blob: c5e7b1887133ad34b7b1165cea99c2d9e2d0bb09 [file] [log] [blame]
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionRemSet.inline.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/allocation.hpp"
#include "memory/padded.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/growableArray.hpp"
const char* HeapRegionRemSet::_state_strings[] = {"Untracked", "Updating", "Complete"};
const char* HeapRegionRemSet::_short_state_strings[] = {"UNTRA", "UPDAT", "CMPLT"};
PerRegionTable* PerRegionTable::alloc(HeapRegion* hr) {
PerRegionTable* fl = _free_list;
while (fl != NULL) {
PerRegionTable* nxt = fl->next();
PerRegionTable* res = Atomic::cmpxchg(nxt, &_free_list, fl);
if (res == fl) {
fl->init(hr, true);
return fl;
} else {
fl = _free_list;
}
}
assert(fl == NULL, "Loop condition.");
return new PerRegionTable(hr);
}
PerRegionTable* volatile PerRegionTable::_free_list = NULL;
size_t OtherRegionsTable::_max_fine_entries = 0;
size_t OtherRegionsTable::_mod_max_fine_entries_mask = 0;
size_t OtherRegionsTable::_fine_eviction_stride = 0;
size_t OtherRegionsTable::_fine_eviction_sample_size = 0;
OtherRegionsTable::OtherRegionsTable(Mutex* m) :
_g1h(G1CollectedHeap::heap()),
_m(m),
_coarse_map(G1CollectedHeap::heap()->max_regions(), mtGC),
_n_coarse_entries(0),
_fine_grain_regions(NULL),
_n_fine_entries(0),
_first_all_fine_prts(NULL),
_last_all_fine_prts(NULL),
_fine_eviction_start(0),
_sparse_table()
{
typedef PerRegionTable* PerRegionTablePtr;
if (_max_fine_entries == 0) {
assert(_mod_max_fine_entries_mask == 0, "Both or none.");
size_t max_entries_log = (size_t)log2_long((jlong)G1RSetRegionEntries);
_max_fine_entries = (size_t)1 << max_entries_log;
_mod_max_fine_entries_mask = _max_fine_entries - 1;
assert(_fine_eviction_sample_size == 0
&& _fine_eviction_stride == 0, "All init at same time.");
_fine_eviction_sample_size = MAX2((size_t)4, max_entries_log);
_fine_eviction_stride = _max_fine_entries / _fine_eviction_sample_size;
}
_fine_grain_regions = NEW_C_HEAP_ARRAY3(PerRegionTablePtr, _max_fine_entries,
mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
if (_fine_grain_regions == NULL) {
vm_exit_out_of_memory(sizeof(void*)*_max_fine_entries, OOM_MALLOC_ERROR,
"Failed to allocate _fine_grain_entries.");
}
for (size_t i = 0; i < _max_fine_entries; i++) {
_fine_grain_regions[i] = NULL;
}
}
void OtherRegionsTable::link_to_all(PerRegionTable* prt) {
// We always append to the beginning of the list for convenience;
// the order of entries in this list does not matter.
if (_first_all_fine_prts != NULL) {
assert(_first_all_fine_prts->prev() == NULL, "invariant");
_first_all_fine_prts->set_prev(prt);
prt->set_next(_first_all_fine_prts);
} else {
// this is the first element we insert. Adjust the "last" pointer
_last_all_fine_prts = prt;
assert(prt->next() == NULL, "just checking");
}
// the new element is always the first element without a predecessor
prt->set_prev(NULL);
_first_all_fine_prts = prt;
assert(prt->prev() == NULL, "just checking");
assert(_first_all_fine_prts == prt, "just checking");
assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) ||
(_first_all_fine_prts != NULL && _last_all_fine_prts != NULL),
"just checking");
assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL,
"just checking");
assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL,
"just checking");
}
void OtherRegionsTable::unlink_from_all(PerRegionTable* prt) {
if (prt->prev() != NULL) {
assert(_first_all_fine_prts != prt, "just checking");
prt->prev()->set_next(prt->next());
// removing the last element in the list?
if (_last_all_fine_prts == prt) {
_last_all_fine_prts = prt->prev();
}
} else {
assert(_first_all_fine_prts == prt, "just checking");
_first_all_fine_prts = prt->next();
// list is empty now?
if (_first_all_fine_prts == NULL) {
_last_all_fine_prts = NULL;
}
}
if (prt->next() != NULL) {
prt->next()->set_prev(prt->prev());
}
prt->set_next(NULL);
prt->set_prev(NULL);
assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) ||
(_first_all_fine_prts != NULL && _last_all_fine_prts != NULL),
"just checking");
assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL,
"just checking");
assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL,
"just checking");
}
CardIdx_t OtherRegionsTable::card_within_region(OopOrNarrowOopStar within_region, HeapRegion* hr) {
assert(hr->is_in_reserved(within_region),
"HeapWord " PTR_FORMAT " is outside of region %u [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(within_region), hr->hrm_index(), p2i(hr->bottom()), p2i(hr->end()));
CardIdx_t result = (CardIdx_t)(pointer_delta((HeapWord*)within_region, hr->bottom()) >> (CardTable::card_shift - LogHeapWordSize));
return result;
}
void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, uint tid) {
// Note that this may be a continued H region.
HeapRegion* from_hr = _g1h->heap_region_containing(from);
RegionIdx_t from_hrm_ind = (RegionIdx_t) from_hr->hrm_index();
// If the region is already coarsened, return.
if (_coarse_map.at(from_hrm_ind)) {
assert(contains_reference(from), "We just found " PTR_FORMAT " in the Coarse table", p2i(from));
return;
}
// Otherwise find a per-region table to add it to.
size_t ind = from_hrm_ind & _mod_max_fine_entries_mask;
PerRegionTable* prt = find_region_table(ind, from_hr);
if (prt == NULL) {
MutexLocker x(_m, Mutex::_no_safepoint_check_flag);
// Confirm that it's really not there...
prt = find_region_table(ind, from_hr);
if (prt == NULL) {
CardIdx_t card_index = card_within_region(from, from_hr);
if (_sparse_table.add_card(from_hrm_ind, card_index)) {
assert(contains_reference_locked(from), "We just added " PTR_FORMAT " to the Sparse table", p2i(from));
return;
}
if (_n_fine_entries == _max_fine_entries) {
prt = delete_region_table();
// There is no need to clear the links to the 'all' list here:
// prt will be reused immediately, i.e. remain in the 'all' list.
prt->init(from_hr, false /* clear_links_to_all_list */);
} else {
prt = PerRegionTable::alloc(from_hr);
link_to_all(prt);
}
PerRegionTable* first_prt = _fine_grain_regions[ind];
prt->set_collision_list_next(first_prt);
// The assignment into _fine_grain_regions allows the prt to
// start being used concurrently. In addition to
// collision_list_next which must be visible (else concurrent
// parsing of the list, if any, may fail to see other entries),
// the content of the prt must be visible (else for instance
// some mark bits may not yet seem cleared or a 'later' update
// performed by a concurrent thread could be undone when the
// zeroing becomes visible). This requires store ordering.
OrderAccess::release_store(&_fine_grain_regions[ind], prt);
_n_fine_entries++;
// Transfer from sparse to fine-grain.
SparsePRTEntry *sprt_entry = _sparse_table.get_entry(from_hrm_ind);
assert(sprt_entry != NULL, "There should have been an entry");
for (int i = 0; i < sprt_entry->num_valid_cards(); i++) {
CardIdx_t c = sprt_entry->card(i);
prt->add_card(c);
}
// Now we can delete the sparse entry.
bool res = _sparse_table.delete_entry(from_hrm_ind);
assert(res, "It should have been there.");
}
assert(prt != NULL && prt->hr() == from_hr, "consequence");
}
// Note that we can't assert "prt->hr() == from_hr", because of the
// possibility of concurrent reuse. But see head comment of
// OtherRegionsTable for why this is OK.
assert(prt != NULL, "Inv");
prt->add_reference(from);
assert(contains_reference(from), "We just added " PTR_FORMAT " to the PRT (%d)", p2i(from), prt->contains_reference(from));
}
PerRegionTable*
OtherRegionsTable::find_region_table(size_t ind, HeapRegion* hr) const {
assert(ind < _max_fine_entries, "Preconditions.");
PerRegionTable* prt = _fine_grain_regions[ind];
while (prt != NULL && prt->hr() != hr) {
prt = prt->collision_list_next();
}
// Loop postcondition is the method postcondition.
return prt;
}
jint OtherRegionsTable::_n_coarsenings = 0;
PerRegionTable* OtherRegionsTable::delete_region_table() {
assert(_m->owned_by_self(), "Precondition");
assert(_n_fine_entries == _max_fine_entries, "Precondition");
PerRegionTable* max = NULL;
jint max_occ = 0;
PerRegionTable** max_prev = NULL;
size_t max_ind;
size_t i = _fine_eviction_start;
for (size_t k = 0; k < _fine_eviction_sample_size; k++) {
size_t ii = i;
// Make sure we get a non-NULL sample.
while (_fine_grain_regions[ii] == NULL) {
ii++;
if (ii == _max_fine_entries) ii = 0;
guarantee(ii != i, "We must find one.");
}
PerRegionTable** prev = &_fine_grain_regions[ii];
PerRegionTable* cur = *prev;
while (cur != NULL) {
jint cur_occ = cur->occupied();
if (max == NULL || cur_occ > max_occ) {
max = cur;
max_prev = prev;
max_ind = i;
max_occ = cur_occ;
}
prev = cur->collision_list_next_addr();
cur = cur->collision_list_next();
}
i = i + _fine_eviction_stride;
if (i >= _n_fine_entries) i = i - _n_fine_entries;
}
_fine_eviction_start++;
if (_fine_eviction_start >= _n_fine_entries) {
_fine_eviction_start -= _n_fine_entries;
}
guarantee(max != NULL, "Since _n_fine_entries > 0");
guarantee(max_prev != NULL, "Since max != NULL.");
// Set the corresponding coarse bit.
size_t max_hrm_index = (size_t) max->hr()->hrm_index();
if (!_coarse_map.at(max_hrm_index)) {
_coarse_map.at_put(max_hrm_index, true);
_n_coarse_entries++;
}
// Unsplice.
*max_prev = max->collision_list_next();
Atomic::inc(&_n_coarsenings);
_n_fine_entries--;
return max;
}
bool OtherRegionsTable::occupancy_less_or_equal_than(size_t limit) const {
if (limit <= (size_t)G1RSetSparseRegionEntries) {
return occ_coarse() == 0 && _first_all_fine_prts == NULL && occ_sparse() <= limit;
} else {
// Current uses of this method may only use values less than G1RSetSparseRegionEntries
// for the limit. The solution, comparing against occupied() would be too slow
// at this time.
Unimplemented();
return false;
}
}
bool OtherRegionsTable::is_empty() const {
return occ_sparse() == 0 && occ_coarse() == 0 && _first_all_fine_prts == NULL;
}
size_t OtherRegionsTable::occupied() const {
size_t sum = occ_fine();
sum += occ_sparse();
sum += occ_coarse();
return sum;
}
size_t OtherRegionsTable::occ_fine() const {
size_t sum = 0;
size_t num = 0;
PerRegionTable * cur = _first_all_fine_prts;
while (cur != NULL) {
sum += cur->occupied();
cur = cur->next();
num++;
}
guarantee(num == _n_fine_entries, "just checking");
return sum;
}
size_t OtherRegionsTable::occ_coarse() const {
return (_n_coarse_entries * HeapRegion::CardsPerRegion);
}
size_t OtherRegionsTable::occ_sparse() const {
return _sparse_table.occupied();
}
size_t OtherRegionsTable::mem_size() const {
size_t sum = 0;
// all PRTs are of the same size so it is sufficient to query only one of them.
if (_first_all_fine_prts != NULL) {
assert(_last_all_fine_prts != NULL &&
_first_all_fine_prts->mem_size() == _last_all_fine_prts->mem_size(), "check that mem_size() is constant");
sum += _first_all_fine_prts->mem_size() * _n_fine_entries;
}
sum += (sizeof(PerRegionTable*) * _max_fine_entries);
sum += (_coarse_map.size_in_words() * HeapWordSize);
sum += (_sparse_table.mem_size());
sum += sizeof(OtherRegionsTable) - sizeof(_sparse_table); // Avoid double counting above.
return sum;
}
size_t OtherRegionsTable::static_mem_size() {
return G1FromCardCache::static_mem_size();
}
size_t OtherRegionsTable::fl_mem_size() {
return PerRegionTable::fl_mem_size();
}
void OtherRegionsTable::clear() {
// if there are no entries, skip this step
if (_first_all_fine_prts != NULL) {
guarantee(_first_all_fine_prts != NULL && _last_all_fine_prts != NULL, "just checking");
PerRegionTable::bulk_free(_first_all_fine_prts, _last_all_fine_prts);
memset(_fine_grain_regions, 0, _max_fine_entries * sizeof(_fine_grain_regions[0]));
} else {
guarantee(_first_all_fine_prts == NULL && _last_all_fine_prts == NULL, "just checking");
}
_first_all_fine_prts = _last_all_fine_prts = NULL;
_sparse_table.clear();
if (_n_coarse_entries > 0) {
_coarse_map.clear();
}
_n_fine_entries = 0;
_n_coarse_entries = 0;
}
bool OtherRegionsTable::contains_reference(OopOrNarrowOopStar from) const {
// Cast away const in this case.
MutexLocker x((Mutex*)_m, Mutex::_no_safepoint_check_flag);
return contains_reference_locked(from);
}
bool OtherRegionsTable::contains_reference_locked(OopOrNarrowOopStar from) const {
HeapRegion* hr = _g1h->heap_region_containing(from);
RegionIdx_t hr_ind = (RegionIdx_t) hr->hrm_index();
// Is this region in the coarse map?
if (_coarse_map.at(hr_ind)) return true;
PerRegionTable* prt = find_region_table(hr_ind & _mod_max_fine_entries_mask,
hr);
if (prt != NULL) {
return prt->contains_reference(from);
} else {
CardIdx_t card_index = card_within_region(from, hr);
return _sparse_table.contains_card(hr_ind, card_index);
}
}
HeapRegionRemSet::HeapRegionRemSet(G1BlockOffsetTable* bot,
HeapRegion* hr)
: _bot(bot),
_code_roots(),
_m(Mutex::leaf, FormatBuffer<128>("HeapRegionRemSet lock #%u", hr->hrm_index()), true, Mutex::_safepoint_check_never),
_other_regions(&_m),
_hr(hr),
_state(Untracked)
{
}
void HeapRegionRemSet::clear_fcc() {
G1FromCardCache::clear(_hr->hrm_index());
}
void HeapRegionRemSet::setup_remset_size() {
const int LOG_M = 20;
guarantee(HeapRegion::LogOfHRGrainBytes >= LOG_M, "Code assumes the region size >= 1M, but is " SIZE_FORMAT "B", HeapRegion::GrainBytes);
int region_size_log_mb = HeapRegion::LogOfHRGrainBytes - LOG_M;
if (FLAG_IS_DEFAULT(G1RSetSparseRegionEntries)) {
G1RSetSparseRegionEntries = G1RSetSparseRegionEntriesBase * ((size_t)1 << (region_size_log_mb + 1));
}
if (FLAG_IS_DEFAULT(G1RSetRegionEntries)) {
G1RSetRegionEntries = G1RSetRegionEntriesBase * (region_size_log_mb + 1);
}
guarantee(G1RSetSparseRegionEntries > 0 && G1RSetRegionEntries > 0 , "Sanity");
}
void HeapRegionRemSet::clear(bool only_cardset) {
MutexLocker x(&_m, Mutex::_no_safepoint_check_flag);
clear_locked(only_cardset);
}
void HeapRegionRemSet::clear_locked(bool only_cardset) {
if (!only_cardset) {
_code_roots.clear();
}
clear_fcc();
_other_regions.clear();
set_state_empty();
assert(occupied_locked() == 0, "Should be clear.");
}
// Code roots support
//
// The code root set is protected by two separate locking schemes
// When at safepoint the per-hrrs lock must be held during modifications
// except when doing a full gc.
// When not at safepoint the CodeCache_lock must be held during modifications.
// When concurrent readers access the contains() function
// (during the evacuation phase) no removals are allowed.
void HeapRegionRemSet::add_strong_code_root(nmethod* nm) {
assert(nm != NULL, "sanity");
assert((!CodeCache_lock->owned_by_self() || SafepointSynchronize::is_at_safepoint()),
"should call add_strong_code_root_locked instead. CodeCache_lock->owned_by_self(): %s, is_at_safepoint(): %s",
BOOL_TO_STR(CodeCache_lock->owned_by_self()), BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()));
// Optimistic unlocked contains-check
if (!_code_roots.contains(nm)) {
MutexLocker ml(&_m, Mutex::_no_safepoint_check_flag);
add_strong_code_root_locked(nm);
}
}
void HeapRegionRemSet::add_strong_code_root_locked(nmethod* nm) {
assert(nm != NULL, "sanity");
assert((CodeCache_lock->owned_by_self() ||
(SafepointSynchronize::is_at_safepoint() &&
(_m.owned_by_self() || Thread::current()->is_VM_thread()))),
"not safely locked. CodeCache_lock->owned_by_self(): %s, is_at_safepoint(): %s, _m.owned_by_self(): %s, Thread::current()->is_VM_thread(): %s",
BOOL_TO_STR(CodeCache_lock->owned_by_self()), BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),
BOOL_TO_STR(_m.owned_by_self()), BOOL_TO_STR(Thread::current()->is_VM_thread()));
_code_roots.add(nm);
}
void HeapRegionRemSet::remove_strong_code_root(nmethod* nm) {
assert(nm != NULL, "sanity");
assert_locked_or_safepoint(CodeCache_lock);
MutexLocker ml(CodeCache_lock->owned_by_self() ? NULL : &_m, Mutex::_no_safepoint_check_flag);
_code_roots.remove(nm);
// Check that there were no duplicates
guarantee(!_code_roots.contains(nm), "duplicate entry found");
}
void HeapRegionRemSet::strong_code_roots_do(CodeBlobClosure* blk) const {
_code_roots.nmethods_do(blk);
}
void HeapRegionRemSet::clean_strong_code_roots(HeapRegion* hr) {
_code_roots.clean(hr);
}
size_t HeapRegionRemSet::strong_code_roots_mem_size() {
return _code_roots.mem_size();
}