blob: cf86de058e55589ccddfeca7056f29b70c1367c2 [file] [log] [blame]
/*
* Copyright (c) 2017, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/z/zArray.inline.hpp"
#include "gc/z/zPage.inline.hpp"
#include "gc/z/zRelocationSet.hpp"
#include "gc/z/zRelocationSetSelector.hpp"
#include "logging/log.hpp"
#include "runtime/globals.hpp"
#include "utilities/debug.hpp"
ZRelocationSetSelectorGroup::ZRelocationSetSelectorGroup(const char* name,
size_t page_size,
size_t object_size_limit) :
_name(name),
_page_size(page_size),
_object_size_limit(object_size_limit),
_fragmentation_limit(page_size * (ZFragmentationLimit / 100)),
_registered_pages(),
_sorted_pages(NULL),
_nselected(0),
_relocating(0),
_fragmentation(0) {}
ZRelocationSetSelectorGroup::~ZRelocationSetSelectorGroup() {
FREE_C_HEAP_ARRAY(ZPage*, _sorted_pages);
}
void ZRelocationSetSelectorGroup::register_live_page(ZPage* page, size_t garbage) {
if (garbage > _fragmentation_limit) {
_registered_pages.add(page);
} else {
_fragmentation += garbage;
}
}
void ZRelocationSetSelectorGroup::semi_sort() {
// Semi-sort registered pages by live bytes in ascending order
const size_t npartitions_shift = 11;
const size_t npartitions = (size_t)1 << npartitions_shift;
const size_t partition_size = _page_size >> npartitions_shift;
const size_t partition_size_shift = exact_log2(partition_size);
const size_t npages = _registered_pages.size();
// Partition slots/fingers
size_t partitions[npartitions];
// Allocate destination array
_sorted_pages = REALLOC_C_HEAP_ARRAY(ZPage*, _sorted_pages, npages, mtGC);
debug_only(memset(_sorted_pages, 0, npages * sizeof(ZPage*)));
// Calculate partition slots
memset(partitions, 0, sizeof(partitions));
ZArrayIterator<ZPage*> iter1(&_registered_pages);
for (ZPage* page; iter1.next(&page);) {
const size_t index = page->live_bytes() >> partition_size_shift;
partitions[index]++;
}
// Calculate partition fingers
size_t finger = 0;
for (size_t i = 0; i < npartitions; i++) {
const size_t slots = partitions[i];
partitions[i] = finger;
finger += slots;
}
// Sort pages into partitions
ZArrayIterator<ZPage*> iter2(&_registered_pages);
for (ZPage* page; iter2.next(&page);) {
const size_t index = page->live_bytes() >> partition_size_shift;
const size_t finger = partitions[index]++;
assert(_sorted_pages[finger] == NULL, "Invalid finger");
_sorted_pages[finger] = page;
}
}
void ZRelocationSetSelectorGroup::select() {
// Calculate the number of pages to relocate by successively including pages in
// a candidate relocation set and calculate the maximum space requirement for
// their live objects.
const size_t npages = _registered_pages.size();
size_t selected_from = 0;
size_t selected_to = 0;
size_t selected_from_size = 0;
size_t from_size = 0;
semi_sort();
for (size_t from = 1; from <= npages; from++) {
// Add page to the candidate relocation set
from_size += _sorted_pages[from - 1]->live_bytes();
// Calculate the maximum number of pages needed by the candidate relocation set.
// By subtracting the object size limit from the pages size we get the maximum
// number of pages that the relocation set is guaranteed to fit in, regardless
// of in which order the objects are relocated.
const size_t to = ceil((double)(from_size) / (double)(_page_size - _object_size_limit));
// Calculate the relative difference in reclaimable space compared to our
// currently selected final relocation set. If this number is larger than the
// acceptable fragmentation limit, then the current candidate relocation set
// becomes our new final relocation set.
const size_t diff_from = from - selected_from;
const size_t diff_to = to - selected_to;
const double diff_reclaimable = 100 - percent_of(diff_to, diff_from);
if (diff_reclaimable > ZFragmentationLimit) {
selected_from = from;
selected_to = to;
selected_from_size = from_size;
}
log_trace(gc, reloc)("Candidate Relocation Set (%s Pages): "
SIZE_FORMAT "->" SIZE_FORMAT ", %.1f%% relative defragmentation, %s",
_name, from, to, diff_reclaimable, (selected_from == from) ? "Selected" : "Rejected");
}
// Finalize selection
_nselected = selected_from;
// Update statistics
_relocating = selected_from_size;
for (size_t i = _nselected; i < npages; i++) {
ZPage* const page = _sorted_pages[i];
_fragmentation += page->size() - page->live_bytes();
}
log_debug(gc, reloc)("Relocation Set (%s Pages): " SIZE_FORMAT "->" SIZE_FORMAT ", " SIZE_FORMAT " skipped",
_name, selected_from, selected_to, npages - _nselected);
}
ZPage* const* ZRelocationSetSelectorGroup::selected() const {
return _sorted_pages;
}
size_t ZRelocationSetSelectorGroup::nselected() const {
return _nselected;
}
size_t ZRelocationSetSelectorGroup::relocating() const {
return _relocating;
}
size_t ZRelocationSetSelectorGroup::fragmentation() const {
return _fragmentation;
}
ZRelocationSetSelector::ZRelocationSetSelector() :
_small("Small", ZPageSizeSmall, ZObjectSizeLimitSmall),
_medium("Medium", ZPageSizeMedium, ZObjectSizeLimitMedium),
_live(0),
_garbage(0),
_fragmentation(0) {}
void ZRelocationSetSelector::register_live_page(ZPage* page) {
const uint8_t type = page->type();
const size_t live = page->live_bytes();
const size_t garbage = page->size() - live;
if (type == ZPageTypeSmall) {
_small.register_live_page(page, garbage);
} else if (type == ZPageTypeMedium) {
_medium.register_live_page(page, garbage);
} else {
_fragmentation += garbage;
}
_live += live;
_garbage += garbage;
}
void ZRelocationSetSelector::register_garbage_page(ZPage* page) {
_garbage += page->size();
}
void ZRelocationSetSelector::select(ZRelocationSet* relocation_set) {
// Select pages to relocate. The resulting relocation set will be
// sorted such that medium pages comes first, followed by small
// pages. Pages within each page group will be semi-sorted by live
// bytes in ascending order. Relocating pages in this order allows
// us to start reclaiming memory more quickly.
// Select pages from each group
_medium.select();
_small.select();
// Populate relocation set
relocation_set->populate(_medium.selected(), _medium.nselected(),
_small.selected(), _small.nselected());
}
size_t ZRelocationSetSelector::live() const {
return _live;
}
size_t ZRelocationSetSelector::garbage() const {
return _garbage;
}
size_t ZRelocationSetSelector::relocating() const {
return _small.relocating() + _medium.relocating();
}
size_t ZRelocationSetSelector::fragmentation() const {
return _fragmentation + _small.fragmentation() + _medium.fragmentation();
}