blob: 4fc102fa4809b25ce7afe12ca743f7a40450dc52 [file] [log] [blame]
/*
* Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
address interpreted_entry) {
// Just before the actual machine code entry point, allocate space
// for a MethodHandleEntry::Data record, so that we can manage everything
// from one base pointer.
__ align(wordSize);
address target = __ pc() + sizeof(Data);
while (__ pc() < target) {
__ nop();
__ align(wordSize);
}
MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
me->set_end_address(__ pc()); // set a temporary end_address
me->set_from_interpreted_entry(interpreted_entry);
me->set_type_checking_entry(NULL);
return (address) me;
}
MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
address start_addr) {
MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
assert(me->end_address() == start_addr, "valid ME");
// Fill in the real end_address:
__ align(wordSize);
me->set_end_address(__ pc());
return me;
}
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
// I5_savedSP/O5_savedSP: sender SP (must preserve)
// G4 (Gargs): incoming argument list (must preserve)
// G5_method: invoke methodOop
// G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
// O0, O1, O2, O3, O4: garbage temps, blown away
Register O0_mtype = O0;
Register O1_scratch = O1;
Register O2_scratch = O2;
Register O3_scratch = O3;
Register O4_argslot = O4;
Register O4_argbase = O4;
// emit WrongMethodType path first, to enable back-branch from main path
Label wrong_method_type;
__ bind(wrong_method_type);
Label invoke_generic_slow_path;
assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
__ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
__ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
__ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
__ delayed()->nop();
__ mov(O0_mtype, G5_method_type); // required by throw_WrongMethodType
// mov(G3_method_handle, G3_method_handle); // already in this register
__ jump_to(AddressLiteral(Interpreter::throw_WrongMethodType_entry()), O1_scratch);
__ delayed()->nop();
// here's where control starts out:
__ align(CodeEntryAlignment);
address entry_point = __ pc();
// fetch the MethodType from the method handle
{
Register tem = G5_method;
for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
__ ld_ptr(Address(tem, *pchase), O0_mtype);
tem = O0_mtype; // in case there is another indirection
}
}
// given the MethodType, find out where the MH argument is buried
__ load_heap_oop(Address(O0_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, O1_scratch)), O4_argslot);
__ ldsw( Address(O4_argslot, __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
__ add(Gargs, __ argument_offset(O4_argslot, 1), O4_argbase);
// Note: argument_address uses its input as a scratch register!
__ ld_ptr(Address(O4_argbase, -Interpreter::stackElementSize), G3_method_handle);
trace_method_handle(_masm, "invokeExact");
__ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
// for invokeGeneric (only), apply argument and result conversions on the fly
__ bind(invoke_generic_slow_path);
#ifdef ASSERT
{ Label L;
__ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
__ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
__ brx(Assembler::equal, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("bad methodOop::intrinsic_id");
__ bind(L);
}
#endif //ASSERT
// make room on the stack for another pointer:
insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK, O4_argbase, O1_scratch, O2_scratch, O3_scratch);
// load up an adapter from the calling type (Java weaves this)
Register O2_form = O2_scratch;
Register O3_adapter = O3_scratch;
__ load_heap_oop(Address(O0_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, O1_scratch)), O2_form);
// load_heap_oop(Address(O2_form, __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
// deal with old JDK versions:
__ add( Address(O2_form, __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
__ cmp(O3_adapter, O2_form);
Label sorry_no_invoke_generic;
__ brx(Assembler::lessUnsigned, false, Assembler::pn, sorry_no_invoke_generic);
__ delayed()->nop();
__ load_heap_oop(Address(O3_adapter, 0), O3_adapter);
__ tst(O3_adapter);
__ brx(Assembler::zero, false, Assembler::pn, sorry_no_invoke_generic);
__ delayed()->nop();
__ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
// As a trusted first argument, pass the type being called, so the adapter knows
// the actual types of the arguments and return values.
// (Generic invokers are shared among form-families of method-type.)
__ st_ptr(O0_mtype, Address(O4_argbase, 0 * Interpreter::stackElementSize));
// FIXME: assert that O3_adapter is of the right method-type.
__ mov(O3_adapter, G3_method_handle);
trace_method_handle(_masm, "invokeGeneric");
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
__ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
__ mov(O0_mtype, G5_method_type); // required by throw_WrongMethodType
// mov(G3_method_handle, G3_method_handle); // already in this register
__ jump_to(AddressLiteral(Interpreter::throw_WrongMethodType_entry()), O1_scratch);
__ delayed()->nop();
return entry_point;
}
#ifdef ASSERT
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
// Verify that argslot lies within (Gargs, FP].
Label L_ok, L_bad;
BLOCK_COMMENT("{ verify_argslot");
#ifdef _LP64
__ add(FP, STACK_BIAS, temp_reg);
__ cmp(argslot_reg, temp_reg);
#else
__ cmp(argslot_reg, FP);
#endif
__ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(Gargs, argslot_reg);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ bind(L_bad);
__ stop(error_message);
__ bind(L_ok);
BLOCK_COMMENT("} verify_argslot");
}
#endif
// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int arg_mask,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg) {
assert(temp3_reg != noreg, "temp3 required");
assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
(!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
#ifdef ASSERT
verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
__ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
__ br(Assembler::greater, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ btst(-stack_move_unit() - 1, arg_slots.as_register());
__ br(Assembler::zero, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ bind(L_bad);
__ stop("assert arg_slots <= 0 and clear low bits");
__ bind(L_ok);
} else {
assert(arg_slots.as_constant() <= 0, "");
assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
}
#endif // ASSERT
#ifdef _LP64
if (arg_slots.is_register()) {
// Was arg_slots register loaded as signed int?
Label L_ok;
__ sll(arg_slots.as_register(), BitsPerInt, temp_reg);
__ sra(temp_reg, BitsPerInt, temp_reg);
__ cmp(arg_slots.as_register(), temp_reg);
__ br(Assembler::equal, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("arg_slots register not loaded as signed int");
__ bind(L_ok);
}
#endif
// Make space on the stack for the inserted argument(s).
// Then pull down everything shallower than argslot_reg.
// The stacked return address gets pulled down with everything else.
// That is, copy [sp, argslot) downward by -size words. In pseudo-code:
// sp -= size;
// for (temp = sp + size; temp < argslot; temp++)
// temp[-size] = temp[0]
// argslot -= size;
BLOCK_COMMENT("insert_arg_slots {");
RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
RegisterOrConstant masked_offset = __ regcon_andn_ptr(offset, TwoWordAlignmentMask, temp_reg);
__ add(SP, masked_offset, SP);
__ mov(Gargs, temp_reg); // source pointer for copy
__ add(Gargs, offset, Gargs);
{
Label loop;
__ BIND(loop);
// pull one word down each time through the loop
__ ld_ptr(Address(temp_reg, 0), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset));
__ add(temp_reg, wordSize, temp_reg);
__ cmp(temp_reg, argslot_reg);
__ brx(Assembler::less, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
}
// Now move the argslot down, to point to the opened-up space.
__ add(argslot_reg, offset, argslot_reg);
BLOCK_COMMENT("} insert_arg_slots");
}
// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg) {
assert(temp3_reg != noreg, "temp3 required");
assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
(!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
#ifdef ASSERT
// Verify that [argslot..argslot+size) lies within (Gargs, FP).
__ add(argslot_reg, offset, temp2_reg);
verify_argslot(_masm, temp2_reg, temp_reg, "deleted argument(s) must fall within current frame");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
__ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
__ br(Assembler::less, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ btst(-stack_move_unit() - 1, arg_slots.as_register());
__ br(Assembler::zero, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ bind(L_bad);
__ stop("assert arg_slots >= 0 and clear low bits");
__ bind(L_ok);
} else {
assert(arg_slots.as_constant() >= 0, "");
assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
}
#endif // ASSERT
BLOCK_COMMENT("remove_arg_slots {");
// Pull up everything shallower than argslot.
// Then remove the excess space on the stack.
// The stacked return address gets pulled up with everything else.
// That is, copy [sp, argslot) upward by size words. In pseudo-code:
// for (temp = argslot-1; temp >= sp; --temp)
// temp[size] = temp[0]
// argslot += size;
// sp += size;
__ sub(argslot_reg, wordSize, temp_reg); // source pointer for copy
{
Label loop;
__ BIND(loop);
// pull one word up each time through the loop
__ ld_ptr(Address(temp_reg, 0), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset));
__ sub(temp_reg, wordSize, temp_reg);
__ cmp(temp_reg, Gargs);
__ brx(Assembler::greaterEqual, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
}
// Now move the argslot up, to point to the just-copied block.
__ add(Gargs, offset, Gargs);
// And adjust the argslot address to point at the deletion point.
__ add(argslot_reg, offset, argslot_reg);
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
RegisterOrConstant masked_offset = __ regcon_andn_ptr(offset, TwoWordAlignmentMask, temp_reg);
__ add(SP, masked_offset, SP);
BLOCK_COMMENT("} remove_arg_slots");
}
#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
oopDesc* mh) {
printf("MH %s mh="INTPTR_FORMAT"\n", adaptername, (intptr_t) mh);
print_method_handle(mh);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
if (!TraceMethodHandles) return;
BLOCK_COMMENT("trace_method_handle {");
// save: Gargs, O5_savedSP
__ save_frame(16);
__ set((intptr_t) adaptername, O0);
__ mov(G3_method_handle, O1);
__ mov(G3_method_handle, L3);
__ mov(Gargs, L4);
__ mov(G5_method_type, L5);
__ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));
__ mov(L3, G3_method_handle);
__ mov(L4, Gargs);
__ mov(L5, G5_method_type);
__ restore();
BLOCK_COMMENT("} trace_method_handle");
}
#endif // PRODUCT
// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
|(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
|(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
|(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
|(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
|(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
|(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
|(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
|(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
//|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
);
// FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
}
//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
// Here is the register state during an interpreted call,
// as set up by generate_method_handle_interpreter_entry():
// - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
// - G3: receiver method handle
// - O5_savedSP: sender SP (must preserve)
const Register O0_argslot = O0;
const Register O1_scratch = O1;
const Register O2_scratch = O2;
const Register O3_scratch = O3;
const Register G5_index = G5;
// Argument registers for _raise_exception.
const Register O0_code = O0;
const Register O1_actual = O1;
const Register O2_required = O2;
guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
// Some handy addresses:
Address G5_method_fie( G5_method, in_bytes(methodOopDesc::from_interpreted_offset()));
Address G3_mh_vmtarget( G3_method_handle, java_dyn_MethodHandle::vmtarget_offset_in_bytes());
Address G3_dmh_vmindex( G3_method_handle, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes());
Address G3_bmh_vmargslot( G3_method_handle, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes());
Address G3_bmh_argument( G3_method_handle, sun_dyn_BoundMethodHandle::argument_offset_in_bytes());
Address G3_amh_vmargslot( G3_method_handle, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes());
Address G3_amh_argument ( G3_method_handle, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes());
Address G3_amh_conversion(G3_method_handle, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes());
const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
if (have_entry(ek)) {
__ nop(); // empty stubs make SG sick
return;
}
address interp_entry = __ pc();
trace_method_handle(_masm, entry_name(ek));
switch ((int) ek) {
case _raise_exception:
{
// Not a real MH entry, but rather shared code for raising an
// exception. Since we use a C2I adapter to set up the
// interpreter state, arguments are expected in compiler
// argument registers.
assert(raise_exception_method(), "must be set");
address c2i_entry = raise_exception_method()->get_c2i_entry();
assert(c2i_entry, "method must be linked");
__ mov(O5_savedSP, SP); // Cut the stack back to where the caller started.
Label L_no_method;
// FIXME: fill in _raise_exception_method with a suitable sun.dyn method
__ set(AddressLiteral((address) &_raise_exception_method), G5_method);
__ ld_ptr(Address(G5_method, 0), G5_method);
__ tst(G5_method);
__ brx(Assembler::zero, false, Assembler::pn, L_no_method);
__ delayed()->nop();
const int jobject_oop_offset = 0;
__ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
__ tst(G5_method);
__ brx(Assembler::zero, false, Assembler::pn, L_no_method);
__ delayed()->nop();
__ verify_oop(G5_method);
__ jump_to(AddressLiteral(c2i_entry), O3_scratch);
__ delayed()->nop();
// If we get here, the Java runtime did not do its job of creating the exception.
// Do something that is at least causes a valid throw from the interpreter.
__ bind(L_no_method);
__ unimplemented("call throw_WrongMethodType_entry");
}
break;
case _invokestatic_mh:
case _invokespecial_mh:
{
__ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop
__ verify_oop(G5_method);
// Same as TemplateTable::invokestatic or invokespecial,
// minus the CP setup and profiling:
if (ek == _invokespecial_mh) {
// Must load & check the first argument before entering the target method.
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ld_ptr(__ argument_address(O0_argslot), G3_method_handle);
__ null_check(G3_method_handle);
__ verify_oop(G3_method_handle);
}
__ jump_indirect_to(G5_method_fie, O1_scratch);
__ delayed()->nop();
}
break;
case _invokevirtual_mh:
{
// Same as TemplateTable::invokevirtual,
// minus the CP setup and profiling:
// Pick out the vtable index and receiver offset from the MH,
// and then we can discard it:
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ldsw(G3_dmh_vmindex, G5_index);
// Note: The verifier allows us to ignore G3_mh_vmtarget.
__ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
// Get receiver klass:
Register O0_klass = O0_argslot;
__ load_klass(G3_method_handle, O0_klass);
__ verify_oop(O0_klass);
// Get target methodOop & entry point:
const int base = instanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
__ sll_ptr(G5_index, LogBytesPerWord, G5_index);
__ add(O0_klass, G5_index, O0_klass);
Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
__ ld_ptr(vtable_entry_addr, G5_method);
__ verify_oop(G5_method);
__ jump_indirect_to(G5_method_fie, O1_scratch);
__ delayed()->nop();
}
break;
case _invokeinterface_mh:
{
// Same as TemplateTable::invokeinterface,
// minus the CP setup and profiling:
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
Register O1_intf = O1_scratch;
__ load_heap_oop(G3_mh_vmtarget, O1_intf);
__ ldsw(G3_dmh_vmindex, G5_index);
__ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
// Get receiver klass:
Register O0_klass = O0_argslot;
__ load_klass(G3_method_handle, O0_klass);
__ verify_oop(O0_klass);
// Get interface:
Label no_such_interface;
__ verify_oop(O1_intf);
__ lookup_interface_method(O0_klass, O1_intf,
// Note: next two args must be the same:
G5_index, G5_method,
O2_scratch,
O3_scratch,
no_such_interface);
__ verify_oop(G5_method);
__ jump_indirect_to(G5_method_fie, O1_scratch);
__ delayed()->nop();
__ bind(no_such_interface);
// Throw an exception.
// For historical reasons, it will be IncompatibleClassChangeError.
__ unimplemented("not tested yet");
__ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required); // required interface
__ mov( O0_klass, O1_actual); // bad receiver
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_invokeinterface, O0_code); // who is complaining?
}
break;
case _bound_ref_mh:
case _bound_int_mh:
case _bound_long_mh:
case _bound_ref_direct_mh:
case _bound_int_direct_mh:
case _bound_long_direct_mh:
{
const bool direct_to_method = (ek >= _bound_ref_direct_mh);
BasicType arg_type = T_ILLEGAL;
int arg_mask = _INSERT_NO_MASK;
int arg_slots = -1;
get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
// Make room for the new argument:
__ ldsw(G3_bmh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, O0_argslot, O1_scratch, O2_scratch, G5_index);
// Store bound argument into the new stack slot:
__ load_heap_oop(G3_bmh_argument, O1_scratch);
if (arg_type == T_OBJECT) {
__ st_ptr(O1_scratch, Address(O0_argslot, 0));
} else {
Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
__ load_sized_value(prim_value_addr, O2_scratch, type2aelembytes(arg_type), is_signed_subword_type(arg_type));
if (arg_slots == 2) {
__ unimplemented("not yet tested");
#ifndef _LP64
__ signx(O2_scratch, O3_scratch); // Sign extend
#endif
__ st_long(O2_scratch, Address(O0_argslot, 0)); // Uses O2/O3 on !_LP64
} else {
__ st_ptr( O2_scratch, Address(O0_argslot, 0));
}
}
if (direct_to_method) {
__ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop
__ verify_oop(G5_method);
__ jump_indirect_to(G5_method_fie, O1_scratch);
__ delayed()->nop();
} else {
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle); // target is a methodOop
__ verify_oop(G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
}
break;
case _adapter_retype_only:
case _adapter_retype_raw:
// Immediately jump to the next MH layer:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
// This is OK when all parameter types widen.
// It is also OK when a return type narrows.
break;
case _adapter_check_cast:
{
// Temps:
Register G5_klass = G5_index; // Interesting AMH data.
// Check a reference argument before jumping to the next layer of MH:
__ ldsw(G3_amh_vmargslot, O0_argslot);
Address vmarg = __ argument_address(O0_argslot);
// What class are we casting to?
__ load_heap_oop(G3_amh_argument, G5_klass); // This is a Class object!
__ load_heap_oop(Address(G5_klass, java_lang_Class::klass_offset_in_bytes()), G5_klass);
Label done;
__ ld_ptr(vmarg, O1_scratch);
__ tst(O1_scratch);
__ brx(Assembler::zero, false, Assembler::pn, done); // No cast if null.
__ delayed()->nop();
__ load_klass(O1_scratch, O1_scratch);
// Live at this point:
// - G5_klass : klass required by the target method
// - O1_scratch : argument klass to test
// - G3_method_handle: adapter method handle
__ check_klass_subtype(O1_scratch, G5_klass, O0_argslot, O2_scratch, done);
// If we get here, the type check failed!
__ load_heap_oop(G3_amh_argument, O2_required); // required class
__ ld_ptr( vmarg, O1_actual); // bad object
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_checkcast, O0_code); // who is complaining?
__ bind(done);
// Get the new MH:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_prim_to_prim:
case _adapter_ref_to_prim:
// Handled completely by optimized cases.
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim
{
// Perform an in-place conversion to int or an int subword.
__ ldsw(G3_amh_vmargslot, O0_argslot);
Address value;
Address vmarg = __ argument_address(O0_argslot);
bool value_left_justified = false;
switch (ek) {
case _adapter_opt_i2i:
value = vmarg;
break;
case _adapter_opt_l2i:
{
// just delete the extra slot
#ifdef _LP64
// In V9, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
// Keep the second slot.
__ add(Gargs, __ argument_offset(O0_argslot, -1), O0_argslot);
remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
value = Address(O0_argslot, 4); // Get least-significant 32-bit of 64-bit value.
vmarg = Address(O0_argslot, Interpreter::stackElementSize);
#else
// Keep the first slot.
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
value = Address(O0_argslot, 0);
vmarg = value;
#endif
}
break;
case _adapter_opt_unboxi:
{
// Load the value up from the heap.
__ ld_ptr(vmarg, O1_scratch);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)))
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
}
#endif
__ null_check(O1_scratch, value_offset);
value = Address(O1_scratch, value_offset);
#ifdef _BIG_ENDIAN
// Values stored in objects are packed.
value_left_justified = true;
#endif
}
break;
default:
ShouldNotReachHere();
}
// This check is required on _BIG_ENDIAN
Register G5_vminfo = G5_index;
__ ldsw(G3_amh_conversion, G5_vminfo);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
// Original 32-bit vmdata word must be of this form:
// | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
__ lduw(value, O1_scratch);
if (!value_left_justified)
__ sll(O1_scratch, G5_vminfo, O1_scratch);
Label zero_extend, done;
__ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
__ br(Assembler::zero, false, Assembler::pn, zero_extend);
__ delayed()->nop();
// this path is taken for int->byte, int->short
__ sra(O1_scratch, G5_vminfo, O1_scratch);
__ ba(false, done);
__ delayed()->nop();
__ bind(zero_extend);
// this is taken for int->char
__ srl(O1_scratch, G5_vminfo, O1_scratch);
__ bind(done);
__ st(O1_scratch, vmarg);
// Get the new MH:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim
{
// Perform an in-place int-to-long or ref-to-long conversion.
__ ldsw(G3_amh_vmargslot, O0_argslot);
// On big-endian machine we duplicate the slot and store the MSW
// in the first slot.
__ add(Gargs, __ argument_offset(O0_argslot, 1), O0_argslot);
insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, O0_argslot, O1_scratch, O2_scratch, G5_index);
Address arg_lsw(O0_argslot, 0);
Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
switch (ek) {
case _adapter_opt_i2l:
{
__ ldsw(arg_lsw, O2_scratch); // Load LSW
#ifndef _LP64
__ signx(O2_scratch, O3_scratch); // Sign extend
#endif
__ st_long(O2_scratch, arg_msw); // Uses O2/O3 on !_LP64
}
break;
case _adapter_opt_unboxl:
{
// Load the value up from the heap.
__ ld_ptr(arg_lsw, O1_scratch);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
__ null_check(O1_scratch, value_offset);
__ ld_long(Address(O1_scratch, value_offset), O2_scratch); // Uses O2/O3 on !_LP64
__ st_long(O2_scratch, arg_msw);
}
break;
default:
ShouldNotReachHere();
}
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim
{
// perform an in-place floating primitive conversion
__ unimplemented(entry_name(ek));
}
break;
case _adapter_prim_to_ref:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
case _adapter_swap_args:
case _adapter_rot_args:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_swap_1:
case _adapter_opt_swap_2:
case _adapter_opt_rot_1_up:
case _adapter_opt_rot_1_down:
case _adapter_opt_rot_2_up:
case _adapter_opt_rot_2_down:
{
int swap_bytes = 0, rotate = 0;
get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
// 'argslot' is the position of the first argument to swap.
__ ldsw(G3_amh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
// 'vminfo' is the second.
Register O1_destslot = O1_scratch;
__ ldsw(G3_amh_conversion, O1_destslot);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
__ and3(O1_destslot, CONV_VMINFO_MASK, O1_destslot);
__ add(Gargs, __ argument_offset(O1_destslot), O1_destslot);
if (!rotate) {
for (int i = 0; i < swap_bytes; i += wordSize) {
__ ld_ptr(Address(O0_argslot, i), O2_scratch);
__ ld_ptr(Address(O1_destslot, i), O3_scratch);
__ st_ptr(O3_scratch, Address(O0_argslot, i));
__ st_ptr(O2_scratch, Address(O1_destslot, i));
}
} else {
// Save the first chunk, which is going to get overwritten.
switch (swap_bytes) {
case 4 : __ lduw(Address(O0_argslot, 0), O2_scratch); break;
case 16: __ ldx( Address(O0_argslot, 8), O3_scratch); //fall-thru
case 8 : __ ldx( Address(O0_argslot, 0), O2_scratch); break;
default: ShouldNotReachHere();
}
if (rotate > 0) {
// Rorate upward.
__ sub(O0_argslot, swap_bytes, O0_argslot);
#if ASSERT
{
// Verify that argslot > destslot, by at least swap_bytes.
Label L_ok;
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("source must be above destination (upward rotation)");
__ bind(L_ok);
}
#endif
// Work argslot down to destslot, copying contiguous data upwards.
// Pseudo-code:
// argslot = src_addr - swap_bytes
// destslot = dest_addr
// while (argslot >= destslot) {
// *(argslot + swap_bytes) = *(argslot + 0);
// argslot--;
// }
Label loop;
__ bind(loop);
__ ld_ptr(Address(O0_argslot, 0), G5_index);
__ st_ptr(G5_index, Address(O0_argslot, swap_bytes));
__ sub(O0_argslot, wordSize, O0_argslot);
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
} else {
__ add(O0_argslot, swap_bytes, O0_argslot);
#if ASSERT
{
// Verify that argslot < destslot, by at least swap_bytes.
Label L_ok;
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("source must be above destination (upward rotation)");
__ bind(L_ok);
}
#endif
// Work argslot up to destslot, copying contiguous data downwards.
// Pseudo-code:
// argslot = src_addr + swap_bytes
// destslot = dest_addr
// while (argslot >= destslot) {
// *(argslot - swap_bytes) = *(argslot + 0);
// argslot++;
// }
Label loop;
__ bind(loop);
__ ld_ptr(Address(O0_argslot, 0), G5_index);
__ st_ptr(G5_index, Address(O0_argslot, -swap_bytes));
__ add(O0_argslot, wordSize, O0_argslot);
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
}
// Store the original first chunk into the destination slot, now free.
switch (swap_bytes) {
case 4 : __ stw(O2_scratch, Address(O1_destslot, 0)); break;
case 16: __ stx(O3_scratch, Address(O1_destslot, 8)); // fall-thru
case 8 : __ stx(O2_scratch, Address(O1_destslot, 0)); break;
default: ShouldNotReachHere();
}
}
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_dup_args:
{
// 'argslot' is the position of the first argument to duplicate.
__ ldsw(G3_amh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
// 'stack_move' is negative number of words to duplicate.
Register G5_stack_move = G5_index;
__ ldsw(G3_amh_conversion, G5_stack_move);
__ sra(G5_stack_move, CONV_STACK_MOVE_SHIFT, G5_stack_move);
// Remember the old Gargs (argslot[0]).
Register O1_oldarg = O1_scratch;
__ mov(Gargs, O1_oldarg);
// Move Gargs down to make room for dups.
__ sll_ptr(G5_stack_move, LogBytesPerWord, G5_stack_move);
__ add(Gargs, G5_stack_move, Gargs);
// Compute the new Gargs (argslot[0]).
Register O2_newarg = O2_scratch;
__ mov(Gargs, O2_newarg);
// Copy from oldarg[0...] down to newarg[0...]
// Pseude-code:
// O1_oldarg = old-Gargs
// O2_newarg = new-Gargs
// O0_argslot = argslot
// while (O2_newarg < O1_oldarg) *O2_newarg = *O0_argslot++
Label loop;
__ bind(loop);
__ ld_ptr(Address(O0_argslot, 0), O3_scratch);
__ st_ptr(O3_scratch, Address(O2_newarg, 0));
__ add(O0_argslot, wordSize, O0_argslot);
__ add(O2_newarg, wordSize, O2_newarg);
__ cmp(O2_newarg, O1_oldarg);
__ brx(Assembler::less, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_drop_args:
{
// 'argslot' is the position of the first argument to nuke.
__ ldsw(G3_amh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
// 'stack_move' is number of words to drop.
Register G5_stack_move = G5_index;
__ ldsw(G3_amh_conversion, G5_stack_move);
__ sra(G5_stack_move, CONV_STACK_MOVE_SHIFT, G5_stack_move);
remove_arg_slots(_masm, G5_stack_move, O0_argslot, O1_scratch, O2_scratch, O3_scratch);
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_collect_args:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
case _adapter_spread_args:
// Handled completely by optimized cases.
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_spread_0:
case _adapter_opt_spread_1:
case _adapter_opt_spread_more:
{
// spread an array out into a group of arguments
__ unimplemented(entry_name(ek));
}
break;
case _adapter_flyby:
case _adapter_ricochet:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
default:
ShouldNotReachHere();
}
address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}