blob: 94e26584952f63b9667c4cc8d39184de4ac511de [file] [log] [blame]
/*
* Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "code/codeBlob.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "code/relocInfo.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/disassembler.hpp"
#include "compiler/oopMap.hpp"
#include "interpreter/bytecode.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/heap.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "prims/forte.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaFrameAnchor.hpp"
#include "runtime/jniHandles.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/vframe.hpp"
#include "services/memoryService.hpp"
#include "utilities/align.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
const char* CodeBlob::compiler_name() const {
return compilertype2name(_type);
}
unsigned int CodeBlob::align_code_offset(int offset) {
// align the size to CodeEntryAlignment
int header_size = (int)CodeHeap::header_size();
return align_up(offset + header_size, CodeEntryAlignment) - header_size;
}
// This must be consistent with the CodeBlob constructor's layout actions.
unsigned int CodeBlob::allocation_size(CodeBuffer* cb, int header_size) {
unsigned int size = header_size;
size += align_up(cb->total_relocation_size(), oopSize);
// align the size to CodeEntryAlignment
size = align_code_offset(size);
size += align_up(cb->total_content_size(), oopSize);
size += align_up(cb->total_oop_size(), oopSize);
size += align_up(cb->total_metadata_size(), oopSize);
return size;
}
CodeBlob::CodeBlob(const char* name, CompilerType type, const CodeBlobLayout& layout, int frame_complete_offset, int frame_size, ImmutableOopMapSet* oop_maps, bool caller_must_gc_arguments) :
_type(type),
_size(layout.size()),
_header_size(layout.header_size()),
_frame_complete_offset(frame_complete_offset),
_data_offset(layout.data_offset()),
_frame_size(frame_size),
_code_begin(layout.code_begin()),
_code_end(layout.code_end()),
_content_begin(layout.content_begin()),
_data_end(layout.data_end()),
_relocation_begin(layout.relocation_begin()),
_relocation_end(layout.relocation_end()),
_oop_maps(oop_maps),
_caller_must_gc_arguments(caller_must_gc_arguments),
_name(name)
NOT_PRODUCT(COMMA _strings(CodeStrings()))
{
assert(is_aligned(layout.size(), oopSize), "unaligned size");
assert(is_aligned(layout.header_size(), oopSize), "unaligned size");
assert(is_aligned(layout.relocation_size(), oopSize), "unaligned size");
assert(layout.code_end() == layout.content_end(), "must be the same - see code_end()");
#ifdef COMPILER1
// probably wrong for tiered
assert(_frame_size >= -1, "must use frame size or -1 for runtime stubs");
#endif // COMPILER1
S390_ONLY(_ctable_offset = 0;) // avoid uninitialized fields
}
CodeBlob::CodeBlob(const char* name, CompilerType type, const CodeBlobLayout& layout, CodeBuffer* cb, int frame_complete_offset, int frame_size, OopMapSet* oop_maps, bool caller_must_gc_arguments) :
_type(type),
_size(layout.size()),
_header_size(layout.header_size()),
_frame_complete_offset(frame_complete_offset),
_data_offset(layout.data_offset()),
_frame_size(frame_size),
_code_begin(layout.code_begin()),
_code_end(layout.code_end()),
_content_begin(layout.content_begin()),
_data_end(layout.data_end()),
_relocation_begin(layout.relocation_begin()),
_relocation_end(layout.relocation_end()),
_caller_must_gc_arguments(caller_must_gc_arguments),
_name(name)
NOT_PRODUCT(COMMA _strings(CodeStrings()))
{
assert(is_aligned(_size, oopSize), "unaligned size");
assert(is_aligned(_header_size, oopSize), "unaligned size");
assert(_data_offset <= _size, "codeBlob is too small");
assert(layout.code_end() == layout.content_end(), "must be the same - see code_end()");
set_oop_maps(oop_maps);
#ifdef COMPILER1
// probably wrong for tiered
assert(_frame_size >= -1, "must use frame size or -1 for runtime stubs");
#endif // COMPILER1
S390_ONLY(_ctable_offset = 0;) // avoid uninitialized fields
}
// Creates a simple CodeBlob. Sets up the size of the different regions.
RuntimeBlob::RuntimeBlob(const char* name, int header_size, int size, int frame_complete, int locs_size)
: CodeBlob(name, compiler_none, CodeBlobLayout((address) this, size, header_size, locs_size, size), frame_complete, 0, NULL, false /* caller_must_gc_arguments */)
{
assert(is_aligned(locs_size, oopSize), "unaligned size");
}
// Creates a RuntimeBlob from a CodeBuffer
// and copy code and relocation info.
RuntimeBlob::RuntimeBlob(
const char* name,
CodeBuffer* cb,
int header_size,
int size,
int frame_complete,
int frame_size,
OopMapSet* oop_maps,
bool caller_must_gc_arguments
) : CodeBlob(name, compiler_none, CodeBlobLayout((address) this, size, header_size, cb), cb, frame_complete, frame_size, oop_maps, caller_must_gc_arguments) {
cb->copy_code_and_locs_to(this);
}
void CodeBlob::flush() {
FREE_C_HEAP_ARRAY(unsigned char, _oop_maps);
_oop_maps = NULL;
NOT_PRODUCT(_strings.free();)
}
void CodeBlob::set_oop_maps(OopMapSet* p) {
// Danger Will Robinson! This method allocates a big
// chunk of memory, its your job to free it.
if (p != NULL) {
_oop_maps = ImmutableOopMapSet::build_from(p);
} else {
_oop_maps = NULL;
}
}
void RuntimeBlob::trace_new_stub(RuntimeBlob* stub, const char* name1, const char* name2) {
// Do not hold the CodeCache lock during name formatting.
assert(!CodeCache_lock->owned_by_self(), "release CodeCache before registering the stub");
if (stub != NULL) {
char stub_id[256];
assert(strlen(name1) + strlen(name2) < sizeof(stub_id), "");
jio_snprintf(stub_id, sizeof(stub_id), "%s%s", name1, name2);
if (PrintStubCode) {
ttyLocker ttyl;
tty->print_cr("- - - [BEGIN] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -");
tty->print_cr("Decoding %s " INTPTR_FORMAT, stub_id, (intptr_t) stub);
Disassembler::decode(stub->code_begin(), stub->code_end(), tty);
if ((stub->oop_maps() != NULL) && AbstractDisassembler::show_structs()) {
tty->print_cr("- - - [OOP MAPS]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -");
stub->oop_maps()->print();
}
tty->print_cr("- - - [END] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -");
tty->cr();
}
Forte::register_stub(stub_id, stub->code_begin(), stub->code_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
const char* stub_name = name2;
if (name2[0] == '\0') stub_name = name1;
JvmtiExport::post_dynamic_code_generated(stub_name, stub->code_begin(), stub->code_end());
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
}
const ImmutableOopMap* CodeBlob::oop_map_for_return_address(address return_address) {
assert(_oop_maps != NULL, "nope");
return _oop_maps->find_map_at_offset((intptr_t) return_address - (intptr_t) code_begin());
}
void CodeBlob::print_code() {
ResourceMark m;
Disassembler::decode(this, tty);
}
//----------------------------------------------------------------------------------------------------
// Implementation of BufferBlob
BufferBlob::BufferBlob(const char* name, int size)
: RuntimeBlob(name, sizeof(BufferBlob), size, CodeOffsets::frame_never_safe, /*locs_size:*/ 0)
{}
BufferBlob* BufferBlob::create(const char* name, int buffer_size) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
BufferBlob* blob = NULL;
unsigned int size = sizeof(BufferBlob);
// align the size to CodeEntryAlignment
size = CodeBlob::align_code_offset(size);
size += align_up(buffer_size, oopSize);
assert(name != NULL, "must provide a name");
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) BufferBlob(name, size);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
BufferBlob::BufferBlob(const char* name, int size, CodeBuffer* cb)
: RuntimeBlob(name, cb, sizeof(BufferBlob), size, CodeOffsets::frame_never_safe, 0, NULL)
{}
BufferBlob* BufferBlob::create(const char* name, CodeBuffer* cb) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
BufferBlob* blob = NULL;
unsigned int size = CodeBlob::allocation_size(cb, sizeof(BufferBlob));
assert(name != NULL, "must provide a name");
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) BufferBlob(name, size, cb);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* BufferBlob::operator new(size_t s, unsigned size) throw() {
return CodeCache::allocate(size, CodeBlobType::NonNMethod);
}
void BufferBlob::free(BufferBlob *blob) {
assert(blob != NULL, "caller must check for NULL");
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
blob->flush();
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::free((RuntimeBlob*)blob);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
}
//----------------------------------------------------------------------------------------------------
// Implementation of AdapterBlob
AdapterBlob::AdapterBlob(int size, CodeBuffer* cb) :
BufferBlob("I2C/C2I adapters", size, cb) {
CodeCache::commit(this);
}
AdapterBlob* AdapterBlob::create(CodeBuffer* cb) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
AdapterBlob* blob = NULL;
unsigned int size = CodeBlob::allocation_size(cb, sizeof(AdapterBlob));
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) AdapterBlob(size, cb);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* VtableBlob::operator new(size_t s, unsigned size) throw() {
// Handling of allocation failure stops compilation and prints a bunch of
// stuff, which requires unlocking the CodeCache_lock, so that the Compile_lock
// can be locked, and then re-locking the CodeCache_lock. That is not safe in
// this context as we hold the CompiledICLocker. So we just don't handle code
// cache exhaustion here; we leave that for a later allocation that does not
// hold the CompiledICLocker.
return CodeCache::allocate(size, CodeBlobType::NonNMethod, false /* handle_alloc_failure */);
}
VtableBlob::VtableBlob(const char* name, int size) :
BufferBlob(name, size) {
}
VtableBlob* VtableBlob::create(const char* name, int buffer_size) {
assert(JavaThread::current()->thread_state() == _thread_in_vm, "called with the wrong state");
VtableBlob* blob = NULL;
unsigned int size = sizeof(VtableBlob);
// align the size to CodeEntryAlignment
size = align_code_offset(size);
size += align_up(buffer_size, oopSize);
assert(name != NULL, "must provide a name");
{
if (!CodeCache_lock->try_lock()) {
// If we can't take the CodeCache_lock, then this is a bad time to perform the ongoing
// IC transition to megamorphic, for which this stub will be needed. It is better to
// bail out the transition, and wait for a more opportune moment. Not only is it not
// worth waiting for the lock blockingly for the megamorphic transition, it might
// also result in a deadlock to blockingly wait, when concurrent class unloading is
// performed. At this point in time, the CompiledICLocker is taken, so we are not
// allowed to blockingly wait for the CodeCache_lock, as these two locks are otherwise
// consistently taken in the opposite order. Bailing out results in an IC transition to
// the clean state instead, which will cause subsequent calls to retry the transitioning
// eventually.
return NULL;
}
blob = new (size) VtableBlob(name, size);
CodeCache_lock->unlock();
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
//----------------------------------------------------------------------------------------------------
// Implementation of MethodHandlesAdapterBlob
MethodHandlesAdapterBlob* MethodHandlesAdapterBlob::create(int buffer_size) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
MethodHandlesAdapterBlob* blob = NULL;
unsigned int size = sizeof(MethodHandlesAdapterBlob);
// align the size to CodeEntryAlignment
size = CodeBlob::align_code_offset(size);
size += align_up(buffer_size, oopSize);
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) MethodHandlesAdapterBlob(size);
if (blob == NULL) {
vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "CodeCache: no room for method handle adapter blob");
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
//----------------------------------------------------------------------------------------------------
// Implementation of RuntimeStub
RuntimeStub::RuntimeStub(
const char* name,
CodeBuffer* cb,
int size,
int frame_complete,
int frame_size,
OopMapSet* oop_maps,
bool caller_must_gc_arguments
)
: RuntimeBlob(name, cb, sizeof(RuntimeStub), size, frame_complete, frame_size, oop_maps, caller_must_gc_arguments)
{
}
RuntimeStub* RuntimeStub::new_runtime_stub(const char* stub_name,
CodeBuffer* cb,
int frame_complete,
int frame_size,
OopMapSet* oop_maps,
bool caller_must_gc_arguments)
{
RuntimeStub* stub = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = CodeBlob::allocation_size(cb, sizeof(RuntimeStub));
stub = new (size) RuntimeStub(stub_name, cb, size, frame_complete, frame_size, oop_maps, caller_must_gc_arguments);
}
trace_new_stub(stub, "RuntimeStub - ", stub_name);
return stub;
}
void* RuntimeStub::operator new(size_t s, unsigned size) throw() {
void* p = CodeCache::allocate(size, CodeBlobType::NonNMethod);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
// operator new shared by all singletons:
void* SingletonBlob::operator new(size_t s, unsigned size) throw() {
void* p = CodeCache::allocate(size, CodeBlobType::NonNMethod);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
//----------------------------------------------------------------------------------------------------
// Implementation of DeoptimizationBlob
DeoptimizationBlob::DeoptimizationBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int unpack_offset,
int unpack_with_exception_offset,
int unpack_with_reexecution_offset,
int frame_size
)
: SingletonBlob("DeoptimizationBlob", cb, sizeof(DeoptimizationBlob), size, frame_size, oop_maps)
{
_unpack_offset = unpack_offset;
_unpack_with_exception = unpack_with_exception_offset;
_unpack_with_reexecution = unpack_with_reexecution_offset;
#ifdef COMPILER1
_unpack_with_exception_in_tls = -1;
#endif
}
DeoptimizationBlob* DeoptimizationBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int unpack_offset,
int unpack_with_exception_offset,
int unpack_with_reexecution_offset,
int frame_size)
{
DeoptimizationBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = CodeBlob::allocation_size(cb, sizeof(DeoptimizationBlob));
blob = new (size) DeoptimizationBlob(cb,
size,
oop_maps,
unpack_offset,
unpack_with_exception_offset,
unpack_with_reexecution_offset,
frame_size);
}
trace_new_stub(blob, "DeoptimizationBlob");
return blob;
}
//----------------------------------------------------------------------------------------------------
// Implementation of UncommonTrapBlob
#ifdef COMPILER2
UncommonTrapBlob::UncommonTrapBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int frame_size
)
: SingletonBlob("UncommonTrapBlob", cb, sizeof(UncommonTrapBlob), size, frame_size, oop_maps)
{}
UncommonTrapBlob* UncommonTrapBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int frame_size)
{
UncommonTrapBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = CodeBlob::allocation_size(cb, sizeof(UncommonTrapBlob));
blob = new (size) UncommonTrapBlob(cb, size, oop_maps, frame_size);
}
trace_new_stub(blob, "UncommonTrapBlob");
return blob;
}
#endif // COMPILER2
//----------------------------------------------------------------------------------------------------
// Implementation of ExceptionBlob
#ifdef COMPILER2
ExceptionBlob::ExceptionBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int frame_size
)
: SingletonBlob("ExceptionBlob", cb, sizeof(ExceptionBlob), size, frame_size, oop_maps)
{}
ExceptionBlob* ExceptionBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int frame_size)
{
ExceptionBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = CodeBlob::allocation_size(cb, sizeof(ExceptionBlob));
blob = new (size) ExceptionBlob(cb, size, oop_maps, frame_size);
}
trace_new_stub(blob, "ExceptionBlob");
return blob;
}
#endif // COMPILER2
//----------------------------------------------------------------------------------------------------
// Implementation of SafepointBlob
SafepointBlob::SafepointBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int frame_size
)
: SingletonBlob("SafepointBlob", cb, sizeof(SafepointBlob), size, frame_size, oop_maps)
{}
SafepointBlob* SafepointBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int frame_size)
{
SafepointBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = CodeBlob::allocation_size(cb, sizeof(SafepointBlob));
blob = new (size) SafepointBlob(cb, size, oop_maps, frame_size);
}
trace_new_stub(blob, "SafepointBlob");
return blob;
}
//----------------------------------------------------------------------------------------------------
// Verification and printing
void CodeBlob::print_on(outputStream* st) const {
st->print_cr("[CodeBlob (" INTPTR_FORMAT ")]", p2i(this));
st->print_cr("Framesize: %d", _frame_size);
}
void CodeBlob::print() const { print_on(tty); }
void CodeBlob::print_value_on(outputStream* st) const {
st->print_cr("[CodeBlob]");
}
void CodeBlob::dump_for_addr(address addr, outputStream* st, bool verbose) const {
if (is_buffer_blob()) {
// the interpreter is generated into a buffer blob
InterpreterCodelet* i = Interpreter::codelet_containing(addr);
if (i != NULL) {
st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
i->print_on(st);
return;
}
if (Interpreter::contains(addr)) {
st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
" (not bytecode specific)", p2i(addr));
return;
}
//
if (AdapterHandlerLibrary::contains(this)) {
st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - code_begin()));
AdapterHandlerLibrary::print_handler_on(st, this);
}
// the stubroutines are generated into a buffer blob
StubCodeDesc* d = StubCodeDesc::desc_for(addr);
if (d != NULL) {
st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
d->print_on(st);
st->cr();
return;
}
if (StubRoutines::contains(addr)) {
st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
return;
}
// the InlineCacheBuffer is using stubs generated into a buffer blob
if (InlineCacheBuffer::contains(addr)) {
st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
return;
}
VtableStub* v = VtableStubs::stub_containing(addr);
if (v != NULL) {
st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
v->print_on(st);
st->cr();
return;
}
}
if (is_nmethod()) {
nmethod* nm = (nmethod*)this;
ResourceMark rm;
st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
if (verbose) {
st->print(" for ");
nm->method()->print_value_on(st);
}
st->cr();
nm->print_nmethod(verbose);
return;
}
st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - code_begin()));
print_on(st);
}
void RuntimeBlob::verify() {
ShouldNotReachHere();
}
void BufferBlob::verify() {
// unimplemented
}
void BufferBlob::print_on(outputStream* st) const {
RuntimeBlob::print_on(st);
print_value_on(st);
}
void BufferBlob::print_value_on(outputStream* st) const {
st->print_cr("BufferBlob (" INTPTR_FORMAT ") used for %s", p2i(this), name());
}
void RuntimeStub::verify() {
// unimplemented
}
void RuntimeStub::print_on(outputStream* st) const {
ttyLocker ttyl;
RuntimeBlob::print_on(st);
st->print("Runtime Stub (" INTPTR_FORMAT "): ", p2i(this));
st->print_cr("%s", name());
Disassembler::decode((RuntimeBlob*)this, st);
}
void RuntimeStub::print_value_on(outputStream* st) const {
st->print("RuntimeStub (" INTPTR_FORMAT "): ", p2i(this)); st->print("%s", name());
}
void SingletonBlob::verify() {
// unimplemented
}
void SingletonBlob::print_on(outputStream* st) const {
ttyLocker ttyl;
RuntimeBlob::print_on(st);
st->print_cr("%s", name());
Disassembler::decode((RuntimeBlob*)this, st);
}
void SingletonBlob::print_value_on(outputStream* st) const {
st->print_cr("%s", name());
}
void DeoptimizationBlob::print_value_on(outputStream* st) const {
st->print_cr("Deoptimization (frame not available)");
}
// Implementation of OptimizedEntryBlob
OptimizedEntryBlob::OptimizedEntryBlob(const char* name, int size, CodeBuffer* cb, intptr_t exception_handler_offset,
jobject receiver, ByteSize frame_data_offset) :
BufferBlob(name, size, cb),
_exception_handler_offset(exception_handler_offset),
_receiver(receiver),
_frame_data_offset(frame_data_offset) {
CodeCache::commit(this);
}
OptimizedEntryBlob* OptimizedEntryBlob::create(const char* name, CodeBuffer* cb, intptr_t exception_handler_offset,
jobject receiver, ByteSize frame_data_offset) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
OptimizedEntryBlob* blob = nullptr;
unsigned int size = CodeBlob::allocation_size(cb, sizeof(OptimizedEntryBlob));
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) OptimizedEntryBlob(name, size, cb, exception_handler_offset, receiver, frame_data_offset);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void OptimizedEntryBlob::oops_do(OopClosure* f, const frame& frame) {
frame_data_for_frame(frame)->old_handles->oops_do(f);
}
JavaFrameAnchor* OptimizedEntryBlob::jfa_for_frame(const frame& frame) const {
return &frame_data_for_frame(frame)->jfa;
}