obj, tmp, disp_hdr/*scratched*/, false, Rtemp, lock_done, slow_lock_biased);
}
const Register mark = tmp;
#ifdef AARCH64
__ sub(disp_hdr, FP, lock_slot_fp_offset);
assert(oopDesc::mark_offset_in_bytes() == 0, "Required by atomic instructions");
__ ldr(mark, sync_obj);
// Test if object is already locked
assert(markOopDesc::unlocked_value == 1, "adjust this code");
__ tbnz(mark, exact_log2(markOopDesc::unlocked_value), fast_lock);
// Check for recursive lock
// See comments in InterpreterMacroAssembler::lock_object for
// explanations on the fast recursive locking check.
__ mov(Rtemp, SP);
__ sub(Rtemp, mark, Rtemp);
intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
Assembler::LogicalImmediate imm(mask, false);
__ ands(Rtemp, Rtemp, imm);
__ b(slow_lock, ne);
// Recursive locking: store 0 into a lock record
__ str(ZR, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
__ b(lock_done);
__ bind(fast_lock);
__ str(mark, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
__ cas_for_lock_acquire(mark, disp_hdr, sync_obj, Rtemp, slow_lock);
#else
// On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
// That would be acceptable as either CAS or slow case path is taken in that case
__ ldr(mark, Address(sync_obj, oopDesc::mark_offset_in_bytes()));
__ sub(disp_hdr, FP, lock_slot_fp_offset);
__ tst(mark, markOopDesc::unlocked_value);
__ b(fast_lock, ne);
// Check for recursive lock
// See comments in InterpreterMacroAssembler::lock_object for
// explanations on the fast recursive locking check.
// Check independently the low bits and the distance to SP
// -1- test low 2 bits
__ movs(Rtemp, AsmOperand(mark, lsl, 30));
// -2- test (hdr - SP) if the low two bits are 0
__ sub(Rtemp, mark, SP, eq);
__ movs(Rtemp, AsmOperand(Rtemp, lsr, exact_log2(os::vm_page_size())), eq);
// If still 'eq' then recursive locking OK: set displaced header to 0
__ str(Rtemp, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()), eq);
__ b(lock_done, eq);
__ b(slow_lock);
__ bind(fast_lock);
__ str(mark, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
__ cas_for_lock_acquire(mark, disp_hdr, sync_obj, Rtemp, slow_lock);
#endif // AARCH64
__ bind(lock_done);
}
// Get JNIEnv*
__ add(c_rarg0, Rthread, in_bytes(JavaThread::jni_environment_offset()));
// Perform thread state transition
__ mov(Rtemp, _thread_in_native);
#ifdef AARCH64
// stlr instruction is used to force all preceding writes to be observed prior to thread state change
__ add(Rtemp2, Rthread, in_bytes(JavaThread::thread_state_offset()));
__ stlr_w(Rtemp, Rtemp2);
#else
__ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
#endif // AARCH64
// Finally, call the native method
__ call(method->native_function());
// Set FPSCR/FPCR to a known state
if (AlwaysRestoreFPU) {
__ restore_default_fp_mode();
}
// Do a safepoint check while thread is in transition state
InlinedAddress safepoint_state(SafepointSynchronize::address_of_state());
Label call_safepoint_runtime, return_to_java;
__ mov(Rtemp, _thread_in_native_trans);
__ ldr_literal(R2, safepoint_state);
__ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
// make sure the store is observed before reading the SafepointSynchronize state and further mem refs
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
__ ldr_s32(R2, Address(R2));
__ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
__ cmp(R2, SafepointSynchronize::_not_synchronized);
__ cond_cmp(R3, 0, eq);
__ b(call_safepoint_runtime, ne);
__ bind(return_to_java);
// Perform thread state transition and reguard stack yellow pages if needed
Label reguard, reguard_done;
__ mov(Rtemp, _thread_in_Java);
__ ldr_s32(R2, Address(Rthread, JavaThread::stack_guard_state_offset()));
__ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
__ cmp(R2, JavaThread::stack_guard_yellow_reserved_disabled);
__ b(reguard, eq);
__ bind(reguard_done);
Label slow_unlock, unlock_done, retry;
if (method->is_synchronized()) {
__ ldr(sync_obj, Address(sync_handle));
if(UseBiasedLocking) {
__ biased_locking_exit(sync_obj, Rtemp, unlock_done);
// disp_hdr may not have been saved on entry with biased locking
__ sub(disp_hdr, FP, lock_slot_fp_offset);
}
// See C1_MacroAssembler::unlock_object() for more comments
__ ldr(R2, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
__ cbz(R2, unlock_done);
__ cas_for_lock_release(disp_hdr, R2, sync_obj, Rtemp, slow_unlock);
__ bind(unlock_done);
}
// Set last java frame and handle block to zero
__ ldr(LR, Address(Rthread, JavaThread::active_handles_offset()));
__ reset_last_Java_frame(Rtemp); // sets Rtemp to 0 on 32-bit ARM
#ifdef AARCH64
__ str_32(ZR, Address(LR, JNIHandleBlock::top_offset_in_bytes()));
if (CheckJNICalls) {
__ str(ZR, Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
}
switch (ret_type) {
case T_BOOLEAN:
__ tst(R0, 0xff);
__ cset(R0, ne);
break;
case T_CHAR : __ zero_extend(R0, R0, 16); break;
case T_BYTE : __ sign_extend(R0, R0, 8); break;
case T_SHORT : __ sign_extend(R0, R0, 16); break;
case T_INT : // fall through
case T_LONG : // fall through
case T_VOID : // fall through
case T_FLOAT : // fall through
case T_DOUBLE : /* nothing to do */ break;
case T_OBJECT : // fall through
case T_ARRAY : break; // See JNIHandles::resolve below
default:
ShouldNotReachHere();
}
#else
__ str_32(Rtemp, Address(LR, JNIHandleBlock::top_offset_in_bytes()));
if (CheckJNICalls) {
__ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
}
#endif // AARCH64
// Unbox oop result, e.g. JNIHandles::resolve value in R0.
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
__ resolve_jobject(R0, // value
Rtemp, // tmp1
R1_tmp); // tmp2
}
// Any exception pending?
__ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
__ mov(SP, FP);
#ifdef AARCH64
Label except;
__ cbnz(Rtemp, except);
__ raw_pop(FP, LR);
__ ret();
__ bind(except);
// Pop the frame and forward the exception. Rexception_pc contains return address.
__ raw_pop(FP, Rexception_pc);
#else
__ cmp(Rtemp, 0);
// Pop the frame and return if no exception pending
__ pop(RegisterSet(FP) | RegisterSet(PC), eq);
// Pop the frame and forward the exception. Rexception_pc contains return address.
__ ldr(FP, Address(SP, wordSize, post_indexed), ne);
__ ldr(Rexception_pc, Address(SP, wordSize, post_indexed), ne);
#endif // AARCH64
__ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
// Safepoint operation and/or pending suspend request is in progress.
// Save the return values and call the runtime function by hand.
__ bind(call_safepoint_runtime);
push_result_registers(masm, ret_type);
__ mov(R0, Rthread);
__ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
pop_result_registers(masm, ret_type);
__ b(return_to_java);
__ bind_literal(safepoint_state);
// Reguard stack pages. Save native results around a call to C runtime.
__ bind(reguard);
push_result_registers(masm, ret_type);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
pop_result_registers(masm, ret_type);
__ b(reguard_done);
if (method->is_synchronized()) {
// Locking slow case
if(UseBiasedLocking) {
__ bind(slow_lock_biased);
__ sub(disp_hdr, FP, lock_slot_fp_offset);
}
__ bind(slow_lock);
push_param_registers(masm, fp_regs_in_arguments);
// last_Java_frame is already set, so do call_VM manually; no exception can occur
__ mov(R0, sync_obj);
__ mov(R1, disp_hdr);
__ mov(R2, Rthread);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C));
pop_param_registers(masm, fp_regs_in_arguments);
__ b(lock_done);
// Unlocking slow case
__ bind(slow_unlock);
push_result_registers(masm, ret_type);
// Clear pending exception before reentering VM.
// Can store the oop in register since it is a leaf call.
assert_different_registers(Rtmp_save1, sync_obj, disp_hdr);
__ ldr(Rtmp_save1, Address(Rthread, Thread::pending_exception_offset()));
Register zero = __ zero_register(Rtemp);
__ str(zero, Address(Rthread, Thread::pending_exception_offset()));
__ mov(R0, sync_obj);
__ mov(R1, disp_hdr);
__ mov(R2, Rthread);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
__ str(Rtmp_save1, Address(Rthread, Thread::pending_exception_offset()));
pop_result_registers(masm, ret_type);
__ b(unlock_done);
}
__ flush();
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(is_static ? klass_offset : receiver_offset),
in_ByteSize(lock_slot_offset * VMRegImpl::stack_slot_size),
oop_maps);
}
// this function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
int extra_locals_size = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
#ifdef AARCH64
extra_locals_size = round_to(extra_locals_size, StackAlignmentInBytes/BytesPerWord);
#endif // AARCH64
return extra_locals_size;
}
uint SharedRuntime::out_preserve_stack_slots() {
return 0;
}
//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
ResourceMark rm;
#ifdef AARCH64
CodeBuffer buffer("deopt_blob", 1024+256, 1);
#else
CodeBuffer buffer("deopt_blob", 1024, 1024);
#endif
int frame_size_in_words;
OopMapSet* oop_maps;
int reexecute_offset;
int exception_in_tls_offset;
int exception_offset;
MacroAssembler* masm = new MacroAssembler(&buffer);
Label cont;
const Register Rkind = AARCH64_ONLY(R21) NOT_AARCH64(R9); // caller-saved on 32bit
const Register Rublock = AARCH64_ONLY(R22) NOT_AARCH64(R6);
const Register Rsender = AARCH64_ONLY(R23) NOT_AARCH64(altFP_7_11);
assert_different_registers(Rkind, Rublock, Rsender, Rexception_obj, Rexception_pc, R0, R1, R2, R3, R8, Rtemp);
address start = __ pc();
oop_maps = new OopMapSet();
// LR saved by caller (can be live in c2 method)
// A deopt is a case where LR may be live in the c2 nmethod. So it's
// not possible to call the deopt blob from the nmethod and pass the
// address of the deopt handler of the nmethod in LR. What happens
// now is that the caller of the deopt blob pushes the current
// address so the deopt blob doesn't have to do it. This way LR can
// be preserved, contains the live value from the nmethod and is
// saved at R14/R30_offset here.
OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_in_words, true);
__ mov(Rkind, Deoptimization::Unpack_deopt);
__ b(cont);
exception_offset = __ pc() - start;
// Transfer Rexception_obj & Rexception_pc in TLS and fall thru to the
// exception_in_tls_offset entry point.
__ str(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
__ str(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
// Force return value to NULL to avoid confusing the escape analysis
// logic. Everything is dead here anyway.
__ mov(R0, 0);
exception_in_tls_offset = __ pc() - start;
// Exception data is in JavaThread structure
// Patch the return address of the current frame
__ ldr(LR, Address(Rthread, JavaThread::exception_pc_offset()));
(void) RegisterSaver::save_live_registers(masm, &frame_size_in_words);
{
const Register Rzero = __ zero_register(Rtemp); // XXX should be OK for C2 but not 100% sure
__ str(Rzero, Address(Rthread, JavaThread::exception_pc_offset()));
}
__ mov(Rkind, Deoptimization::Unpack_exception);
__ b(cont);
reexecute_offset = __ pc() - start;
(void) RegisterSaver::save_live_registers(masm, &frame_size_in_words);
__ mov(Rkind, Deoptimization::Unpack_reexecute);
// Calculate UnrollBlock and save the result in Rublock
__ bind(cont);
__ mov(R0, Rthread);
__ mov(R1, Rkind);
int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp); // note: FP may not need to be saved (not on x86)
assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
__ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info));
if (pc_offset == -1) {
pc_offset = __ offset();
}
oop_maps->add_gc_map(pc_offset, map);
__ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
__ mov(Rublock, R0);
// Reload Rkind from the UnrollBlock (might have changed)
__ ldr_s32(Rkind, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
Label noException;
__ cmp_32(Rkind, Deoptimization::Unpack_exception); // Was exception pending?
__ b(noException, ne);
// handle exception case
#ifdef ASSERT
// assert that exception_pc is zero in tls
{ Label L;
__ ldr(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
__ cbz(Rexception_pc, L);
__ stop("exception pc should be null");
__ bind(L);
}
#endif
__ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
__ verify_oop(Rexception_obj);
{
const Register Rzero = __ zero_register(Rtemp);
__ str(Rzero, Address(Rthread, JavaThread::exception_oop_offset()));
}
__ bind(noException);
// This frame is going away. Fetch return value, so we can move it to
// a new frame.
__ ldr(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
#ifndef AARCH64
__ ldr(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
#endif // !AARCH64
#ifndef __SOFTFP__
__ ldr_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
#endif
// pop frame
__ add(SP, SP, RegisterSaver::reg_save_size * wordSize);
// Set initial stack state before pushing interpreter frames
__ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
__ ldr(R2, Address(Rublock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
__ ldr(R3, Address(Rublock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
#ifdef AARCH64
// Pop deoptimized frame. Make sure to restore the initial saved FP/LR of the caller.
// They are needed for correct stack walking during stack overflow handling.
// Also, restored FP is saved in the bottom interpreter frame (LR is reloaded from unroll block).
__ sub(Rtemp, Rtemp, 2*wordSize);
__ add(SP, SP, Rtemp, ex_uxtx);
__ raw_pop(FP, LR);
#ifdef ASSERT
{ Label L;
__ ldr(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
__ cmp(FP, Rtemp);
__ b(L, eq);
__ stop("FP restored from deoptimized frame does not match FP stored in unroll block");
__ bind(L);
}
{ Label L;
__ ldr(Rtemp, Address(R2));
__ cmp(LR, Rtemp);
__ b(L, eq);
__ stop("LR restored from deoptimized frame does not match the 1st PC in unroll block");
__ bind(L);
}
#endif // ASSERT
#else
__ add(SP, SP, Rtemp);
#endif // AARCH64
#ifdef ASSERT
// Compilers generate code that bang the stack by as much as the
// interpreter would need. So this stack banging should never
// trigger a fault. Verify that it does not on non product builds.
// See if it is enough stack to push deoptimized frames
if (UseStackBanging) {
#ifndef AARCH64
// The compiled method that we are deoptimizing was popped from the stack.
// If the stack bang results in a stack overflow, we don't return to the
// method that is being deoptimized. The stack overflow exception is
// propagated to the caller of the deoptimized method. Need to get the pc
// from the caller in LR and restore FP.
__ ldr(LR, Address(R2, 0));
__ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#endif // !AARCH64
__ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
__ arm_stack_overflow_check(R8, Rtemp);
}
#endif
__ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
#ifndef AARCH64
// Pick up the initial fp we should save
// XXX Note: was ldr(FP, Address(FP));
// The compiler no longer uses FP as a frame pointer for the
// compiled code. It can be used by the allocator in C2 or to
// memorize the original SP for JSR292 call sites.
// Hence, ldr(FP, Address(FP)) is probably not correct. For x86,
// Deoptimization::fetch_unroll_info computes the right FP value and
// stores it in Rublock.initial_info. This has been activated for ARM.
__ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#endif // !AARCH64
__ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
__ mov(Rsender, SP);
#ifdef AARCH64
__ sub(SP, SP, Rtemp, ex_uxtx);
#else
__ sub(SP, SP, Rtemp);
#endif // AARCH64
// Push interpreter frames in a loop
Label loop;
__ bind(loop);
__ ldr(LR, Address(R2, wordSize, post_indexed)); // load frame pc
__ ldr(Rtemp, Address(R3, wordSize, post_indexed)); // load frame size
__ raw_push(FP, LR); // create new frame
__ mov(FP, SP);
__ sub(Rtemp, Rtemp, 2*wordSize);
#ifdef AARCH64
__ sub(SP, SP, Rtemp, ex_uxtx);
#else
__ sub(SP, SP, Rtemp);
#endif // AARCH64
__ str(Rsender, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
#ifdef AARCH64
__ str(ZR, Address(FP, frame::interpreter_frame_stack_top_offset * wordSize));
#else
__ mov(LR, 0);
__ str(LR, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // AARCH64
__ subs(R8, R8, 1); // decrement counter
__ mov(Rsender, SP);
__ b(loop, ne);
// Re-push self-frame
__ ldr(LR, Address(R2));
__ raw_push(FP, LR);
__ mov(FP, SP);
__ sub(SP, SP, (frame_size_in_words - 2) * wordSize);
// Restore frame locals after moving the frame
__ str(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
#ifndef AARCH64
__ str(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
#endif // !AARCH64
#ifndef __SOFTFP__
__ str_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
#endif // !__SOFTFP__
#ifndef AARCH64
#ifdef ASSERT
// Reload Rkind from the UnrollBlock and check that it was not overwritten (Rkind is not callee-saved)
{ Label L;
__ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
__ cmp_32(Rkind, Rtemp);
__ b(L, eq);
__ stop("Rkind was overwritten");
__ bind(L);
}
#endif
#endif
// Call unpack_frames with proper arguments
__ mov(R0, Rthread);
__ mov(R1, Rkind);
pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp);
assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
__ call(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
if (pc_offset == -1) {
pc_offset = __ offset();
}
oop_maps->add_gc_map(pc_offset, new OopMap(frame_size_in_words * VMRegImpl::slots_per_word, 0));
__ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
// Collect return values, pop self-frame and jump to interpreter
__ ldr(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
#ifndef AARCH64
__ ldr(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
#endif // !AARCH64
// Interpreter floats controlled by __SOFTFP__, but compiler
// float return value registers controlled by __ABI_HARD__
// This matters for vfp-sflt builds.
#ifndef __SOFTFP__
// Interpreter hard float
#ifdef __ABI_HARD__
// Compiler float return value in FP registers
__ ldr_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
#else
// Compiler float return value in integer registers,
// copy to D0 for interpreter (S0 <-- R0)
__ fmdrr(D0_tos, R0, R1);
#endif
#endif // !__SOFTFP__
__ mov(SP, FP);
#ifdef AARCH64
__ raw_pop(FP, LR);
__ ret();
#else
__ pop(RegisterSet(FP) | RegisterSet(PC));
#endif // AARCH64
__ flush();
_deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
reexecute_offset, frame_size_in_words);
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
}
#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
// Ought to generate an ideal graph & compile, but here's some SPARC ASM
// instead.
void SharedRuntime::generate_uncommon_trap_blob() {
// allocate space for the code
ResourceMark rm;
// setup code generation tools
int pad = VerifyThread ? 512 : 0;
#ifdef _LP64
CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
#else
// Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
// Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
#endif
// bypassed when code generation useless
MacroAssembler* masm = new MacroAssembler(&buffer);
const Register Rublock = AARCH64_ONLY(R22) NOT_AARCH64(R6);
const Register Rsender = AARCH64_ONLY(R23) NOT_AARCH64(altFP_7_11);
assert_different_registers(Rublock, Rsender, Rexception_obj, R0, R1, R2, R3, R8, Rtemp);
//
// This is the entry point for all traps the compiler takes when it thinks
// it cannot handle further execution of compilation code. The frame is
// deoptimized in these cases and converted into interpreter frames for
// execution
// The steps taken by this frame are as follows:
// - push a fake "unpack_frame"
// - call the C routine Deoptimization::uncommon_trap (this function
// packs the current compiled frame into vframe arrays and returns
// information about the number and size of interpreter frames which
// are equivalent to the frame which is being deoptimized)
// - deallocate the "unpack_frame"
// - deallocate the deoptimization frame
// - in a loop using the information returned in the previous step
// push interpreter frames;
// - create a dummy "unpack_frame"
// - call the C routine: Deoptimization::unpack_frames (this function
// lays out values on the interpreter frame which was just created)
// - deallocate the dummy unpack_frame
// - return to the interpreter entry point
//
// Refer to the following methods for more information:
// - Deoptimization::uncommon_trap
// - Deoptimization::unpack_frame
// the unloaded class index is in R0 (first parameter to this blob)
__ raw_push(FP, LR);
__ set_last_Java_frame(SP, FP, false, Rtemp);
__ mov(R2, Deoptimization::Unpack_uncommon_trap);
__ mov(R1, R0);
__ mov(R0, Rthread);
__ call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
__ mov(Rublock, R0);
__ reset_last_Java_frame(Rtemp);
__ raw_pop(FP, LR);
#ifdef ASSERT
{ Label L;
__ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
__ cmp_32(Rtemp, Deoptimization::Unpack_uncommon_trap);
__ b(L, eq);
__ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
__ bind(L);
}
#endif
// Set initial stack state before pushing interpreter frames
__ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
__ ldr(R2, Address(Rublock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
__ ldr(R3, Address(Rublock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
#ifdef AARCH64
// Pop deoptimized frame. Make sure to restore the initial saved FP/LR of the caller.
// They are needed for correct stack walking during stack overflow handling.
// Also, restored FP is saved in the bottom interpreter frame (LR is reloaded from unroll block).
__ sub(Rtemp, Rtemp, 2*wordSize);
__ add(SP, SP, Rtemp, ex_uxtx);
__ raw_pop(FP, LR);
#ifdef ASSERT
{ Label L;
__ ldr(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
__ cmp(FP, Rtemp);
__ b(L, eq);
__ stop("FP restored from deoptimized frame does not match FP stored in unroll block");
__ bind(L);
}
{ Label L;
__ ldr(Rtemp, Address(R2));
__ cmp(LR, Rtemp);
__ b(L, eq);
__ stop("LR restored from deoptimized frame does not match the 1st PC in unroll block");
__ bind(L);
}
#endif // ASSERT
#else
__ add(SP, SP, Rtemp);
#endif //AARCH64
// See if it is enough stack to push deoptimized frames
#ifdef ASSERT
// Compilers generate code that bang the stack by as much as the
// interpreter would need. So this stack banging should never
// trigger a fault. Verify that it does not on non product builds.
if (UseStackBanging) {
#ifndef AARCH64
// The compiled method that we are deoptimizing was popped from the stack.
// If the stack bang results in a stack overflow, we don't return to the
// method that is being deoptimized. The stack overflow exception is
// propagated to the caller of the deoptimized method. Need to get the pc
// from the caller in LR and restore FP.
__ ldr(LR, Address(R2, 0));
__ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#endif // !AARCH64
__ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
__ arm_stack_overflow_check(R8, Rtemp);
}
#endif
__ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
__ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
__ mov(Rsender, SP);
#ifdef AARCH64
__ sub(SP, SP, Rtemp, ex_uxtx);
#else
__ sub(SP, SP, Rtemp);
#endif
#ifndef AARCH64
// __ ldr(FP, Address(FP));
__ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#endif // AARCH64
// Push interpreter frames in a loop
Label loop;
__ bind(loop);
__ ldr(LR, Address(R2, wordSize, post_indexed)); // load frame pc
__ ldr(Rtemp, Address(R3, wordSize, post_indexed)); // load frame size
__ raw_push(FP, LR); // create new frame
__ mov(FP, SP);
__ sub(Rtemp, Rtemp, 2*wordSize);
#ifdef AARCH64
__ sub(SP, SP, Rtemp, ex_uxtx);
#else
__ sub(SP, SP, Rtemp);
#endif // AARCH64
__ str(Rsender, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
#ifdef AARCH64
__ str(ZR, Address(FP, frame::interpreter_frame_stack_top_offset * wordSize));
#else
__ mov(LR, 0);
__ str(LR, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // AARCH64
__ subs(R8, R8, 1); // decrement counter
__ mov(Rsender, SP);
__ b(loop, ne);
// Re-push self-frame
__ ldr(LR, Address(R2));
__ raw_push(FP, LR);
__ mov(FP, SP);
// Call unpack_frames with proper arguments
__ mov(R0, Rthread);
__ mov(R1, Deoptimization::Unpack_uncommon_trap);
__ set_last_Java_frame(SP, FP, false, Rtemp);
__ call(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
// oop_maps->add_gc_map(__ pc() - start, new OopMap(frame_size_in_words, 0));
__ reset_last_Java_frame(Rtemp);
__ mov(SP, FP);
#ifdef AARCH64
__ raw_pop(FP, LR);
__ ret();
#else
__ pop(RegisterSet(FP) | RegisterSet(PC));
#endif
masm->flush();
_uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, 2 /* LR+FP */);
}
#endif // COMPILER2
//------------------------------generate_handler_blob------
//
// Generate a special Compile2Runtime blob that saves all registers,
// setup oopmap, and calls safepoint code to stop the compiled code for
// a safepoint.
//
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
ResourceMark rm;
CodeBuffer buffer("handler_blob", 256, 256);
int frame_size_words;
OopMapSet* oop_maps;
bool cause_return = (poll_type == POLL_AT_RETURN);
MacroAssembler* masm = new MacroAssembler(&buffer);
address start = __ pc();
oop_maps = new OopMapSet();
if (!cause_return) {
#ifdef AARCH64
__ raw_push(LR, LR);
#else
__ sub(SP, SP, 4); // make room for LR which may still be live
// here if we are coming from a c2 method
#endif // AARCH64
}
OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_words, !cause_return);
if (!cause_return) {
// update saved PC with correct value
// need 2 steps because LR can be live in c2 method
__ ldr(LR, Address(Rthread, JavaThread::saved_exception_pc_offset()));
__ str(LR, Address(SP, RegisterSaver::LR_offset * wordSize));
}
__ mov(R0, Rthread);
int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp); // note: FP may not need to be saved (not on x86)
assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
__ call(call_ptr);
if (pc_offset == -1) {
pc_offset = __ offset();
}
oop_maps->add_gc_map(pc_offset, map);
__ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
// Check for pending exception
__ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
__ cmp(Rtemp, 0);
#ifdef AARCH64
RegisterSaver::restore_live_registers(masm, cause_return);
Register ret_addr = cause_return ? LR : Rtemp;
if (!cause_return) {
__ raw_pop(FP, ret_addr);
}
Label throw_exception;
__ b(throw_exception, ne);
__ br(ret_addr);
__ bind(throw_exception);
__ mov(Rexception_pc, ret_addr);
#else // AARCH64
if (!cause_return) {
RegisterSaver::restore_live_registers(masm, false);
__ pop(PC, eq);
__ pop(Rexception_pc);
} else {
RegisterSaver::restore_live_registers(masm);
__ bx(LR, eq);
__ mov(Rexception_pc, LR);
}
#endif // AARCH64
__ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
__ flush();
return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
}
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
ResourceMark rm;
CodeBuffer buffer(name, 1000, 512);
int frame_size_words;
OopMapSet *oop_maps;
int frame_complete;
MacroAssembler* masm = new MacroAssembler(&buffer);
Label pending_exception;
int start = __ offset();
oop_maps = new OopMapSet();
OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_words);
frame_complete = __ offset();
__ mov(R0, Rthread);
int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp);
assert(start == 0, "warning: start differs from code_begin");
__ call(destination);
if (pc_offset == -1) {
pc_offset = __ offset();
}
oop_maps->add_gc_map(pc_offset, map);
__ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
__ ldr(R1, Address(Rthread, Thread::pending_exception_offset()));
__ cbnz(R1, pending_exception);
// Overwrite saved register values
// Place metadata result of VM call into Rmethod
__ get_vm_result_2(R1, Rtemp);
__ str(R1, Address(SP, RegisterSaver::Rmethod_offset * wordSize));
// Place target address (VM call result) into Rtemp
__ str(R0, Address(SP, RegisterSaver::Rtemp_offset * wordSize));
RegisterSaver::restore_live_registers(masm);
__ jump(Rtemp);
__ bind(pending_exception);
RegisterSaver::restore_live_registers(masm);
const Register Rzero = __ zero_register(Rtemp);
__ str(Rzero, Address(Rthread, JavaThread::vm_result_2_offset()));
__ mov(Rexception_pc, LR);
__ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
__ flush();
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
}