blob: 5d5a958f1203686e8770dfb89f6b95f9a86e075f [file] [log] [blame]
/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/z/zAddressSpaceLimit.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zVirtualMemory.inline.hpp"
#include "logging/log.hpp"
#include "services/memTracker.hpp"
#include "utilities/debug.hpp"
#include "utilities/align.hpp"
ZVirtualMemoryManager::ZVirtualMemoryManager(size_t max_capacity) :
_manager(),
_initialized(false) {
// Check max supported heap size
if (max_capacity > ZAddressOffsetMax) {
log_error(gc)("Java heap too large (max supported heap size is " SIZE_FORMAT "G)",
ZAddressOffsetMax / G);
return;
}
// Reserve address space
if (!reserve(max_capacity)) {
log_error(gc)("Failed to reserve enough address space for Java heap");
return;
}
// Initialize OS specific parts
initialize_os();
// Successfully initialized
_initialized = true;
}
size_t ZVirtualMemoryManager::reserve_discontiguous(uintptr_t start, size_t size, size_t min_range) {
if (size < min_range) {
// Too small
return 0;
}
assert(is_aligned(size, ZGranuleSize), "Misaligned");
if (reserve_contiguous_platform(start, size)) {
// Make the address range free
_manager.free(start, size);
return size;
}
const size_t half = size / 2;
if (half < min_range) {
// Too small
return 0;
}
// Divide and conquer
const size_t first_part = align_down(half, ZGranuleSize);
const size_t second_part = size - first_part;
return reserve_discontiguous(start, first_part, min_range) +
reserve_discontiguous(start + first_part, second_part, min_range);
}
size_t ZVirtualMemoryManager::reserve_discontiguous(size_t size) {
// Don't try to reserve address ranges smaller than 1% of the requested size.
// This avoids an explosion of reservation attempts in case large parts of the
// address space is already occupied.
const size_t min_range = align_up(size / 100, ZGranuleSize);
size_t start = 0;
size_t reserved = 0;
// Reserve size somewhere between [0, ZAddressOffsetMax)
while (reserved < size && start < ZAddressOffsetMax) {
const size_t remaining = MIN2(size - reserved, ZAddressOffsetMax - start);
reserved += reserve_discontiguous(start, remaining, min_range);
start += remaining;
}
return reserved;
}
bool ZVirtualMemoryManager::reserve_contiguous(size_t size) {
// Allow at most 8192 attempts spread evenly across [0, ZAddressOffsetMax)
const size_t end = ZAddressOffsetMax - size;
const size_t increment = align_up(end / 8192, ZGranuleSize);
for (size_t start = 0; start <= end; start += increment) {
if (reserve_contiguous_platform(start, size)) {
// Make the address range free
_manager.free(start, size);
// Success
return true;
}
}
// Failed
return false;
}
bool ZVirtualMemoryManager::reserve(size_t max_capacity) {
const size_t limit = MIN2(ZAddressOffsetMax, ZAddressSpaceLimit::heap_view());
const size_t size = MIN2(max_capacity * ZVirtualToPhysicalRatio, limit);
size_t reserved = size;
bool contiguous = true;
// Prefer a contiguous address space
if (!reserve_contiguous(size)) {
// Fall back to a discontiguous address space
reserved = reserve_discontiguous(size);
contiguous = false;
}
log_info(gc, init)("Address Space Type: %s/%s/%s",
(contiguous ? "Contiguous" : "Discontiguous"),
(limit == ZAddressOffsetMax ? "Unrestricted" : "Restricted"),
(reserved == size ? "Complete" : "Degraded"));
log_info(gc, init)("Address Space Size: " SIZE_FORMAT "M x " SIZE_FORMAT " = " SIZE_FORMAT "M",
reserved / M, ZHeapViews, (reserved * ZHeapViews) / M);
return reserved >= max_capacity;
}
void ZVirtualMemoryManager::nmt_reserve(uintptr_t start, size_t size) {
MemTracker::record_virtual_memory_reserve((void*)start, size, CALLER_PC);
MemTracker::record_virtual_memory_type((void*)start, mtJavaHeap);
}
bool ZVirtualMemoryManager::is_initialized() const {
return _initialized;
}
ZVirtualMemory ZVirtualMemoryManager::alloc(size_t size, bool alloc_from_front) {
uintptr_t start;
if (alloc_from_front || size <= ZPageSizeSmall) {
// Small page
start = _manager.alloc_from_front(size);
} else {
// Medium/Large page
start = _manager.alloc_from_back(size);
}
return ZVirtualMemory(start, size);
}
void ZVirtualMemoryManager::free(const ZVirtualMemory& vmem) {
_manager.free(vmem.start(), vmem.size());
}