blob: 4c8b83986f1b42eb5e379a6f71ae338ccdf3ab99 [file] [log] [blame]
/*
* Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jfr/jfrEvents.hpp"
#include "jfr/jni/jfrJavaSupport.hpp"
#include "jfr/recorder/jfrRecorder.hpp"
#include "jfr/recorder/checkpoint/jfrCheckpointManager.hpp"
#include "jfr/recorder/repository/jfrChunkWriter.hpp"
#include "jfr/recorder/service/jfrOptionSet.hpp"
#include "jfr/recorder/service/jfrPostBox.hpp"
#include "jfr/recorder/storage/jfrMemorySpace.inline.hpp"
#include "jfr/recorder/storage/jfrStorage.hpp"
#include "jfr/recorder/storage/jfrStorageControl.hpp"
#include "jfr/recorder/storage/jfrStorageUtils.inline.hpp"
#include "jfr/utilities/jfrIterator.hpp"
#include "jfr/utilities/jfrTime.hpp"
#include "jfr/writers/jfrNativeEventWriter.hpp"
#include "logging/log.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.hpp"
typedef JfrStorage::Buffer* BufferPtr;
static JfrStorage* _instance = NULL;
static JfrStorageControl* _control;
JfrStorage& JfrStorage::instance() {
return *_instance;
}
JfrStorage* JfrStorage::create(JfrChunkWriter& chunkwriter, JfrPostBox& post_box) {
assert(_instance == NULL, "invariant");
_instance = new JfrStorage(chunkwriter, post_box);
return _instance;
}
void JfrStorage::destroy() {
if (_instance != NULL) {
delete _instance;
_instance = NULL;
}
}
JfrStorage::JfrStorage(JfrChunkWriter& chunkwriter, JfrPostBox& post_box) :
_control(NULL),
_global_mspace(NULL),
_thread_local_mspace(NULL),
_transient_mspace(NULL),
_age_mspace(NULL),
_chunkwriter(chunkwriter),
_post_box(post_box) {}
JfrStorage::~JfrStorage() {
if (_control != NULL) {
delete _control;
}
if (_global_mspace != NULL) {
delete _global_mspace;
}
if (_thread_local_mspace != NULL) {
delete _thread_local_mspace;
}
if (_transient_mspace != NULL) {
delete _transient_mspace;
}
if (_age_mspace != NULL) {
delete _age_mspace;
}
_instance = NULL;
}
static const size_t in_memory_discard_threshold_delta = 2; // start to discard data when the only this number of free buffers are left
static const size_t unlimited_mspace_size = 0;
static const size_t thread_local_cache_count = 8;
static const size_t thread_local_scavenge_threshold = thread_local_cache_count / 2;
static const size_t transient_buffer_size_multiplier = 8; // against thread local buffer size
template <typename Mspace>
static Mspace* create_mspace(size_t buffer_size, size_t limit, size_t cache_count, JfrStorage* storage_instance) {
Mspace* mspace = new Mspace(buffer_size, limit, cache_count, storage_instance);
if (mspace != NULL) {
mspace->initialize();
}
return mspace;
}
bool JfrStorage::initialize() {
assert(_control == NULL, "invariant");
assert(_global_mspace == NULL, "invariant");
assert(_thread_local_mspace == NULL, "invariant");
assert(_transient_mspace == NULL, "invariant");
assert(_age_mspace == NULL, "invariant");
const size_t num_global_buffers = (size_t)JfrOptionSet::num_global_buffers();
assert(num_global_buffers >= in_memory_discard_threshold_delta, "invariant");
const size_t memory_size = (size_t)JfrOptionSet::memory_size();
const size_t global_buffer_size = (size_t)JfrOptionSet::global_buffer_size();
const size_t thread_buffer_size = (size_t)JfrOptionSet::thread_buffer_size();
_control = new JfrStorageControl(num_global_buffers, num_global_buffers - in_memory_discard_threshold_delta);
if (_control == NULL) {
return false;
}
_global_mspace = create_mspace<JfrStorageMspace>(global_buffer_size, memory_size, num_global_buffers, this);
if (_global_mspace == NULL) {
return false;
}
_thread_local_mspace = create_mspace<JfrThreadLocalMspace>(thread_buffer_size, unlimited_mspace_size, thread_local_cache_count, this);
if (_thread_local_mspace == NULL) {
return false;
}
_transient_mspace = create_mspace<JfrStorageMspace>(thread_buffer_size * transient_buffer_size_multiplier, unlimited_mspace_size, 0, this);
if (_transient_mspace == NULL) {
return false;
}
_age_mspace = create_mspace<JfrStorageAgeMspace>(0 /* no extra size except header */, unlimited_mspace_size, num_global_buffers, this);
if (_age_mspace == NULL) {
return false;
}
control().set_scavenge_threshold(thread_local_scavenge_threshold);
return true;
}
JfrStorageControl& JfrStorage::control() {
return *instance()._control;
}
static void log_allocation_failure(const char* msg, size_t size) {
log_warning(jfr)("Unable to allocate " SIZE_FORMAT " bytes of %s.", size, msg);
}
BufferPtr JfrStorage::acquire_thread_local(Thread* thread, size_t size /* 0 */) {
BufferPtr buffer = mspace_get_to_full(size, instance()._thread_local_mspace, thread);
if (buffer == NULL) {
log_allocation_failure("thread local_memory", size);
return NULL;
}
assert(buffer->acquired_by_self(), "invariant");
return buffer;
}
BufferPtr JfrStorage::acquire_transient(size_t size, Thread* thread) {
BufferPtr buffer = mspace_allocate_transient_lease_to_full(size, instance()._transient_mspace, thread);
if (buffer == NULL) {
log_allocation_failure("transient memory", size);
return NULL;
}
assert(buffer->acquired_by_self(), "invariant");
assert(buffer->transient(), "invariant");
assert(buffer->lease(), "invariant");
return buffer;
}
static BufferPtr get_lease(size_t size, JfrStorageMspace* mspace, JfrStorage& storage_instance, size_t retry_count, Thread* thread) {
assert(size <= mspace->min_elem_size(), "invariant");
while (true) {
BufferPtr t = mspace_get_free_lease_with_retry(size, mspace, retry_count, thread);
if (t == NULL && storage_instance.control().should_discard()) {
storage_instance.discard_oldest(thread);
continue;
}
return t;
}
}
static BufferPtr get_promotion_buffer(size_t size, JfrStorageMspace* mspace, JfrStorage& storage_instance, size_t retry_count, Thread* thread) {
assert(size <= mspace->min_elem_size(), "invariant");
while (true) {
BufferPtr t = mspace_get_free_with_retry(size, mspace, retry_count, thread);
if (t == NULL && storage_instance.control().should_discard()) {
storage_instance.discard_oldest(thread);
continue;
}
return t;
}
}
static const size_t lease_retry = 10;
BufferPtr JfrStorage::acquire_large(size_t size, Thread* thread) {
JfrStorage& storage_instance = instance();
const size_t max_elem_size = storage_instance._global_mspace->min_elem_size(); // min is also max
// if not too large and capacity is still available, ask for a lease from the global system
if (size < max_elem_size && storage_instance.control().is_global_lease_allowed()) {
BufferPtr const buffer = get_lease(size, storage_instance._global_mspace, storage_instance, lease_retry, thread);
if (buffer != NULL) {
assert(buffer->acquired_by_self(), "invariant");
assert(!buffer->transient(), "invariant");
assert(buffer->lease(), "invariant");
storage_instance.control().increment_leased();
return buffer;
}
}
return acquire_transient(size, thread);
}
static void write_data_loss_event(JfrBuffer* buffer, u8 unflushed_size, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(buffer->empty(), "invariant");
const u8 total_data_loss = thread->jfr_thread_local()->add_data_lost(unflushed_size);
if (EventDataLoss::is_enabled()) {
JfrNativeEventWriter writer(buffer, thread);
writer.write<u8>(EventDataLoss::eventId);
writer.write(JfrTicks::now());
writer.write(unflushed_size);
writer.write(total_data_loss);
}
}
static void write_data_loss(BufferPtr buffer, Thread* thread) {
assert(buffer != NULL, "invariant");
const size_t unflushed_size = buffer->unflushed_size();
buffer->concurrent_reinitialization();
if (unflushed_size == 0) {
return;
}
write_data_loss_event(buffer, unflushed_size, thread);
}
static const size_t promotion_retry = 100;
bool JfrStorage::flush_regular_buffer(BufferPtr buffer, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(!buffer->lease(), "invariant");
assert(!buffer->transient(), "invariant");
const size_t unflushed_size = buffer->unflushed_size();
if (unflushed_size == 0) {
buffer->concurrent_reinitialization();
assert(buffer->empty(), "invariant");
return true;
}
if (buffer->excluded()) {
const bool thread_is_excluded = thread->jfr_thread_local()->is_excluded();
buffer->reinitialize(thread_is_excluded);
assert(buffer->empty(), "invariant");
if (!thread_is_excluded) {
// state change from exclusion to inclusion requires a thread checkpoint
JfrCheckpointManager::write_thread_checkpoint(thread);
}
return true;
}
BufferPtr const promotion_buffer = get_promotion_buffer(unflushed_size, _global_mspace, *this, promotion_retry, thread);
if (promotion_buffer == NULL) {
write_data_loss(buffer, thread);
return false;
}
assert(promotion_buffer->acquired_by_self(), "invariant");
assert(promotion_buffer->free_size() >= unflushed_size, "invariant");
buffer->concurrent_move_and_reinitialize(promotion_buffer, unflushed_size);
assert(buffer->empty(), "invariant");
return true;
}
/*
* 1. If the buffer was a "lease" from the global system, release back.
* 2. If the buffer is transient (temporal dynamically allocated), retire and register full.
*
* The buffer is effectively invalidated for the thread post-return,
* and the caller should take means to ensure that it is not referenced any longer.
*/
void JfrStorage::release_large(BufferPtr buffer, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(buffer->lease(), "invariant");
assert(buffer->acquired_by_self(), "invariant");
buffer->clear_lease();
if (buffer->transient()) {
buffer->set_retired();
register_full(buffer, thread);
} else {
buffer->release();
control().decrement_leased();
}
}
static JfrAgeNode* new_age_node(BufferPtr buffer, JfrStorageAgeMspace* age_mspace, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(age_mspace != NULL, "invariant");
return mspace_allocate_transient(0, age_mspace, thread);
}
static void log_registration_failure(size_t unflushed_size) {
log_warning(jfr)("Unable to register a full buffer of " SIZE_FORMAT " bytes.", unflushed_size);
log_debug(jfr, system)("Cleared 1 full buffer of " SIZE_FORMAT " bytes.", unflushed_size);
}
static void handle_registration_failure(BufferPtr buffer) {
assert(buffer != NULL, "invariant");
assert(buffer->retired(), "invariant");
const size_t unflushed_size = buffer->unflushed_size();
buffer->concurrent_reinitialization();
log_registration_failure(unflushed_size);
}
static JfrAgeNode* get_free_age_node(JfrStorageAgeMspace* age_mspace, Thread* thread) {
assert(JfrBuffer_lock->owned_by_self(), "invariant");
return mspace_get_free_with_detach(0, age_mspace, thread);
}
static bool insert_full_age_node(JfrAgeNode* age_node, JfrStorageAgeMspace* age_mspace, Thread* thread) {
assert(JfrBuffer_lock->owned_by_self(), "invariant");
assert(age_node != NULL, "invariant");
assert(age_node->acquired_by_self(), "invariant");
assert(age_node->retired_buffer()->retired(), "invariant");
age_node->release(); // drop identity claim on age node when inserting to full list
assert(age_node->identity() == NULL, "invariant");
age_mspace->insert_full_head(age_node);
return true;
}
static bool full_buffer_registration(BufferPtr buffer, JfrStorageAgeMspace* age_mspace, JfrStorageControl& control, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(buffer->retired(), "invariant");
assert(age_mspace != NULL, "invariant");
MutexLocker lock(JfrBuffer_lock, Mutex::_no_safepoint_check_flag);
JfrAgeNode* age_node = get_free_age_node(age_mspace, thread);
if (age_node == NULL) {
age_node = new_age_node(buffer, age_mspace, thread);
if (age_node == NULL) {
return false;
}
}
assert(age_node != NULL, "invariant");
assert(age_node->acquired_by_self(), "invariant");
age_node->set_retired_buffer(buffer);
control.increment_full();
return insert_full_age_node(age_node, age_mspace, thread);
}
void JfrStorage::register_full(BufferPtr buffer, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(buffer->retired(), "invariant");
assert(buffer->acquired_by(thread), "invariant");
if (!full_buffer_registration(buffer, _age_mspace, control(), thread)) {
handle_registration_failure(buffer);
}
if (control().should_post_buffer_full_message()) {
_post_box.post(MSG_FULLBUFFER);
}
}
void JfrStorage::lock() {
assert(!JfrBuffer_lock->owned_by_self(), "invariant");
JfrBuffer_lock->lock_without_safepoint_check();
}
void JfrStorage::unlock() {
assert(JfrBuffer_lock->owned_by_self(), "invariant");
JfrBuffer_lock->unlock();
}
#ifdef ASSERT
bool JfrStorage::is_locked() const {
return JfrBuffer_lock->owned_by_self();
}
#endif
// don't use buffer on return, it is gone
void JfrStorage::release(BufferPtr buffer, Thread* thread) {
assert(buffer != NULL, "invariant");
assert(!buffer->lease(), "invariant");
assert(!buffer->transient(), "invariant");
assert(!buffer->retired(), "invariant");
if (!buffer->empty()) {
if (!flush_regular_buffer(buffer, thread)) {
buffer->concurrent_reinitialization();
}
}
assert(buffer->empty(), "invariant");
assert(buffer->identity() != NULL, "invariant");
control().increment_dead();
buffer->set_retired();
}
void JfrStorage::release_thread_local(BufferPtr buffer, Thread* thread) {
assert(buffer != NULL, "invariant");
JfrStorage& storage_instance = instance();
storage_instance.release(buffer, thread);
if (storage_instance.control().should_scavenge()) {
storage_instance._post_box.post(MSG_DEADBUFFER);
}
}
static void log_discard(size_t count, size_t amount, size_t current) {
if (log_is_enabled(Debug, jfr, system)) {
assert(count > 0, "invariant");
log_debug(jfr, system)("Cleared " SIZE_FORMAT " full buffer(s) of " SIZE_FORMAT" bytes.", count, amount);
log_debug(jfr, system)("Current number of full buffers " SIZE_FORMAT "", current);
}
}
void JfrStorage::discard_oldest(Thread* thread) {
if (JfrBuffer_lock->try_lock()) {
if (!control().should_discard()) {
// another thread handled it
return;
}
const size_t num_full_pre_discard = control().full_count();
size_t num_full_post_discard = 0;
size_t discarded_size = 0;
while (true) {
JfrAgeNode* const oldest_age_node = _age_mspace->full_tail();
if (oldest_age_node == NULL) {
break;
}
assert(oldest_age_node->identity() == NULL, "invariant");
BufferPtr const buffer = oldest_age_node->retired_buffer();
assert(buffer->retired(), "invariant");
discarded_size += buffer->unflushed_size();
num_full_post_discard = control().decrement_full();
if (buffer->transient()) {
mspace_release_full(buffer, _transient_mspace);
mspace_release_full(oldest_age_node, _age_mspace);
continue;
} else {
mspace_release_full(oldest_age_node, _age_mspace);
buffer->reinitialize();
buffer->release(); // publish
break;
}
}
JfrBuffer_lock->unlock();
const size_t number_of_discards = num_full_pre_discard - num_full_post_discard;
if (number_of_discards > 0) {
log_discard(number_of_discards, discarded_size, num_full_post_discard);
}
}
}
#ifdef ASSERT
typedef const BufferPtr ConstBufferPtr;
static void assert_flush_precondition(ConstBufferPtr cur, size_t used, bool native, const Thread* t) {
assert(t != NULL, "invariant");
assert(cur != NULL, "invariant");
assert(cur->pos() + used <= cur->end(), "invariant");
assert(native ? t->jfr_thread_local()->native_buffer() == cur : t->jfr_thread_local()->java_buffer() == cur, "invariant");
}
static void assert_flush_regular_precondition(ConstBufferPtr cur, const u1* const cur_pos, size_t used, size_t req, const Thread* t) {
assert(t != NULL, "invariant");
assert(t->jfr_thread_local()->shelved_buffer() == NULL, "invariant");
assert(cur != NULL, "invariant");
assert(!cur->lease(), "invariant");
assert(cur_pos != NULL, "invariant");
assert(req >= used, "invariant");
}
static void assert_provision_large_precondition(ConstBufferPtr cur, size_t used, size_t req, const Thread* t) {
assert(cur != NULL, "invariant");
assert(t != NULL, "invariant");
assert(t->jfr_thread_local()->shelved_buffer() != NULL, "invariant");
assert(req >= used, "invariant");
}
static void assert_flush_large_precondition(ConstBufferPtr cur, const u1* const cur_pos, size_t used, size_t req, bool native, Thread* t) {
assert(t != NULL, "invariant");
assert(cur != NULL, "invariant");
assert(cur->lease(), "invariant");
assert(!cur->excluded(), "invariant");
assert(cur_pos != NULL, "invariant");
assert(native ? t->jfr_thread_local()->native_buffer() == cur : t->jfr_thread_local()->java_buffer() == cur, "invariant");
assert(t->jfr_thread_local()->shelved_buffer() != NULL, "invariant");
assert(req >= used, "invariant");
assert(cur != t->jfr_thread_local()->shelved_buffer(), "invariant");
}
#endif // ASSERT
BufferPtr JfrStorage::flush(BufferPtr cur, size_t used, size_t req, bool native, Thread* t) {
debug_only(assert_flush_precondition(cur, used, native, t);)
const u1* const cur_pos = cur->pos();
req += used;
// requested size now encompass the outstanding used size
return cur->lease() ? instance().flush_large(cur, cur_pos, used, req, native, t) :
instance().flush_regular(cur, cur_pos, used, req, native, t);
}
BufferPtr JfrStorage::flush_regular(BufferPtr cur, const u1* const cur_pos, size_t used, size_t req, bool native, Thread* t) {
debug_only(assert_flush_regular_precondition(cur, cur_pos, used, req, t);)
// A flush is needed before memcpy since a non-large buffer is thread stable
// (thread local). The flush will not modify memory in addresses above pos()
// which is where the "used / uncommitted" data resides. It is therefore both
// possible and valid to migrate data after the flush. This is however only
// the case for stable thread local buffers; it is not the case for large buffers.
if (!cur->empty()) {
flush_regular_buffer(cur, t);
if (cur->excluded()) {
return cur;
}
}
assert(t->jfr_thread_local()->shelved_buffer() == NULL, "invariant");
if (cur->free_size() >= req) {
// simplest case, no switching of buffers
if (used > 0) {
memcpy(cur->pos(), (void*)cur_pos, used);
}
assert(native ? t->jfr_thread_local()->native_buffer() == cur : t->jfr_thread_local()->java_buffer() == cur, "invariant");
return cur;
}
// Going for a "larger-than-regular" buffer.
// Shelve the current buffer to make room for a temporary lease.
t->jfr_thread_local()->shelve_buffer(cur);
return provision_large(cur, cur_pos, used, req, native, t);
}
static BufferPtr store_buffer_to_thread_local(BufferPtr buffer, JfrThreadLocal* jfr_thread_local, bool native) {
assert(buffer != NULL, "invariant");
if (native) {
jfr_thread_local->set_native_buffer(buffer);
} else {
jfr_thread_local->set_java_buffer(buffer);
}
return buffer;
}
static BufferPtr restore_shelved_buffer(bool native, Thread* t) {
JfrThreadLocal* const tl = t->jfr_thread_local();
BufferPtr shelved = tl->shelved_buffer();
assert(shelved != NULL, "invariant");
tl->shelve_buffer(NULL);
// restore shelved buffer back as primary
return store_buffer_to_thread_local(shelved, tl, native);
}
BufferPtr JfrStorage::flush_large(BufferPtr cur, const u1* const cur_pos, size_t used, size_t req, bool native, Thread* t) {
debug_only(assert_flush_large_precondition(cur, cur_pos, used, req, native, t);)
// Can the "regular" buffer (now shelved) accommodate the requested size?
BufferPtr shelved = t->jfr_thread_local()->shelved_buffer();
assert(shelved != NULL, "invariant");
if (shelved->free_size() >= req) {
if (req > 0) {
memcpy(shelved->pos(), (void*)cur_pos, (size_t)used);
}
// release and invalidate
release_large(cur, t);
return restore_shelved_buffer(native, t);
}
// regular too small
return provision_large(cur, cur_pos, used, req, native, t);
}
static BufferPtr large_fail(BufferPtr cur, bool native, JfrStorage& storage_instance, Thread* t) {
assert(cur != NULL, "invariant");
assert(t != NULL, "invariant");
if (cur->lease()) {
storage_instance.release_large(cur, t);
}
return restore_shelved_buffer(native, t);
}
// Always returns a non-null buffer.
// If accommodating the large request fails, the shelved buffer is returned
// even though it might be smaller than the requested size.
// Caller needs to ensure if the size was successfully accommodated.
BufferPtr JfrStorage::provision_large(BufferPtr cur, const u1* const cur_pos, size_t used, size_t req, bool native, Thread* t) {
debug_only(assert_provision_large_precondition(cur, used, req, t);)
assert(t->jfr_thread_local()->shelved_buffer() != NULL, "invariant");
BufferPtr const buffer = acquire_large(req, t);
if (buffer == NULL) {
// unable to allocate and serve the request
return large_fail(cur, native, *this, t);
}
// ok managed to acquire a "large" buffer for the requested size
assert(buffer->free_size() >= req, "invariant");
assert(buffer->lease(), "invariant");
// transfer outstanding data
memcpy(buffer->pos(), (void*)cur_pos, used);
if (cur->lease()) {
release_large(cur, t);
// don't use current anymore, it is gone
}
return store_buffer_to_thread_local(buffer, t->jfr_thread_local(), native);
}
typedef UnBufferedWriteToChunk<JfrBuffer> WriteOperation;
typedef MutexedWriteOp<WriteOperation> MutexedWriteOperation;
typedef ConcurrentWriteOp<WriteOperation> ConcurrentWriteOperation;
typedef Retired<JfrBuffer, true> NonRetired;
typedef Excluded<JfrBuffer, true> NonExcluded;
typedef CompositeOperation<NonRetired, NonExcluded> BufferPredicate;
typedef PredicatedMutexedWriteOp<WriteOperation, BufferPredicate> ThreadLocalMutexedWriteOperation;
typedef PredicatedConcurrentWriteOp<WriteOperation, BufferPredicate> ThreadLocalConcurrentWriteOperation;
size_t JfrStorage::write() {
const size_t full_elements = write_full();
WriteOperation wo(_chunkwriter);
NonRetired nr;
NonExcluded ne;
BufferPredicate bp(&nr, &ne);
ThreadLocalConcurrentWriteOperation tlwo(wo, bp);
process_full_list(tlwo, _thread_local_mspace);
ConcurrentWriteOperation cwo(wo);
process_free_list(cwo, _global_mspace);
return full_elements + wo.elements();
}
size_t JfrStorage::write_at_safepoint() {
assert(SafepointSynchronize::is_at_safepoint(), "invariant");
WriteOperation wo(_chunkwriter);
MutexedWriteOperation writer(wo); // mutexed write mode
NonRetired nr;
NonExcluded ne;
BufferPredicate bp(&nr, &ne);
ThreadLocalMutexedWriteOperation tlmwo(wo, bp);
process_full_list(tlmwo, _thread_local_mspace);
assert(_transient_mspace->is_free_empty(), "invariant");
process_full_list(writer, _transient_mspace);
assert(_global_mspace->is_full_empty(), "invariant");
process_free_list(writer, _global_mspace);
return wo.elements();
}
typedef DiscardOp<DefaultDiscarder<JfrStorage::Buffer> > DiscardOperation;
typedef ReleaseOp<JfrStorageMspace> ReleaseOperation;
typedef CompositeOperation<MutexedWriteOperation, ReleaseOperation> FullOperation;
size_t JfrStorage::clear() {
const size_t full_elements = clear_full();
DiscardOperation discarder(concurrent); // concurrent discard mode
process_full_list(discarder, _thread_local_mspace);
assert(_transient_mspace->is_free_empty(), "invariant");
process_full_list(discarder, _transient_mspace);
assert(_global_mspace->is_full_empty(), "invariant");
process_free_list(discarder, _global_mspace);
return full_elements + discarder.elements();
}
static void insert_free_age_nodes(JfrStorageAgeMspace* age_mspace, JfrAgeNode* head, JfrAgeNode* tail, size_t count) {
if (tail != NULL) {
assert(tail->next() == NULL, "invariant");
assert(head != NULL, "invariant");
assert(head->prev() == NULL, "invariant");
MutexLocker buffer_lock(JfrBuffer_lock, Mutex::_no_safepoint_check_flag);
age_mspace->insert_free_tail(head, tail, count);
}
}
template <typename Processor>
static void process_age_list(Processor& processor, JfrStorageAgeMspace* age_mspace, JfrAgeNode* head, size_t count) {
assert(age_mspace != NULL, "invariant");
assert(head != NULL, "invariant");
assert(count > 0, "invariant");
JfrAgeNode* node = head;
JfrAgeNode* last = NULL;
while (node != NULL) {
last = node;
assert(node->identity() == NULL, "invariant");
BufferPtr const buffer = node->retired_buffer();
assert(buffer != NULL, "invariant");
assert(buffer->retired(), "invariant");
processor.process(buffer);
// at this point, buffer is already live or destroyed
JfrAgeNode* const next = (JfrAgeNode*)node->next();
if (node->transient()) {
// detach
last = (JfrAgeNode*)last->prev();
if (last != NULL) {
last->set_next(next);
} else {
head = next;
}
if (next != NULL) {
next->set_prev(last);
}
--count;
age_mspace->deallocate(node);
}
node = next;
}
insert_free_age_nodes(age_mspace, head, last, count);
}
template <typename Processor>
static size_t process_full(Processor& processor, JfrStorageControl& control, JfrStorageAgeMspace* age_mspace) {
assert(age_mspace != NULL, "invariant");
if (age_mspace->is_full_empty()) {
// nothing to do
return 0;
}
size_t count;
JfrAgeNode* head;
{
// fetch age list
MutexLocker buffer_lock(JfrBuffer_lock, Mutex::_no_safepoint_check_flag);
count = age_mspace->full_count();
head = age_mspace->clear_full();
control.reset_full();
}
assert(head != NULL, "invariant");
assert(count > 0, "invariant");
process_age_list(processor, age_mspace, head, count);
return count;
}
static void log(size_t count, size_t amount, bool clear = false) {
if (log_is_enabled(Debug, jfr, system)) {
if (count > 0) {
log_debug(jfr, system)("%s " SIZE_FORMAT " full buffer(s) of " SIZE_FORMAT" B of data%s",
clear ? "Discarded" : "Wrote", count, amount, clear ? "." : " to chunk.");
}
}
}
// full writer
// Assumption is retired only; exclusive access
// MutexedWriter -> ReleaseOp
//
size_t JfrStorage::write_full() {
assert(_chunkwriter.is_valid(), "invariant");
Thread* const thread = Thread::current();
WriteOperation wo(_chunkwriter);
MutexedWriteOperation writer(wo); // a retired buffer implies mutexed access
ReleaseOperation ro(_transient_mspace, thread);
FullOperation cmd(&writer, &ro);
const size_t count = process_full(cmd, control(), _age_mspace);
if (0 == count) {
assert(0 == writer.elements(), "invariant");
return 0;
}
const size_t size = writer.size();
log(count, size);
return count;
}
size_t JfrStorage::clear_full() {
DiscardOperation discarder(mutexed); // a retired buffer implies mutexed access
const size_t count = process_full(discarder, control(), _age_mspace);
if (0 == count) {
assert(0 == discarder.elements(), "invariant");
return 0;
}
const size_t size = discarder.size();
log(count, size, true);
return count;
}
static void scavenge_log(size_t count, size_t amount, size_t current) {
if (count > 0) {
if (log_is_enabled(Debug, jfr, system)) {
log_debug(jfr, system)("Released " SIZE_FORMAT " dead buffer(s) of " SIZE_FORMAT" B of data.", count, amount);
log_debug(jfr, system)("Current number of dead buffers " SIZE_FORMAT "", current);
}
}
}
template <typename Mspace>
class Scavenger {
private:
JfrStorageControl& _control;
Mspace* _mspace;
size_t _count;
size_t _amount;
public:
typedef typename Mspace::Type Type;
Scavenger(JfrStorageControl& control, Mspace* mspace) : _control(control), _mspace(mspace), _count(0), _amount(0) {}
bool process(Type* t) {
if (t->retired()) {
assert(t->identity() != NULL, "invariant");
assert(t->empty(), "invariant");
assert(!t->transient(), "invariant");
assert(!t->lease(), "invariant");
++_count;
_amount += t->total_size();
if (t->excluded()) {
t->clear_excluded();
}
assert(!t->excluded(), "invariant");
t->clear_retired();
t->release();
_control.decrement_dead();
mspace_release_full_critical(t, _mspace);
}
return true;
}
size_t processed() const { return _count; }
size_t amount() const { return _amount; }
};
size_t JfrStorage::scavenge() {
JfrStorageControl& ctrl = control();
if (ctrl.dead_count() == 0) {
return 0;
}
Scavenger<JfrThreadLocalMspace> scavenger(ctrl, _thread_local_mspace);
process_full_list(scavenger, _thread_local_mspace);
const size_t count = scavenger.processed();
if (0 == count) {
assert(0 == scavenger.amount(), "invariant");
return 0;
}
scavenge_log(count, scavenger.amount(), ctrl.dead_count());
return count;
}