blob: 2b13c9b36505a5981d65dd3e931deeb71a769f08 [file] [log] [blame]
/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/z/zList.inline.hpp"
#include "gc/z/zMemory.inline.hpp"
#include "memory/allocation.inline.hpp"
ZMemory* ZMemoryManager::create(uintptr_t start, size_t size) {
ZMemory* const area = new ZMemory(start, size);
if (_callbacks._create != NULL) {
_callbacks._create(area);
}
return area;
}
void ZMemoryManager::destroy(ZMemory* area) {
if (_callbacks._destroy != NULL) {
_callbacks._destroy(area);
}
delete area;
}
void ZMemoryManager::shrink_from_front(ZMemory* area, size_t size) {
if (_callbacks._shrink_from_front != NULL) {
_callbacks._shrink_from_front(area, size);
}
area->shrink_from_front(size);
}
void ZMemoryManager::shrink_from_back(ZMemory* area, size_t size) {
if (_callbacks._shrink_from_back != NULL) {
_callbacks._shrink_from_back(area, size);
}
area->shrink_from_back(size);
}
void ZMemoryManager::grow_from_front(ZMemory* area, size_t size) {
if (_callbacks._grow_from_front != NULL) {
_callbacks._grow_from_front(area, size);
}
area->grow_from_front(size);
}
void ZMemoryManager::grow_from_back(ZMemory* area, size_t size) {
if (_callbacks._grow_from_back != NULL) {
_callbacks._grow_from_back(area, size);
}
area->grow_from_back(size);
}
ZMemoryManager::Callbacks::Callbacks() :
_create(NULL),
_destroy(NULL),
_shrink_from_front(NULL),
_shrink_from_back(NULL),
_grow_from_front(NULL),
_grow_from_back(NULL) {}
ZMemoryManager::ZMemoryManager() :
_freelist(),
_callbacks() {}
void ZMemoryManager::register_callbacks(const Callbacks& callbacks) {
_callbacks = callbacks;
}
uintptr_t ZMemoryManager::alloc_from_front(size_t size) {
ZListIterator<ZMemory> iter(&_freelist);
for (ZMemory* area; iter.next(&area);) {
if (area->size() >= size) {
if (area->size() == size) {
// Exact match, remove area
const uintptr_t start = area->start();
_freelist.remove(area);
destroy(area);
return start;
} else {
// Larger than requested, shrink area
const uintptr_t start = area->start();
shrink_from_front(area, size);
return start;
}
}
}
// Out of memory
return UINTPTR_MAX;
}
uintptr_t ZMemoryManager::alloc_from_front_at_most(size_t size, size_t* allocated) {
ZMemory* area = _freelist.first();
if (area != NULL) {
if (area->size() <= size) {
// Smaller than or equal to requested, remove area
const uintptr_t start = area->start();
*allocated = area->size();
_freelist.remove(area);
destroy(area);
return start;
} else {
// Larger than requested, shrink area
const uintptr_t start = area->start();
shrink_from_front(area, size);
*allocated = size;
return start;
}
}
// Out of memory
*allocated = 0;
return UINTPTR_MAX;
}
uintptr_t ZMemoryManager::alloc_from_back(size_t size) {
ZListReverseIterator<ZMemory> iter(&_freelist);
for (ZMemory* area; iter.next(&area);) {
if (area->size() >= size) {
if (area->size() == size) {
// Exact match, remove area
const uintptr_t start = area->start();
_freelist.remove(area);
destroy(area);
return start;
} else {
// Larger than requested, shrink area
shrink_from_back(area, size);
return area->end();
}
}
}
// Out of memory
return UINTPTR_MAX;
}
uintptr_t ZMemoryManager::alloc_from_back_at_most(size_t size, size_t* allocated) {
ZMemory* area = _freelist.last();
if (area != NULL) {
if (area->size() <= size) {
// Smaller than or equal to requested, remove area
const uintptr_t start = area->start();
*allocated = area->size();
_freelist.remove(area);
destroy(area);
return start;
} else {
// Larger than requested, shrink area
shrink_from_back(area, size);
*allocated = size;
return area->end();
}
}
// Out of memory
*allocated = 0;
return UINTPTR_MAX;
}
void ZMemoryManager::free(uintptr_t start, size_t size) {
assert(start != UINTPTR_MAX, "Invalid address");
const uintptr_t end = start + size;
ZListIterator<ZMemory> iter(&_freelist);
for (ZMemory* area; iter.next(&area);) {
if (start < area->start()) {
ZMemory* const prev = _freelist.prev(area);
if (prev != NULL && start == prev->end()) {
if (end == area->start()) {
// Merge with prev and current area
grow_from_back(prev, size + area->size());
_freelist.remove(area);
delete area;
} else {
// Merge with prev area
grow_from_back(prev, size);
}
} else if (end == area->start()) {
// Merge with current area
grow_from_front(area, size);
} else {
// Insert new area before current area
assert(end < area->start(), "Areas must not overlap");
ZMemory* const new_area = create(start, size);
_freelist.insert_before(area, new_area);
}
// Done
return;
}
}
// Insert last
ZMemory* const last = _freelist.last();
if (last != NULL && start == last->end()) {
// Merge with last area
grow_from_back(last, size);
} else {
// Insert new area last
ZMemory* const new_area = create(start, size);
_freelist.insert_last(new_area);
}
}