blob: 5949a18eaab56620bad42469e4af0db330368fc0 [file] [log] [blame]
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/sparsePRT.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutexLocker.hpp"
// Check that the size of the SparsePRTEntry is evenly divisible by the maximum
// member type to avoid SIGBUS when accessing them.
STATIC_ASSERT(sizeof(SparsePRTEntry) % sizeof(int) == 0);
void SparsePRTEntry::init(RegionIdx_t region_ind) {
// Check that the card array element type can represent all cards in the region.
// Choose a large SparsePRTEntry::card_elem_t (e.g. CardIdx_t) if required.
assert(((size_t)1 << (sizeof(SparsePRTEntry::card_elem_t) * BitsPerByte)) *
G1CardTable::card_size >= HeapRegionBounds::max_size(), "precondition");
assert(G1RSetSparseRegionEntries > 0, "precondition");
_region_ind = region_ind;
_next_index = RSHashTable::NullEntry;
_next_null = 0;
}
bool SparsePRTEntry::contains_card(CardIdx_t card_index) const {
for (int i = 0; i < num_valid_cards(); i++) {
if (card(i) == card_index) {
return true;
}
}
return false;
}
SparsePRTEntry::AddCardResult SparsePRTEntry::add_card(CardIdx_t card_index) {
for (int i = 0; i < num_valid_cards(); i++) {
if (card(i) == card_index) {
return found;
}
}
if (num_valid_cards() < cards_num() - 1) {
_cards[_next_null] = (card_elem_t)card_index;
_next_null++;
return added;
}
// Otherwise, we're full.
return overflow;
}
void SparsePRTEntry::copy_cards(card_elem_t* cards) const {
memcpy(cards, _cards, cards_num() * sizeof(card_elem_t));
}
void SparsePRTEntry::copy_cards(SparsePRTEntry* e) const {
copy_cards(e->_cards);
assert(_next_null >= 0, "invariant");
assert(_next_null <= cards_num(), "invariant");
e->_next_null = _next_null;
}
// ----------------------------------------------------------------------
float RSHashTable::TableOccupancyFactor = 0.5f;
RSHashTable::RSHashTable(size_t capacity) :
_num_entries(0),
_capacity(capacity),
_capacity_mask(capacity-1),
_occupied_entries(0),
_occupied_cards(0),
_entries(NULL),
_buckets(NEW_C_HEAP_ARRAY(int, capacity, mtGC)),
_free_region(0),
_free_list(NullEntry)
{
_num_entries = (capacity * TableOccupancyFactor) + 1;
_entries = (SparsePRTEntry*)NEW_C_HEAP_ARRAY(char, _num_entries * SparsePRTEntry::size(), mtGC);
clear();
}
RSHashTable::~RSHashTable() {
FREE_C_HEAP_ARRAY(SparsePRTEntry, _entries);
FREE_C_HEAP_ARRAY(int, _buckets);
}
void RSHashTable::clear() {
_occupied_entries = 0;
_occupied_cards = 0;
guarantee(_entries != NULL, "INV");
guarantee(_buckets != NULL, "INV");
guarantee(_capacity <= ((size_t)1 << (sizeof(int)*BitsPerByte-1)) - 1,
"_capacity too large");
// This will put -1 == NullEntry in the key field of all entries.
memset((void*)_entries, NullEntry, _num_entries * SparsePRTEntry::size());
memset((void*)_buckets, NullEntry, _capacity * sizeof(int));
_free_list = NullEntry;
_free_region = 0;
}
bool RSHashTable::add_card(RegionIdx_t region_ind, CardIdx_t card_index) {
SparsePRTEntry* e = entry_for_region_ind_create(region_ind);
assert(e != NULL && e->r_ind() == region_ind,
"Postcondition of call above.");
SparsePRTEntry::AddCardResult res = e->add_card(card_index);
if (res == SparsePRTEntry::added) _occupied_cards++;
assert(e->num_valid_cards() > 0, "Postcondition");
return res != SparsePRTEntry::overflow;
}
SparsePRTEntry* RSHashTable::get_entry(RegionIdx_t region_ind) const {
int ind = (int) (region_ind & capacity_mask());
int cur_ind = _buckets[ind];
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
cur_ind = cur->next_index();
}
if (cur_ind == NullEntry) return NULL;
// Otherwise...
assert(cur->r_ind() == region_ind, "Postcondition of loop + test above.");
assert(cur->num_valid_cards() > 0, "Inv");
return cur;
}
bool RSHashTable::delete_entry(RegionIdx_t region_ind) {
int ind = (int) (region_ind & capacity_mask());
int* prev_loc = &_buckets[ind];
int cur_ind = *prev_loc;
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
prev_loc = cur->next_index_addr();
cur_ind = *prev_loc;
}
if (cur_ind == NullEntry) return false;
// Otherwise, splice out "cur".
*prev_loc = cur->next_index();
_occupied_cards -= cur->num_valid_cards();
free_entry(cur_ind);
_occupied_entries--;
return true;
}
SparsePRTEntry*
RSHashTable::entry_for_region_ind_create(RegionIdx_t region_ind) {
SparsePRTEntry* res = get_entry(region_ind);
if (res == NULL) {
int new_ind = alloc_entry();
res = entry(new_ind);
res->init(region_ind);
// Insert at front.
int ind = (int) (region_ind & capacity_mask());
res->set_next_index(_buckets[ind]);
_buckets[ind] = new_ind;
_occupied_entries++;
}
return res;
}
int RSHashTable::alloc_entry() {
int res;
if (_free_list != NullEntry) {
res = _free_list;
_free_list = entry(res)->next_index();
return res;
} else if ((size_t)_free_region < _num_entries) {
res = _free_region;
_free_region++;
return res;
} else {
return NullEntry;
}
}
void RSHashTable::free_entry(int fi) {
entry(fi)->set_next_index(_free_list);
_free_list = fi;
}
void RSHashTable::add_entry(SparsePRTEntry* e) {
assert(e->num_valid_cards() > 0, "Precondition.");
SparsePRTEntry* e2 = entry_for_region_ind_create(e->r_ind());
e->copy_cards(e2);
_occupied_cards += e2->num_valid_cards();
assert(e2->num_valid_cards() > 0, "Postcondition.");
}
CardIdx_t RSHashTableIter::find_first_card_in_list() {
while (_bl_ind != RSHashTable::NullEntry) {
SparsePRTEntry* sparse_entry = _rsht->entry(_bl_ind);
if (sparse_entry->num_valid_cards() > 0) {
return sparse_entry->card(0);
} else {
_bl_ind = sparse_entry->next_index();
}
}
// Otherwise, none found:
return NoCardFound;
}
size_t RSHashTableIter::compute_card_ind(CardIdx_t ci) {
return (_rsht->entry(_bl_ind)->r_ind() * HeapRegion::CardsPerRegion) + ci;
}
bool RSHashTableIter::has_next(size_t& card_index) {
_card_ind++;
if (_bl_ind >= 0) {
SparsePRTEntry* e = _rsht->entry(_bl_ind);
if (_card_ind < e->num_valid_cards()) {
CardIdx_t ci = e->card(_card_ind);
card_index = compute_card_ind(ci);
return true;
}
}
// Otherwise, must find the next valid entry.
_card_ind = 0;
if (_bl_ind != RSHashTable::NullEntry) {
_bl_ind = _rsht->entry(_bl_ind)->next_index();
CardIdx_t ci = find_first_card_in_list();
if (ci != NoCardFound) {
card_index = compute_card_ind(ci);
return true;
}
}
// If we didn't return above, must go to the next non-null table index.
_tbl_ind++;
while ((size_t)_tbl_ind < _rsht->capacity()) {
_bl_ind = _rsht->_buckets[_tbl_ind];
CardIdx_t ci = find_first_card_in_list();
if (ci != NoCardFound) {
card_index = compute_card_ind(ci);
return true;
}
// Otherwise, try next entry.
_tbl_ind++;
}
// Otherwise, there were no entry.
return false;
}
bool RSHashTableBucketIter::has_next(SparsePRTEntry*& entry) {
while (_bl_ind == RSHashTable::NullEntry) {
if (_tbl_ind == (int)_rsht->capacity() - 1) {
return false;
}
_tbl_ind++;
_bl_ind = _rsht->_buckets[_tbl_ind];
}
entry = _rsht->entry(_bl_ind);
_bl_ind = entry->next_index();
return true;
}
bool RSHashTable::contains_card(RegionIdx_t region_index, CardIdx_t card_index) const {
SparsePRTEntry* e = get_entry(region_index);
return (e != NULL && e->contains_card(card_index));
}
size_t RSHashTable::mem_size() const {
return sizeof(RSHashTable) +
_num_entries * (SparsePRTEntry::size() + sizeof(int));
}
// ----------------------------------------------------------------------
SparsePRT::SparsePRT() :
_table(new RSHashTable(InitialCapacity)) {
}
SparsePRT::~SparsePRT() {
delete _table;
}
size_t SparsePRT::mem_size() const {
// We ignore "_cur" here, because it either = _next, or else it is
// on the deleted list.
return sizeof(SparsePRT) + _table->mem_size();
}
bool SparsePRT::add_card(RegionIdx_t region_id, CardIdx_t card_index) {
if (_table->should_expand()) {
expand();
}
return _table->add_card(region_id, card_index);
}
SparsePRTEntry* SparsePRT::get_entry(RegionIdx_t region_id) {
return _table->get_entry(region_id);
}
bool SparsePRT::delete_entry(RegionIdx_t region_id) {
return _table->delete_entry(region_id);
}
void SparsePRT::clear() {
// If the entry table is not at initial capacity, just create a new one.
if (_table->capacity() != InitialCapacity) {
delete _table;
_table = new RSHashTable(InitialCapacity);
} else {
_table->clear();
}
}
void SparsePRT::expand() {
RSHashTable* last = _table;
_table = new RSHashTable(last->capacity() * 2);
for (size_t i = 0; i < last->num_entries(); i++) {
SparsePRTEntry* e = last->entry((int)i);
if (e->valid_entry()) {
_table->add_entry(e);
}
}
delete last;
}