blob: c92abdc79101547f38fedfc52d711dbdc9789fbb [file] [log] [blame]
/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/z/zAddress.inline.hpp"
#include "gc/z/zCollectedHeap.hpp"
#include "gc/z/zFuture.inline.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zLock.inline.hpp"
#include "gc/z/zPage.inline.hpp"
#include "gc/z/zPageAllocator.hpp"
#include "gc/z/zPageCache.inline.hpp"
#include "gc/z/zSafeDelete.inline.hpp"
#include "gc/z/zStat.hpp"
#include "gc/z/zTracer.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/init.hpp"
#include "runtime/java.hpp"
#include "utilities/debug.hpp"
static const ZStatCounter ZCounterAllocationRate("Memory", "Allocation Rate", ZStatUnitBytesPerSecond);
static const ZStatCounter ZCounterPageCacheFlush("Memory", "Page Cache Flush", ZStatUnitBytesPerSecond);
static const ZStatCounter ZCounterUncommit("Memory", "Uncommit", ZStatUnitBytesPerSecond);
static const ZStatCriticalPhase ZCriticalPhaseAllocationStall("Allocation Stall");
class ZPageAllocRequest : public StackObj {
friend class ZList<ZPageAllocRequest>;
private:
const uint8_t _type;
const size_t _size;
const ZAllocationFlags _flags;
const unsigned int _total_collections;
ZListNode<ZPageAllocRequest> _node;
ZFuture<ZPage*> _result;
public:
ZPageAllocRequest(uint8_t type, size_t size, ZAllocationFlags flags, unsigned int total_collections) :
_type(type),
_size(size),
_flags(flags),
_total_collections(total_collections),
_node(),
_result() {}
uint8_t type() const {
return _type;
}
size_t size() const {
return _size;
}
ZAllocationFlags flags() const {
return _flags;
}
unsigned int total_collections() const {
return _total_collections;
}
ZPage* peek() {
return _result.peek();
}
ZPage* wait() {
return _result.get();
}
void satisfy(ZPage* page) {
_result.set(page);
}
};
ZPage* const ZPageAllocator::gc_marker = (ZPage*)-1;
ZPageAllocator::ZPageAllocator(size_t min_capacity,
size_t initial_capacity,
size_t max_capacity,
size_t max_reserve) :
_lock(),
_virtual(max_capacity),
_physical(),
_cache(),
_min_capacity(min_capacity),
_max_capacity(max_capacity),
_max_reserve(max_reserve),
_current_max_capacity(max_capacity),
_capacity(0),
_used_high(0),
_used_low(0),
_used(0),
_allocated(0),
_reclaimed(0),
_queue(),
_satisfied(),
_safe_delete(),
_uncommit(false),
_initialized(false) {
if (!_virtual.is_initialized() || !_physical.is_initialized()) {
return;
}
log_info(gc, init)("Min Capacity: " SIZE_FORMAT "M", min_capacity / M);
log_info(gc, init)("Initial Capacity: " SIZE_FORMAT "M", initial_capacity / M);
log_info(gc, init)("Max Capacity: " SIZE_FORMAT "M", max_capacity / M);
log_info(gc, init)("Max Reserve: " SIZE_FORMAT "M", max_reserve / M);
log_info(gc, init)("Pre-touch: %s", AlwaysPreTouch ? "Enabled" : "Disabled");
// Warn if system limits could stop us from reaching max capacity
_physical.warn_commit_limits(max_capacity);
// Commit initial capacity
_capacity = _physical.commit(initial_capacity);
if (_capacity != initial_capacity) {
log_error(gc)("Failed to allocate initial Java heap (" SIZE_FORMAT "M)", initial_capacity / M);
return;
}
// If uncommit is not explicitly disabled, max capacity is greater than
// min capacity, and uncommit is supported by the platform, then we will
// try to uncommit unused memory.
_uncommit = ZUncommit && (max_capacity > min_capacity) && _physical.supports_uncommit();
if (_uncommit) {
log_info(gc, init)("Uncommit: Enabled, Delay: " UINTX_FORMAT "s", ZUncommitDelay);
} else {
log_info(gc, init)("Uncommit: Disabled");
}
// Pre-map initial capacity
prime_cache(initial_capacity);
// Successfully initialized
_initialized = true;
}
void ZPageAllocator::prime_cache(size_t size) {
// Allocate physical memory
const ZPhysicalMemory pmem = _physical.alloc(size);
guarantee(!pmem.is_null(), "Invalid size");
// Allocate virtual memory
const ZVirtualMemory vmem = _virtual.alloc(size, true /* alloc_from_front */);
guarantee(!vmem.is_null(), "Invalid size");
// Allocate page
ZPage* const page = new ZPage(vmem, pmem);
// Map page
map_page(page);
page->set_pre_mapped();
// Add page to cache
page->set_last_used();
_cache.free_page(page);
}
bool ZPageAllocator::is_initialized() const {
return _initialized;
}
size_t ZPageAllocator::min_capacity() const {
return _min_capacity;
}
size_t ZPageAllocator::max_capacity() const {
return _max_capacity;
}
size_t ZPageAllocator::soft_max_capacity() const {
// Note that SoftMaxHeapSize is a manageable flag
return MIN2(SoftMaxHeapSize, _current_max_capacity);
}
size_t ZPageAllocator::capacity() const {
return _capacity;
}
size_t ZPageAllocator::max_reserve() const {
return _max_reserve;
}
size_t ZPageAllocator::used_high() const {
return _used_high;
}
size_t ZPageAllocator::used_low() const {
return _used_low;
}
size_t ZPageAllocator::used() const {
return _used;
}
size_t ZPageAllocator::unused() const {
const ssize_t unused = (ssize_t)_capacity - (ssize_t)_used - (ssize_t)_max_reserve;
return unused > 0 ? (size_t)unused : 0;
}
size_t ZPageAllocator::allocated() const {
return _allocated;
}
size_t ZPageAllocator::reclaimed() const {
return _reclaimed > 0 ? (size_t)_reclaimed : 0;
}
void ZPageAllocator::reset_statistics() {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
_allocated = 0;
_reclaimed = 0;
_used_high = _used_low = _used;
}
void ZPageAllocator::increase_used(size_t size, bool relocation) {
if (relocation) {
// Allocating a page for the purpose of relocation has a
// negative contribution to the number of reclaimed bytes.
_reclaimed -= size;
}
_allocated += size;
_used += size;
if (_used > _used_high) {
_used_high = _used;
}
}
void ZPageAllocator::decrease_used(size_t size, bool reclaimed) {
if (reclaimed) {
// Only pages explicitly released with the reclaimed flag set
// counts as reclaimed bytes. This flag is typically true when
// a worker releases a page after relocation, and is typically
// false when we release a page to undo an allocation.
_reclaimed += size;
}
_used -= size;
if (_used < _used_low) {
_used_low = _used;
}
}
ZPage* ZPageAllocator::create_page(uint8_t type, size_t size) {
// Allocate virtual memory
const ZVirtualMemory vmem = _virtual.alloc(size);
if (vmem.is_null()) {
// Out of address space
return NULL;
}
// Allocate physical memory
const ZPhysicalMemory pmem = _physical.alloc(size);
assert(!pmem.is_null(), "Invalid size");
// Allocate page
return new ZPage(type, vmem, pmem);
}
void ZPageAllocator::destroy_page(ZPage* page) {
const ZVirtualMemory& vmem = page->virtual_memory();
const ZPhysicalMemory& pmem = page->physical_memory();
// Unmap memory
_physical.unmap(pmem, vmem.start());
// Free physical memory
_physical.free(pmem);
// Free virtual memory
_virtual.free(vmem);
// Delete page safely
_safe_delete(page);
}
void ZPageAllocator::map_page(const ZPage* page) const {
// Map physical memory
_physical.map(page->physical_memory(), page->start());
}
size_t ZPageAllocator::max_available(bool no_reserve) const {
size_t available = _current_max_capacity - _used;
if (no_reserve) {
// The reserve should not be considered available
available -= MIN2(available, _max_reserve);
}
return available;
}
bool ZPageAllocator::ensure_available(size_t size, bool no_reserve) {
if (max_available(no_reserve) < size) {
// Not enough free memory
return false;
}
// We add the max_reserve to the requested size to avoid losing
// the reserve because of failure to increase capacity before
// reaching max capacity.
size += _max_reserve;
// Don't try to increase capacity if enough unused capacity
// is available or if current max capacity has been reached.
const size_t available = _capacity - _used;
if (available < size && _capacity < _current_max_capacity) {
// Try to increase capacity
const size_t commit = MIN2(size - available, _current_max_capacity - _capacity);
const size_t committed = _physical.commit(commit);
_capacity += committed;
log_trace(gc, heap)("Make Available: Size: " SIZE_FORMAT "M, NoReserve: %s, "
"Available: " SIZE_FORMAT "M, Commit: " SIZE_FORMAT "M, "
"Committed: " SIZE_FORMAT "M, Capacity: " SIZE_FORMAT "M",
size / M, no_reserve ? "True" : "False", available / M,
commit / M, committed / M, _capacity / M);
if (committed != commit) {
// Failed, or partly failed, to increase capacity. Adjust current
// max capacity to avoid further attempts to increase capacity.
log_error(gc)("Forced to lower max Java heap size from "
SIZE_FORMAT "M(%.0f%%) to " SIZE_FORMAT "M(%.0f%%)",
_current_max_capacity / M, percent_of(_current_max_capacity, _max_capacity),
_capacity / M, percent_of(_capacity, _max_capacity));
_current_max_capacity = _capacity;
}
}
if (!no_reserve) {
size -= _max_reserve;
}
const size_t new_available = _capacity - _used;
return new_available >= size;
}
void ZPageAllocator::ensure_uncached_available(size_t size) {
assert(_capacity - _used >= size, "Invalid size");
const size_t uncached_available = _capacity - _used - _cache.available();
if (size > uncached_available) {
flush_cache_for_allocation(size - uncached_available);
}
}
ZPage* ZPageAllocator::alloc_page_common_inner(uint8_t type, size_t size, bool no_reserve) {
if (!ensure_available(size, no_reserve)) {
// Not enough free memory
return NULL;
}
// Try allocate page from the cache
ZPage* const page = _cache.alloc_page(type, size);
if (page != NULL) {
return page;
}
// Try flush pages from the cache
ensure_uncached_available(size);
// Create new page
return create_page(type, size);
}
ZPage* ZPageAllocator::alloc_page_common(uint8_t type, size_t size, ZAllocationFlags flags) {
ZPage* const page = alloc_page_common_inner(type, size, flags.no_reserve());
if (page == NULL) {
// Out of memory
return NULL;
}
// Update used statistics
increase_used(size, flags.relocation());
// Send trace event
ZTracer::tracer()->report_page_alloc(size, _used, max_available(flags.no_reserve()), _cache.available(), flags);
return page;
}
void ZPageAllocator::check_out_of_memory_during_initialization() {
if (!is_init_completed()) {
vm_exit_during_initialization("java.lang.OutOfMemoryError", "Java heap too small");
}
}
ZPage* ZPageAllocator::alloc_page_blocking(uint8_t type, size_t size, ZAllocationFlags flags) {
// Prepare to block
ZPageAllocRequest request(type, size, flags, ZCollectedHeap::heap()->total_collections());
_lock.lock();
// Try non-blocking allocation
ZPage* page = alloc_page_common(type, size, flags);
if (page == NULL) {
// Allocation failed, enqueue request
_queue.insert_last(&request);
}
_lock.unlock();
if (page == NULL) {
// Allocation failed
ZStatTimer timer(ZCriticalPhaseAllocationStall);
// We can only block if VM is fully initialized
check_out_of_memory_during_initialization();
do {
// Start asynchronous GC
ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall);
// Wait for allocation to complete or fail
page = request.wait();
} while (page == gc_marker);
{
//
// We grab the lock here for two different reasons:
//
// 1) Guard deletion of underlying semaphore. This is a workaround for
// a bug in sem_post() in glibc < 2.21, where it's not safe to destroy
// the semaphore immediately after returning from sem_wait(). The
// reason is that sem_post() can touch the semaphore after a waiting
// thread have returned from sem_wait(). To avoid this race we are
// forcing the waiting thread to acquire/release the lock held by the
// posting thread. https://sourceware.org/bugzilla/show_bug.cgi?id=12674
//
// 2) Guard the list of satisfied pages.
//
ZLocker<ZLock> locker(&_lock);
_satisfied.remove(&request);
}
}
return page;
}
ZPage* ZPageAllocator::alloc_page_nonblocking(uint8_t type, size_t size, ZAllocationFlags flags) {
ZLocker<ZLock> locker(&_lock);
return alloc_page_common(type, size, flags);
}
ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) {
ZPage* const page = flags.non_blocking()
? alloc_page_nonblocking(type, size, flags)
: alloc_page_blocking(type, size, flags);
if (page == NULL) {
// Out of memory
return NULL;
}
// Map page if needed
if (!page->is_mapped()) {
map_page(page);
}
// Reset page. This updates the page's sequence number and must
// be done after page allocation, which potentially blocked in
// a safepoint where the global sequence number was updated.
page->reset();
// Update allocation statistics. Exclude worker threads to avoid
// artificial inflation of the allocation rate due to relocation.
if (!flags.worker_thread()) {
// Note that there are two allocation rate counters, which have
// different purposes and are sampled at different frequencies.
const size_t bytes = page->size();
ZStatInc(ZCounterAllocationRate, bytes);
ZStatInc(ZStatAllocRate::counter(), bytes);
}
return page;
}
void ZPageAllocator::satisfy_alloc_queue() {
for (;;) {
ZPageAllocRequest* const request = _queue.first();
if (request == NULL) {
// Allocation queue is empty
return;
}
ZPage* const page = alloc_page_common(request->type(), request->size(), request->flags());
if (page == NULL) {
// Allocation could not be satisfied, give up
return;
}
// Allocation succeeded, dequeue and satisfy request. Note that
// the dequeue operation must happen first, since the request
// will immediately be deallocated once it has been satisfied.
_queue.remove(request);
_satisfied.insert_first(request);
request->satisfy(page);
}
}
void ZPageAllocator::free_page(ZPage* page, bool reclaimed) {
ZLocker<ZLock> locker(&_lock);
// Update used statistics
decrease_used(page->size(), reclaimed);
// Set time when last used
page->set_last_used();
// Cache page
_cache.free_page(page);
// Try satisfy blocked allocations
satisfy_alloc_queue();
}
size_t ZPageAllocator::flush_cache(ZPageCacheFlushClosure* cl) {
ZList<ZPage> list;
// Flush pages
_cache.flush(cl, &list);
const size_t overflushed = cl->overflushed();
if (overflushed > 0) {
// Overflushed, keep part of last page
ZPage* const page = list.last()->split(overflushed);
_cache.free_page(page);
}
// Destroy pages
size_t flushed = 0;
for (ZPage* page = list.remove_first(); page != NULL; page = list.remove_first()) {
flushed += page->size();
destroy_page(page);
}
return flushed;
}
class ZPageCacheFlushForAllocationClosure : public ZPageCacheFlushClosure {
public:
ZPageCacheFlushForAllocationClosure(size_t requested) :
ZPageCacheFlushClosure(requested) {}
virtual bool do_page(const ZPage* page) {
if (_flushed < _requested) {
// Flush page
_flushed += page->size();
return true;
}
// Don't flush page
return false;
}
};
void ZPageAllocator::flush_cache_for_allocation(size_t requested) {
assert(requested <= _cache.available(), "Invalid request");
// Flush pages
ZPageCacheFlushForAllocationClosure cl(requested);
const size_t flushed = flush_cache(&cl);
assert(requested == flushed, "Failed to flush");
const size_t cached_after = _cache.available();
const size_t cached_before = cached_after + flushed;
log_info(gc, heap)("Page Cache: " SIZE_FORMAT "M(%.0f%%)->" SIZE_FORMAT "M(%.0f%%), "
"Flushed: " SIZE_FORMAT "M",
cached_before / M, percent_of(cached_before, max_capacity()),
cached_after / M, percent_of(cached_after, max_capacity()),
flushed / M);
// Update statistics
ZStatInc(ZCounterPageCacheFlush, flushed);
}
class ZPageCacheFlushForUncommitClosure : public ZPageCacheFlushClosure {
private:
const uint64_t _now;
const uint64_t _delay;
uint64_t _timeout;
public:
ZPageCacheFlushForUncommitClosure(size_t requested, uint64_t delay) :
ZPageCacheFlushClosure(requested),
_now(os::elapsedTime()),
_delay(delay),
_timeout(_delay) {}
virtual bool do_page(const ZPage* page) {
const uint64_t expires = page->last_used() + _delay;
const uint64_t timeout = expires - MIN2(expires, _now);
if (_flushed < _requested && timeout == 0) {
// Flush page
_flushed += page->size();
return true;
}
// Record shortest non-expired timeout
_timeout = MIN2(_timeout, timeout);
// Don't flush page
return false;
}
uint64_t timeout() const {
return _timeout;
}
};
uint64_t ZPageAllocator::uncommit(uint64_t delay) {
// Set the default timeout, when no pages are found in the
// cache or when uncommit is disabled, equal to the delay.
uint64_t timeout = delay;
if (!_uncommit) {
// Disabled
return timeout;
}
size_t capacity_before;
size_t capacity_after;
size_t uncommitted;
{
SuspendibleThreadSetJoiner joiner;
ZLocker<ZLock> locker(&_lock);
// Don't flush more than we will uncommit. Never uncommit
// the reserve, and never uncommit below min capacity.
const size_t needed = MIN2(_used + _max_reserve, _current_max_capacity);
const size_t guarded = MAX2(needed, _min_capacity);
const size_t uncommittable = _capacity - guarded;
const size_t uncached_available = _capacity - _used - _cache.available();
size_t uncommit = MIN2(uncommittable, uncached_available);
const size_t flush = uncommittable - uncommit;
if (flush > 0) {
// Flush pages to uncommit
ZPageCacheFlushForUncommitClosure cl(flush, delay);
uncommit += flush_cache(&cl);
timeout = cl.timeout();
}
// Uncommit
uncommitted = _physical.uncommit(uncommit);
_capacity -= uncommitted;
capacity_after = _capacity;
capacity_before = capacity_after + uncommitted;
}
if (uncommitted > 0) {
log_info(gc, heap)("Capacity: " SIZE_FORMAT "M(%.0f%%)->" SIZE_FORMAT "M(%.0f%%), "
"Uncommitted: " SIZE_FORMAT "M",
capacity_before / M, percent_of(capacity_before, max_capacity()),
capacity_after / M, percent_of(capacity_after, max_capacity()),
uncommitted / M);
// Update statistics
ZStatInc(ZCounterUncommit, uncommitted);
}
return timeout;
}
void ZPageAllocator::enable_deferred_delete() const {
_safe_delete.enable_deferred_delete();
}
void ZPageAllocator::disable_deferred_delete() const {
_safe_delete.disable_deferred_delete();
}
void ZPageAllocator::debug_map_page(const ZPage* page) const {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
_physical.debug_map(page->physical_memory(), page->start());
}
void ZPageAllocator::debug_unmap_page(const ZPage* page) const {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
_physical.debug_unmap(page->physical_memory(), page->start());
}
void ZPageAllocator::pages_do(ZPageClosure* cl) const {
ZListIterator<ZPageAllocRequest> iter(&_satisfied);
for (ZPageAllocRequest* request; iter.next(&request);) {
const ZPage* const page = request->peek();
if (page != NULL) {
cl->do_page(page);
}
}
_cache.pages_do(cl);
}
bool ZPageAllocator::is_alloc_stalled() const {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
return !_queue.is_empty();
}
void ZPageAllocator::check_out_of_memory() {
ZLocker<ZLock> locker(&_lock);
// Fail allocation requests that were enqueued before the
// last GC cycle started, otherwise start a new GC cycle.
for (ZPageAllocRequest* request = _queue.first(); request != NULL; request = _queue.first()) {
if (request->total_collections() == ZCollectedHeap::heap()->total_collections()) {
// Start a new GC cycle, keep allocation requests enqueued
request->satisfy(gc_marker);
return;
}
// Out of memory, fail allocation request
_queue.remove(request);
_satisfied.insert_first(request);
request->satisfy(NULL);
}
}