blob: 59da743016f40d09ab7c76ce2d16b1e9132598d9 [file] [log] [blame]
/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_S390_REGISTER_S390_HPP
#define CPU_S390_REGISTER_S390_HPP
#include "asm/register.hpp"
#include "runtime/vm_version.hpp"
class Address;
class VMRegImpl;
typedef VMRegImpl* VMReg;
// z/Architecture registers, see "LINUX for zSeries ELF ABI Supplement", IBM March 2001
//
// r0-r1 General purpose (volatile)
// r2 Parameter and return value (volatile)
// r3 TOC pointer (volatile)
// r3-r5 Parameters (volatile)
// r6 Parameter (nonvolatile)
// r7-r11 Locals (nonvolatile)
// r12 Local, often used as GOT pointer (nonvolatile)
// r13 Local, often used as toc (nonvolatile)
// r14 return address (volatile)
// r15 stack pointer (nonvolatile)
//
// f0,f2,f4,f6 Parameters (volatile)
// f1,f3,f5,f7 General purpose (volatile)
// f8-f15 General purpose (nonvolatile)
//===========================
//=== Integer Registers ===
//===========================
// Use Register as shortcut.
class RegisterImpl;
typedef RegisterImpl* Register;
// The implementation of integer registers for z/Architecture.
inline Register as_Register(int encoding) {
return (Register)(long)encoding;
}
class RegisterImpl: public AbstractRegisterImpl {
public:
enum {
number_of_registers = 16,
number_of_arg_registers = 5
};
// general construction
inline friend Register as_Register(int encoding);
inline VMReg as_VMReg();
// accessors
int encoding() const { assert(is_valid(), "invalid register"); return value(); }
const char* name() const;
// testers
bool is_valid() const { return (0 <= (value()&0x7F) && (value()&0x7F) < number_of_registers); }
bool is_even() const { return (encoding() & 1) == 0; }
bool is_volatile() const { return (0 <= (value()&0x7F) && (value()&0x7F) <= 5) || (value()&0x7F)==14; }
bool is_nonvolatile() const { return is_valid() && !is_volatile(); }
public:
// derived registers, offsets, and addresses
Register predecessor() const { return as_Register((encoding()-1) & (number_of_registers-1)); }
Register successor() const { return as_Register((encoding() + 1) & (number_of_registers-1)); }
};
// The integer registers of the z/Architecture.
CONSTANT_REGISTER_DECLARATION(Register, noreg, (-1));
CONSTANT_REGISTER_DECLARATION(Register, Z_R0, (0));
CONSTANT_REGISTER_DECLARATION(Register, Z_R1, (1));
CONSTANT_REGISTER_DECLARATION(Register, Z_R2, (2));
CONSTANT_REGISTER_DECLARATION(Register, Z_R3, (3));
CONSTANT_REGISTER_DECLARATION(Register, Z_R4, (4));
CONSTANT_REGISTER_DECLARATION(Register, Z_R5, (5));
CONSTANT_REGISTER_DECLARATION(Register, Z_R6, (6));
CONSTANT_REGISTER_DECLARATION(Register, Z_R7, (7));
CONSTANT_REGISTER_DECLARATION(Register, Z_R8, (8));
CONSTANT_REGISTER_DECLARATION(Register, Z_R9, (9));
CONSTANT_REGISTER_DECLARATION(Register, Z_R10, (10));
CONSTANT_REGISTER_DECLARATION(Register, Z_R11, (11));
CONSTANT_REGISTER_DECLARATION(Register, Z_R12, (12));
CONSTANT_REGISTER_DECLARATION(Register, Z_R13, (13));
CONSTANT_REGISTER_DECLARATION(Register, Z_R14, (14));
CONSTANT_REGISTER_DECLARATION(Register, Z_R15, (15));
//=============================
//=== Condition Registers ===
//=============================
// Use ConditionRegister as shortcut
class ConditionRegisterImpl;
typedef ConditionRegisterImpl* ConditionRegister;
// The implementation of condition register(s) for the z/Architecture.
class ConditionRegisterImpl: public AbstractRegisterImpl {
public:
enum {
number_of_registers = 1
};
// accessors
int encoding() const {
assert(is_valid(), "invalid register"); return value();
}
// testers
bool is_valid() const {
return (0 <= value() && value() < number_of_registers);
}
bool is_volatile() const {
return true;
}
bool is_nonvolatile() const {
return false;
}
// construction.
inline friend ConditionRegister as_ConditionRegister(int encoding);
inline VMReg as_VMReg();
};
inline ConditionRegister as_ConditionRegister(int encoding) {
assert(encoding >= 0 && encoding < ConditionRegisterImpl::number_of_registers, "bad condition register encoding");
return (ConditionRegister)(long)encoding;
}
// The condition register of the z/Architecture.
CONSTANT_REGISTER_DECLARATION(ConditionRegister, Z_CR, (0));
// Because z/Architecture has so many registers, #define'ing values for them is
// beneficial in code size and is worth the cost of some of the
// dangers of defines.
// If a particular file has a problem with these defines then it's possible
// to turn them off in that file by defining
// DONT_USE_REGISTER_DEFINES. Register_definitions_s390.cpp does that
// so that it's able to provide real definitions of these registers
// for use in debuggers and such.
#ifndef DONT_USE_REGISTER_DEFINES
#define noreg ((Register)(noreg_RegisterEnumValue))
#define Z_R0 ((Register)(Z_R0_RegisterEnumValue))
#define Z_R1 ((Register)(Z_R1_RegisterEnumValue))
#define Z_R2 ((Register)(Z_R2_RegisterEnumValue))
#define Z_R3 ((Register)(Z_R3_RegisterEnumValue))
#define Z_R4 ((Register)(Z_R4_RegisterEnumValue))
#define Z_R5 ((Register)(Z_R5_RegisterEnumValue))
#define Z_R6 ((Register)(Z_R6_RegisterEnumValue))
#define Z_R7 ((Register)(Z_R7_RegisterEnumValue))
#define Z_R8 ((Register)(Z_R8_RegisterEnumValue))
#define Z_R9 ((Register)(Z_R9_RegisterEnumValue))
#define Z_R10 ((Register)(Z_R10_RegisterEnumValue))
#define Z_R11 ((Register)(Z_R11_RegisterEnumValue))
#define Z_R12 ((Register)(Z_R12_RegisterEnumValue))
#define Z_R13 ((Register)(Z_R13_RegisterEnumValue))
#define Z_R14 ((Register)(Z_R14_RegisterEnumValue))
#define Z_R15 ((Register)(Z_R15_RegisterEnumValue))
#define Z_CR ((ConditionRegister)(Z_CR_ConditionRegisterEnumValue))
#endif // DONT_USE_REGISTER_DEFINES
//=========================
//=== Float Registers ===
//=========================
// Use FloatRegister as shortcut
class FloatRegisterImpl;
typedef FloatRegisterImpl* FloatRegister;
// The implementation of float registers for the z/Architecture.
inline FloatRegister as_FloatRegister(int encoding) {
return (FloatRegister)(long)encoding;
}
class FloatRegisterImpl: public AbstractRegisterImpl {
public:
enum {
number_of_registers = 16,
number_of_arg_registers = 4
};
// construction
inline friend FloatRegister as_FloatRegister(int encoding);
inline VMReg as_VMReg();
// accessors
int encoding() const {
assert(is_valid(), "invalid register"); return value();
}
bool is_valid() const { return 0 <= value() && value() < number_of_registers; }
bool is_volatile() const { return (0 <= (value()&0x7F) && (value()&0x7F) <= 7); }
bool is_nonvolatile() const { return (8 <= (value()&0x7F) && (value()&0x7F) <= 15); }
const char* name() const;
FloatRegister successor() const { return as_FloatRegister(encoding() + 1); }
};
// The float registers of z/Architecture.
CONSTANT_REGISTER_DECLARATION(FloatRegister, fnoreg, (-1));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F0, (0));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F1, (1));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F2, (2));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F3, (3));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F4, (4));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F5, (5));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F6, (6));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F7, (7));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F8, (8));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F9, (9));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F10, (10));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F11, (11));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F12, (12));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F13, (13));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F14, (14));
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F15, (15));
#ifndef DONT_USE_REGISTER_DEFINES
#define fnoreg ((FloatRegister)(fnoreg_FloatRegisterEnumValue))
#define Z_F0 ((FloatRegister)( Z_F0_FloatRegisterEnumValue))
#define Z_F1 ((FloatRegister)( Z_F1_FloatRegisterEnumValue))
#define Z_F2 ((FloatRegister)( Z_F2_FloatRegisterEnumValue))
#define Z_F3 ((FloatRegister)( Z_F3_FloatRegisterEnumValue))
#define Z_F4 ((FloatRegister)( Z_F4_FloatRegisterEnumValue))
#define Z_F5 ((FloatRegister)( Z_F5_FloatRegisterEnumValue))
#define Z_F6 ((FloatRegister)( Z_F6_FloatRegisterEnumValue))
#define Z_F7 ((FloatRegister)( Z_F7_FloatRegisterEnumValue))
#define Z_F8 ((FloatRegister)( Z_F8_FloatRegisterEnumValue))
#define Z_F9 ((FloatRegister)( Z_F9_FloatRegisterEnumValue))
#define Z_F10 ((FloatRegister)( Z_F10_FloatRegisterEnumValue))
#define Z_F11 ((FloatRegister)( Z_F11_FloatRegisterEnumValue))
#define Z_F12 ((FloatRegister)( Z_F12_FloatRegisterEnumValue))
#define Z_F13 ((FloatRegister)( Z_F13_FloatRegisterEnumValue))
#define Z_F14 ((FloatRegister)( Z_F14_FloatRegisterEnumValue))
#define Z_F15 ((FloatRegister)( Z_F15_FloatRegisterEnumValue))
#endif // DONT_USE_REGISTER_DEFINES
// Single, Double and Quad fp reg classes. These exist to map the ADLC
// encoding for a floating point register, to the FloatRegister number
// desired by the macroassembler. A FloatRegister is a number between
// 0 and 31 passed around as a pointer. For ADLC, an fp register encoding
// is the actual bit encoding used by the z/Architecture hardware. When ADLC used
// the macroassembler to generate an instruction that references, e.g., a
// double fp reg, it passed the bit encoding to the macroassembler via
// as_FloatRegister, which, for double regs > 30, returns an illegal
// register number.
//
// Therefore we provide the following classes for use by ADLC. Their
// sole purpose is to convert from z/Architecture register encodings to FloatRegisters.
// At some future time, we might replace FloatRegister with these classes,
// hence the definitions of as_xxxFloatRegister as class methods rather
// than as external inline routines.
class SingleFloatRegisterImpl;
typedef SingleFloatRegisterImpl *SingleFloatRegister;
class SingleFloatRegisterImpl {
public:
friend FloatRegister as_SingleFloatRegister(int encoding) {
assert(encoding < 32, "bad single float register encoding");
return as_FloatRegister(encoding);
}
};
class DoubleFloatRegisterImpl;
typedef DoubleFloatRegisterImpl *DoubleFloatRegister;
class DoubleFloatRegisterImpl {
public:
friend FloatRegister as_DoubleFloatRegister(int encoding) {
assert(encoding < 32, "bad double float register encoding");
return as_FloatRegister(((encoding & 1) << 5) | (encoding & 0x1e));
}
};
class QuadFloatRegisterImpl;
typedef QuadFloatRegisterImpl *QuadFloatRegister;
class QuadFloatRegisterImpl {
public:
friend FloatRegister as_QuadFloatRegister(int encoding) {
assert(encoding < 32 && ((encoding & 2) == 0), "bad quad float register encoding");
return as_FloatRegister(((encoding & 1) << 5) | (encoding & 0x1c));
}
};
//==========================
//=== Vector Registers ===
//==========================
// Use VectorRegister as shortcut
class VectorRegisterImpl;
typedef VectorRegisterImpl* VectorRegister;
// The implementation of vector registers for z/Architecture.
inline VectorRegister as_VectorRegister(int encoding) {
return (VectorRegister)(long)encoding;
}
class VectorRegisterImpl: public AbstractRegisterImpl {
public:
enum {
number_of_registers = 32,
number_of_arg_registers = 0
};
// construction
inline friend VectorRegister as_VectorRegister(int encoding);
inline VMReg as_VMReg();
// accessors
int encoding() const {
assert(is_valid(), "invalid register"); return value();
}
bool is_valid() const { return 0 <= value() && value() < number_of_registers; }
bool is_volatile() const { return true; }
bool is_nonvolatile() const { return false; }
// Register fields in z/Architecture instructions are 4 bits wide, restricting the
// addressable register set size to 16.
// The vector register set size is 32, requiring an extension, by one bit, of the
// register encoding. This is accomplished by the introduction of a RXB field in the
// instruction. RXB = Register eXtension Bits.
// The RXB field contains the MSBs (most significant bit) of the vector register numbers
// used for this instruction. Assignment of MSB in RBX is by bit position of the
// register field in the instruction.
// Example:
// The register field starting at bit position 12 in the instruction is assigned RXB bit 0b0100.
int64_t RXB_mask(int pos) {
if (encoding() >= number_of_registers/2) {
switch (pos) {
case 8: return ((int64_t)0b1000) << 8; // actual bit pos: 36
case 12: return ((int64_t)0b0100) << 8; // actual bit pos: 37
case 16: return ((int64_t)0b0010) << 8; // actual bit pos: 38
case 32: return ((int64_t)0b0001) << 8; // actual bit pos: 39
default:
ShouldNotReachHere();
}
}
return 0;
}
const char* name() const;
VectorRegister successor() const { return as_VectorRegister(encoding() + 1); }
};
// The Vector registers of z/Architecture.
CONSTANT_REGISTER_DECLARATION(VectorRegister, vnoreg, (-1));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V0, (0));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V1, (1));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V2, (2));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V3, (3));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V4, (4));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V5, (5));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V6, (6));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V7, (7));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V8, (8));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V9, (9));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V10, (10));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V11, (11));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V12, (12));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V13, (13));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V14, (14));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V15, (15));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V16, (16));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V17, (17));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V18, (18));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V19, (19));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V20, (20));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V21, (21));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V22, (22));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V23, (23));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V24, (24));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V25, (25));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V26, (26));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V27, (27));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V28, (28));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V29, (29));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V30, (30));
CONSTANT_REGISTER_DECLARATION(VectorRegister, Z_V31, (31));
#ifndef DONT_USE_REGISTER_DEFINES
#define vnoreg ((VectorRegister)(vnoreg_VectorRegisterEnumValue))
#define Z_V0 ((VectorRegister)( Z_V0_VectorRegisterEnumValue))
#define Z_V1 ((VectorRegister)( Z_V1_VectorRegisterEnumValue))
#define Z_V2 ((VectorRegister)( Z_V2_VectorRegisterEnumValue))
#define Z_V3 ((VectorRegister)( Z_V3_VectorRegisterEnumValue))
#define Z_V4 ((VectorRegister)( Z_V4_VectorRegisterEnumValue))
#define Z_V5 ((VectorRegister)( Z_V5_VectorRegisterEnumValue))
#define Z_V6 ((VectorRegister)( Z_V6_VectorRegisterEnumValue))
#define Z_V7 ((VectorRegister)( Z_V7_VectorRegisterEnumValue))
#define Z_V8 ((VectorRegister)( Z_V8_VectorRegisterEnumValue))
#define Z_V9 ((VectorRegister)( Z_V9_VectorRegisterEnumValue))
#define Z_V10 ((VectorRegister)( Z_V10_VectorRegisterEnumValue))
#define Z_V11 ((VectorRegister)( Z_V11_VectorRegisterEnumValue))
#define Z_V12 ((VectorRegister)( Z_V12_VectorRegisterEnumValue))
#define Z_V13 ((VectorRegister)( Z_V13_VectorRegisterEnumValue))
#define Z_V14 ((VectorRegister)( Z_V14_VectorRegisterEnumValue))
#define Z_V15 ((VectorRegister)( Z_V15_VectorRegisterEnumValue))
#define Z_V16 ((VectorRegister)( Z_V16_VectorRegisterEnumValue))
#define Z_V17 ((VectorRegister)( Z_V17_VectorRegisterEnumValue))
#define Z_V18 ((VectorRegister)( Z_V18_VectorRegisterEnumValue))
#define Z_V19 ((VectorRegister)( Z_V19_VectorRegisterEnumValue))
#define Z_V20 ((VectorRegister)( Z_V20_VectorRegisterEnumValue))
#define Z_V21 ((VectorRegister)( Z_V21_VectorRegisterEnumValue))
#define Z_V22 ((VectorRegister)( Z_V22_VectorRegisterEnumValue))
#define Z_V23 ((VectorRegister)( Z_V23_VectorRegisterEnumValue))
#define Z_V24 ((VectorRegister)( Z_V24_VectorRegisterEnumValue))
#define Z_V25 ((VectorRegister)( Z_V25_VectorRegisterEnumValue))
#define Z_V26 ((VectorRegister)( Z_V26_VectorRegisterEnumValue))
#define Z_V27 ((VectorRegister)( Z_V27_VectorRegisterEnumValue))
#define Z_V28 ((VectorRegister)( Z_V28_VectorRegisterEnumValue))
#define Z_V29 ((VectorRegister)( Z_V29_VectorRegisterEnumValue))
#define Z_V30 ((VectorRegister)( Z_V30_VectorRegisterEnumValue))
#define Z_V31 ((VectorRegister)( Z_V31_VectorRegisterEnumValue))
#endif // DONT_USE_REGISTER_DEFINES
// Need to know the total number of registers of all sorts for SharedInfo.
// Define a class that exports it.
class ConcreteRegisterImpl : public AbstractRegisterImpl {
public:
enum {
number_of_registers =
(RegisterImpl::number_of_registers +
FloatRegisterImpl::number_of_registers)
* 2 // register halves
+ 1 // condition code register
};
static const int max_gpr;
static const int max_fpr;
};
// Common register declarations used in assembler code.
REGISTER_DECLARATION(Register, Z_EXC_OOP, Z_R2);
REGISTER_DECLARATION(Register, Z_EXC_PC, Z_R3);
REGISTER_DECLARATION(Register, Z_RET, Z_R2);
REGISTER_DECLARATION(Register, Z_ARG1, Z_R2);
REGISTER_DECLARATION(Register, Z_ARG2, Z_R3);
REGISTER_DECLARATION(Register, Z_ARG3, Z_R4);
REGISTER_DECLARATION(Register, Z_ARG4, Z_R5);
REGISTER_DECLARATION(Register, Z_ARG5, Z_R6);
REGISTER_DECLARATION(Register, Z_SP, Z_R15);
REGISTER_DECLARATION(FloatRegister, Z_FRET, Z_F0);
REGISTER_DECLARATION(FloatRegister, Z_FARG1, Z_F0);
REGISTER_DECLARATION(FloatRegister, Z_FARG2, Z_F2);
REGISTER_DECLARATION(FloatRegister, Z_FARG3, Z_F4);
REGISTER_DECLARATION(FloatRegister, Z_FARG4, Z_F6);
#ifndef DONT_USE_REGISTER_DEFINES
#define Z_EXC_OOP AS_REGISTER(Register, Z_R2)
#define Z_EXC_PC AS_REGISTER(Register, Z_R3)
#define Z_RET AS_REGISTER(Register, Z_R2)
#define Z_ARG1 AS_REGISTER(Register, Z_R2)
#define Z_ARG2 AS_REGISTER(Register, Z_R3)
#define Z_ARG3 AS_REGISTER(Register, Z_R4)
#define Z_ARG4 AS_REGISTER(Register, Z_R5)
#define Z_ARG5 AS_REGISTER(Register, Z_R6)
#define Z_SP AS_REGISTER(Register, Z_R15)
#define Z_FRET AS_REGISTER(FloatRegister, Z_F0)
#define Z_FARG1 AS_REGISTER(FloatRegister, Z_F0)
#define Z_FARG2 AS_REGISTER(FloatRegister, Z_F2)
#define Z_FARG3 AS_REGISTER(FloatRegister, Z_F4)
#define Z_FARG4 AS_REGISTER(FloatRegister, Z_F6)
#endif
// Register declarations to be used in frame manager assembly code.
// Use only non-volatile registers in order to keep values across C-calls.
// Register to cache the integer value on top of the operand stack.
REGISTER_DECLARATION(Register, Z_tos, Z_R2);
// Register to cache the fp value on top of the operand stack.
REGISTER_DECLARATION(FloatRegister, Z_ftos, Z_F0);
// Expression stack pointer in interpreted java frame.
REGISTER_DECLARATION(Register, Z_esp, Z_R7);
// Address of current thread.
REGISTER_DECLARATION(Register, Z_thread, Z_R8);
// Address of current method. only valid in interpreter_entry.
REGISTER_DECLARATION(Register, Z_method, Z_R9);
// Inline cache register. used by c1 and c2.
REGISTER_DECLARATION(Register, Z_inline_cache,Z_R9);
// Frame pointer of current interpreter frame. only valid while
// executing bytecodes.
REGISTER_DECLARATION(Register, Z_fp, Z_R9);
// Address of the locals array in an interpreted java frame.
REGISTER_DECLARATION(Register, Z_locals, Z_R12);
// Bytecode pointer.
REGISTER_DECLARATION(Register, Z_bcp, Z_R13);
// Bytecode which is dispatched (short lived!).
REGISTER_DECLARATION(Register, Z_bytecode, Z_R14);
#ifndef DONT_USE_REGISTER_DEFINES
#define Z_tos AS_REGISTER(Register, Z_R2)
#define Z_ftos AS_REGISTER(FloatRegister, Z_F0)
#define Z_esp AS_REGISTER(Register, Z_R7)
#define Z_thread AS_REGISTER(Register, Z_R8)
#define Z_method AS_REGISTER(Register, Z_R9)
#define Z_inline_cache AS_REGISTER(Register, Z_R9)
#define Z_fp AS_REGISTER(Register, Z_R9)
#define Z_locals AS_REGISTER(Register, Z_R12)
#define Z_bcp AS_REGISTER(Register, Z_R13)
#define Z_bytecode AS_REGISTER(Register, Z_R14)
#endif
// Temporary registers to be used within frame manager. We can use
// the nonvolatiles because the call stub has saved them.
// Use only non-volatile registers in order to keep values across C-calls.
REGISTER_DECLARATION(Register, Z_tmp_1, Z_R10);
REGISTER_DECLARATION(Register, Z_tmp_2, Z_R11);
REGISTER_DECLARATION(Register, Z_tmp_3, Z_R12);
REGISTER_DECLARATION(Register, Z_tmp_4, Z_R13);
#ifndef DONT_USE_REGISTER_DEFINES
#define Z_tmp_1 AS_REGISTER(Register, Z_R10)
#define Z_tmp_2 AS_REGISTER(Register, Z_R11)
#define Z_tmp_3 AS_REGISTER(Register, Z_R12)
#define Z_tmp_4 AS_REGISTER(Register, Z_R13)
#endif
// Scratch registers are volatile.
REGISTER_DECLARATION(Register, Z_R0_scratch, Z_R0);
REGISTER_DECLARATION(Register, Z_R1_scratch, Z_R1);
REGISTER_DECLARATION(FloatRegister, Z_fscratch_1, Z_F1);
#ifndef DONT_USE_REGISTER_DEFINES
#define Z_R0_scratch AS_REGISTER(Register, Z_R0)
#define Z_R1_scratch AS_REGISTER(Register, Z_R1)
#define Z_fscratch_1 AS_REGISTER(FloatRegister, Z_F1)
#endif
#endif // CPU_S390_REGISTER_S390_HPP