blob: 761bd0c6c0eb11048ff304b075c93fc1b5118caa [file] [log] [blame]
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/macroAssembler.inline.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compressedOops.hpp"
#include "runtime/java.hpp"
#include "runtime/os.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/vm_version.hpp"
#include <sys/mman.h>
uint VM_Version::_L2_data_cache_line_size = 0;
void VM_Version::initialize() {
assert(_features != 0, "System pre-initialization is not complete.");
guarantee(VM_Version::has_v9(), "only SPARC v9 is supported");
PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
PrefetchFieldsAhead = prefetch_fields_ahead();
// Allocation prefetch settings
AllocatePrefetchDistance = allocate_prefetch_distance();
AllocatePrefetchStyle = allocate_prefetch_style();
intx cache_line_size = prefetch_data_size();
if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize)) {
AllocatePrefetchStepSize = MAX2(AllocatePrefetchStepSize, cache_line_size);
}
if (AllocatePrefetchInstr == 1) {
if (!has_blk_init()) {
warning("BIS instructions required for AllocatePrefetchInstr 1 unavailable");
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
}
if (cache_line_size <= 0) {
warning("Cache-line size must be known for AllocatePrefetchInstr 1 to work");
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
}
}
UseSSE = false; // Only used on x86 and x64.
_supports_cx8 = true; // All SPARC V9 implementations.
_supports_atomic_getset4 = true; // Using the 'swap' instruction.
if (has_fast_ind_br() && FLAG_IS_DEFAULT(UseInlineCaches)) {
// Indirect and direct branches are cost equivalent.
FLAG_SET_DEFAULT(UseInlineCaches, false);
}
// Align loops on the proper instruction boundary to fill the instruction
// fetch buffer.
if (FLAG_IS_DEFAULT(OptoLoopAlignment)) {
FLAG_SET_DEFAULT(OptoLoopAlignment, VM_Version::insn_fetch_alignment);
}
// 32-bit oops don't make sense for the 64-bit VM on SPARC since the 32-bit
// VM has the same registers and smaller objects.
CompressedOops::set_shift(LogMinObjAlignmentInBytes);
CompressedKlassPointers::set_shift(LogKlassAlignmentInBytes);
#ifdef COMPILER2
if (has_fast_ind_br() && FLAG_IS_DEFAULT(UseJumpTables)) {
// Indirect and direct branches are cost equivalent.
FLAG_SET_DEFAULT(UseJumpTables, true);
}
// Entry and loop tops are aligned to fill the instruction fetch buffer.
if (FLAG_IS_DEFAULT(InteriorEntryAlignment)) {
FLAG_SET_DEFAULT(InteriorEntryAlignment, VM_Version::insn_fetch_alignment);
}
if (UseTLAB && cache_line_size > 0 &&
FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
if (has_fast_bis()) {
// Use BIS instruction for TLAB allocation prefetch.
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 1);
}
else if (has_sparc5()) {
// Use prefetch instruction to avoid partial RAW issue on Core C4 processors,
// also use prefetch style 3.
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 3);
}
}
}
if (AllocatePrefetchInstr == 1) {
// Use allocation prefetch style 3 because BIS instructions require
// aligned memory addresses.
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 3);
}
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
if (AllocatePrefetchInstr == 0) {
// Use different prefetch distance without BIS
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 256);
} else {
// Use smaller prefetch distance with BIS
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 64);
}
}
// We increase the number of prefetched cache lines, to use just a bit more
// aggressive approach, when the L2-cache line size is small (32 bytes), or
// when running on newer processor implementations, such as the Core C4.
bool inc_prefetch = cache_line_size > 0 && (cache_line_size < 64 || has_sparc5());
if (inc_prefetch) {
// We use a factor two for small cache line sizes (as before) but a slightly
// more conservative increase when running on more recent hardware that will
// benefit from just a bit more aggressive prefetching.
if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) {
const int ap_lns = AllocatePrefetchLines;
const int ap_inc = cache_line_size < 64 ? ap_lns : (ap_lns + 1) / 2;
FLAG_SET_ERGO(AllocatePrefetchLines, ap_lns + ap_inc);
}
if (FLAG_IS_DEFAULT(AllocateInstancePrefetchLines)) {
const int ip_lns = AllocateInstancePrefetchLines;
const int ip_inc = cache_line_size < 64 ? ip_lns : (ip_lns + 1) / 2;
FLAG_SET_ERGO(AllocateInstancePrefetchLines, ip_lns + ip_inc);
}
}
#endif /* COMPILER2 */
// Use hardware population count instruction if available.
if (has_popc()) {
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
FLAG_SET_DEFAULT(UsePopCountInstruction, true);
}
} else if (UsePopCountInstruction) {
warning("POPC instruction is not available on this CPU");
FLAG_SET_DEFAULT(UsePopCountInstruction, false);
}
// Use compare and branch instructions if available.
if (has_cbcond()) {
if (FLAG_IS_DEFAULT(UseCBCond)) {
FLAG_SET_DEFAULT(UseCBCond, true);
}
} else if (UseCBCond) {
warning("CBCOND instruction is not available on this CPU");
FLAG_SET_DEFAULT(UseCBCond, false);
}
// Use 'mpmul' instruction if available.
if (has_mpmul()) {
if (FLAG_IS_DEFAULT(UseMPMUL)) {
FLAG_SET_DEFAULT(UseMPMUL, true);
}
} else if (UseMPMUL) {
warning("MPMUL instruction is not available on this CPU");
FLAG_SET_DEFAULT(UseMPMUL, false);
}
assert(BlockZeroingLowLimit > 0, "invalid value");
if (has_blk_zeroing() && cache_line_size > 0) {
if (FLAG_IS_DEFAULT(UseBlockZeroing)) {
FLAG_SET_DEFAULT(UseBlockZeroing, true);
}
} else if (UseBlockZeroing) {
warning("BIS zeroing instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseBlockZeroing, false);
}
assert(BlockCopyLowLimit > 0, "invalid value");
if (has_blk_zeroing() && cache_line_size > 0) {
if (FLAG_IS_DEFAULT(UseBlockCopy)) {
FLAG_SET_DEFAULT(UseBlockCopy, true);
}
} else if (UseBlockCopy) {
warning("BIS instructions are not available or expensive on this CPU");
FLAG_SET_DEFAULT(UseBlockCopy, false);
}
#ifdef COMPILER2
if (has_fast_rdpc() && FLAG_IS_DEFAULT(UseRDPCForConstantTableBase)) {
FLAG_SET_DEFAULT(UseRDPCForConstantTableBase, true);
}
// Currently not supported anywhere.
FLAG_SET_DEFAULT(UseFPUForSpilling, false);
MaxVectorSize = 8;
assert((InteriorEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size");
#endif
assert((CodeEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size");
assert((OptoLoopAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size");
char buf[512];
jio_snprintf(buf, sizeof(buf),
"%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s"
"%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s"
"%s%s%s%s%s%s%s",
(has_v9() ? "v9" : ""),
(has_popc() ? ", popc" : ""),
(has_vis1() ? ", vis1" : ""),
(has_vis2() ? ", vis2" : ""),
(has_blk_init() ? ", blk_init" : ""),
(has_fmaf() ? ", fmaf" : ""),
(has_hpc() ? ", hpc" : ""),
(has_ima() ? ", ima" : ""),
(has_aes() ? ", aes" : ""),
(has_des() ? ", des" : ""),
(has_kasumi() ? ", kas" : ""),
(has_camellia() ? ", cam" : ""),
(has_md5() ? ", md5" : ""),
(has_sha1() ? ", sha1" : ""),
(has_sha256() ? ", sha256" : ""),
(has_sha512() ? ", sha512" : ""),
(has_mpmul() ? ", mpmul" : ""),
(has_mont() ? ", mont" : ""),
(has_pause() ? ", pause" : ""),
(has_cbcond() ? ", cbcond" : ""),
(has_crc32c() ? ", crc32c" : ""),
(has_athena_plus() ? ", athena_plus" : ""),
(has_vis3b() ? ", vis3b" : ""),
(has_adi() ? ", adi" : ""),
(has_sparc5() ? ", sparc5" : ""),
(has_mwait() ? ", mwait" : ""),
(has_xmpmul() ? ", xmpmul" : ""),
(has_xmont() ? ", xmont" : ""),
(has_pause_nsec() ? ", pause_nsec" : ""),
(has_vamask() ? ", vamask" : ""),
(has_sparc6() ? ", sparc6" : ""),
(has_dictunp() ? ", dictunp" : ""),
(has_fpcmpshl() ? ", fpcmpshl" : ""),
(has_rle() ? ", rle" : ""),
(has_sha3() ? ", sha3" : ""),
(has_athena_plus2()? ", athena_plus2" : ""),
(has_vis3c() ? ", vis3c" : ""),
(has_sparc5b() ? ", sparc5b" : ""),
(has_mme() ? ", mme" : ""),
(has_fast_idiv() ? ", *idiv" : ""),
(has_fast_rdpc() ? ", *rdpc" : ""),
(has_fast_bis() ? ", *bis" : ""),
(has_fast_ld() ? ", *ld" : ""),
(has_fast_cmove() ? ", *cmove" : ""),
(has_fast_ind_br() ? ", *ind_br" : ""),
(has_blk_zeroing() ? ", *blk_zeroing" : ""));
assert(strlen(buf) >= 2, "must be");
_features_string = os::strdup(buf);
log_info(os, cpu)("SPARC features detected: %s", _features_string);
// UseVIS is set to the smallest of what hardware supports and what the command
// line requires, i.e. you cannot set UseVIS to 3 on older UltraSparc which do
// not support it.
if (UseVIS > 3) UseVIS = 3;
if (UseVIS < 0) UseVIS = 0;
if (!has_vis3()) // Drop to 2 if no VIS3 support
UseVIS = MIN2((intx)2, UseVIS);
if (!has_vis2()) // Drop to 1 if no VIS2 support
UseVIS = MIN2((intx)1, UseVIS);
if (!has_vis1()) // Drop to 0 if no VIS1 support
UseVIS = 0;
if (has_aes()) {
if (FLAG_IS_DEFAULT(UseAES)) {
FLAG_SET_DEFAULT(UseAES, true);
}
if (!UseAES) {
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
}
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
} else {
// The AES intrinsic stubs require AES instruction support (of course)
// but also require VIS3 mode or higher for instructions it use.
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
}
} else {
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("SPARC AES intrinsics require VIS3 instructions. Intrinsics will be disabled.");
}
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
} else if (UseAES || UseAESIntrinsics) {
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
// GHASH/GCM intrinsics
if (has_vis3() && (UseVIS > 2)) {
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
UseGHASHIntrinsics = true;
}
} else if (UseGHASHIntrinsics) {
if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
warning("GHASH intrinsics require VIS3 instruction support. Intrinsics will be disabled");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (has_fmaf()) {
if (FLAG_IS_DEFAULT(UseFMA)) {
UseFMA = true;
}
} else if (UseFMA) {
warning("FMA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseFMA, false);
}
// SHA1, SHA256, and SHA512 instructions were added to SPARC at different times
if (has_sha1() || has_sha256() || has_sha512()) {
if (UseVIS > 0) { // SHA intrinsics use VIS1 instructions
if (FLAG_IS_DEFAULT(UseSHA)) {
FLAG_SET_DEFAULT(UseSHA, true);
}
} else {
if (UseSHA) {
warning("SPARC SHA intrinsics require VIS1 instruction support. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseSHA, false);
}
}
} else if (UseSHA) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA && has_sha1()) {
if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
}
} else if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA && has_sha256()) {
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
}
} else if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA && has_sha512()) {
if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
}
} else if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA, false);
}
if (has_crc32c()) {
if (UseVIS > 2) { // CRC32C intrinsics use VIS3 instructions
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true);
}
} else {
if (UseCRC32CIntrinsics) {
warning("SPARC CRC32C intrinsics require VIS3 instruction support. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
}
} else if (UseCRC32CIntrinsics) {
warning("CRC32C instruction is not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
FLAG_SET_DEFAULT(UseAdler32Intrinsics, true);
}
} else if (UseAdler32Intrinsics) {
warning("SPARC Adler32 intrinsics require VIS3 instruction support. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
FLAG_SET_DEFAULT(UseCRC32Intrinsics, true);
}
} else if (UseCRC32Intrinsics) {
warning("SPARC CRC32 intrinsics require VIS3 instructions support. Intrinsics will be disabled");
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
}
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, true);
}
} else if (UseMultiplyToLenIntrinsic) {
warning("SPARC multiplyToLen intrinsics require VIS3 instructions support. Intrinsics will be disabled");
FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
}
if (UseVectorizedMismatchIntrinsic) {
warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
(cache_line_size > ContendedPaddingWidth))
ContendedPaddingWidth = cache_line_size;
// This machine does not allow unaligned memory accesses
if (UseUnalignedAccesses) {
if (!FLAG_IS_DEFAULT(UseUnalignedAccesses))
warning("Unaligned memory access is not available on this CPU");
FLAG_SET_DEFAULT(UseUnalignedAccesses, false);
}
if (log_is_enabled(Info, os, cpu)) {
ResourceMark rm;
LogStream ls(Log(os, cpu)::info());
outputStream* log = &ls;
log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
log->print_cr("L2 data cache line size: %u", L2_data_cache_line_size());
log->print("Allocation");
if (AllocatePrefetchStyle <= 0) {
log->print(": no prefetching");
} else {
log->print(" prefetching: ");
if (AllocatePrefetchInstr == 0) {
log->print("PREFETCH");
} else if (AllocatePrefetchInstr == 1) {
log->print("BIS");
}
if (AllocatePrefetchLines > 1) {
log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
} else {
log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
}
}
if (PrefetchCopyIntervalInBytes > 0) {
log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
}
if (PrefetchScanIntervalInBytes > 0) {
log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
}
if (PrefetchFieldsAhead > 0) {
log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
}
if (ContendedPaddingWidth > 0) {
log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
}
}
}
void VM_Version::print_features() {
tty->print("ISA features [0x%0" PRIx64 "]:", _features);
if (_features_string != NULL) {
tty->print(" %s", _features_string);
}
tty->cr();
}
void VM_Version::determine_features() {
platform_features(); // platform_features() is os_arch specific.
assert(has_v9(), "must be");
if (UseNiagaraInstrs) { // Limit code generation to Niagara.
_features &= niagara1_msk;
}
}
static uint64_t saved_features = 0;
void VM_Version::allow_all() {
saved_features = _features;
_features = full_feature_msk;
}
void VM_Version::revert() {
_features = saved_features;
}