blob: 760eb2467c84ce510cecf769b9836b8185fe818a [file] [log] [blame]
/*
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "compiler/oopMap.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/markWord.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/monitorChunk.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/signature.hpp"
#include "runtime/stackWatermarkSet.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_aarch64.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#include "runtime/vframeArray.hpp"
#endif
#ifdef ASSERT
void RegisterMap::check_location_valid() {
}
#endif
// Profiling/safepoint support
bool frame::safe_for_sender(JavaThread *thread) {
address sp = (address)_sp;
address fp = (address)_fp;
address unextended_sp = (address)_unextended_sp;
// consider stack guards when trying to determine "safe" stack pointers
// sp must be within the usable part of the stack (not in guards)
if (!thread->is_in_usable_stack(sp)) {
return false;
}
// When we are running interpreted code the machine stack pointer, SP, is
// set low enough so that the Java expression stack can grow and shrink
// without ever exceeding the machine stack bounds. So, ESP >= SP.
// When we call out of an interpreted method, SP is incremented so that
// the space between SP and ESP is removed. The SP saved in the callee's
// frame is the SP *before* this increment. So, when we walk a stack of
// interpreter frames the sender's SP saved in a frame might be less than
// the SP at the point of call.
// So unextended sp must be within the stack but we need not to check
// that unextended sp >= sp
if (!thread->is_in_full_stack_checked(unextended_sp)) {
return false;
}
// an fp must be within the stack and above (but not equal) sp
// second evaluation on fp+ is added to handle situation where fp is -1
bool fp_safe = thread->is_in_stack_range_excl(fp, sp) &&
thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*)));
// We know sp/unextended_sp are safe only fp is questionable here
// If the current frame is known to the code cache then we can attempt to
// to construct the sender and do some validation of it. This goes a long way
// toward eliminating issues when we get in frame construction code
if (_cb != NULL ) {
// First check if frame is complete and tester is reliable
// Unfortunately we can only check frame complete for runtime stubs and nmethod
// other generic buffer blobs are more problematic so we just assume they are
// ok. adapter blobs never have a frame complete and are never ok.
if (!_cb->is_frame_complete_at(_pc)) {
if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
return false;
}
}
// Could just be some random pointer within the codeBlob
if (!_cb->code_contains(_pc)) {
return false;
}
// Entry frame checks
if (is_entry_frame()) {
// an entry frame must have a valid fp.
return fp_safe && is_entry_frame_valid(thread);
}
intptr_t* sender_sp = NULL;
intptr_t* sender_unextended_sp = NULL;
address sender_pc = NULL;
intptr_t* saved_fp = NULL;
if (is_interpreted_frame()) {
// fp must be safe
if (!fp_safe) {
return false;
}
sender_pc = (address) this->fp()[return_addr_offset];
// for interpreted frames, the value below is the sender "raw" sp,
// which can be different from the sender unextended sp (the sp seen
// by the sender) because of current frame local variables
sender_sp = (intptr_t*) addr_at(sender_sp_offset);
sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
saved_fp = (intptr_t*) this->fp()[link_offset];
} else {
// must be some sort of compiled/runtime frame
// fp does not have to be safe (although it could be check for c1?)
// check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
if (_cb->frame_size() <= 0) {
return false;
}
sender_sp = _unextended_sp + _cb->frame_size();
// Is sender_sp safe?
if (!thread->is_in_full_stack_checked((address)sender_sp)) {
return false;
}
sender_unextended_sp = sender_sp;
sender_pc = (address) *(sender_sp-1);
// Note: frame::sender_sp_offset is only valid for compiled frame
saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
}
// If the potential sender is the interpreter then we can do some more checking
if (Interpreter::contains(sender_pc)) {
// fp is always saved in a recognizable place in any code we generate. However
// only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
// is really a frame pointer.
if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
return false;
}
// construct the potential sender
frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
return sender.is_interpreted_frame_valid(thread);
}
// We must always be able to find a recognizable pc
CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
if (sender_pc == NULL || sender_blob == NULL) {
return false;
}
// Could be a zombie method
if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
return false;
}
// Could just be some random pointer within the codeBlob
if (!sender_blob->code_contains(sender_pc)) {
return false;
}
// We should never be able to see an adapter if the current frame is something from code cache
if (sender_blob->is_adapter_blob()) {
return false;
}
// Could be the call_stub
if (StubRoutines::returns_to_call_stub(sender_pc)) {
if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
return false;
}
// construct the potential sender
frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
// Validate the JavaCallWrapper an entry frame must have
address jcw = (address)sender.entry_frame_call_wrapper();
return thread->is_in_stack_range_excl(jcw, (address)sender.fp());
}
CompiledMethod* nm = sender_blob->as_compiled_method_or_null();
if (nm != NULL) {
if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
nm->method()->is_method_handle_intrinsic()) {
return false;
}
}
// If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
// because the return address counts against the callee's frame.
if (sender_blob->frame_size() <= 0) {
assert(!sender_blob->is_compiled(), "should count return address at least");
return false;
}
// We should never be able to see anything here except an nmethod. If something in the
// code cache (current frame) is called by an entity within the code cache that entity
// should not be anything but the call stub (already covered), the interpreter (already covered)
// or an nmethod.
if (!sender_blob->is_compiled()) {
return false;
}
// Could put some more validation for the potential non-interpreted sender
// frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
// One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
// We've validated the potential sender that would be created
return true;
}
// Must be native-compiled frame. Since sender will try and use fp to find
// linkages it must be safe
if (!fp_safe) {
return false;
}
// Will the pc we fetch be non-zero (which we'll find at the oldest frame)
if ( (address) this->fp()[return_addr_offset] == NULL) return false;
// could try and do some more potential verification of native frame if we could think of some...
return true;
}
void frame::patch_pc(Thread* thread, address pc) {
assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
address* pc_addr = &(((address*) sp())[-1]);
if (TracePcPatching) {
tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
p2i(pc_addr), p2i(*pc_addr), p2i(pc));
}
// Only generated code frames should be patched, therefore the return address will not be signed.
assert(pauth_ptr_is_raw(*pc_addr), "cannot be signed");
// Either the return address is the original one or we are going to
// patch in the same address that's already there.
assert(_pc == *pc_addr || pc == *pc_addr, "must be");
*pc_addr = pc;
address original_pc = CompiledMethod::get_deopt_original_pc(this);
if (original_pc != NULL) {
assert(original_pc == _pc, "expected original PC to be stored before patching");
_deopt_state = is_deoptimized;
// leave _pc as is
} else {
_deopt_state = not_deoptimized;
_pc = pc;
}
}
bool frame::is_interpreted_frame() const {
return Interpreter::contains(pc());
}
int frame::frame_size(RegisterMap* map) const {
frame sender = this->sender(map);
return sender.sp() - sp();
}
intptr_t* frame::entry_frame_argument_at(int offset) const {
// convert offset to index to deal with tsi
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
// Entry frame's arguments are always in relation to unextended_sp()
return &unextended_sp()[index];
}
// sender_sp
intptr_t* frame::interpreter_frame_sender_sp() const {
assert(is_interpreted_frame(), "interpreted frame expected");
return (intptr_t*) at(interpreter_frame_sender_sp_offset);
}
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
assert(is_interpreted_frame(), "interpreted frame expected");
ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
}
// monitor elements
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
}
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
// make sure the pointer points inside the frame
assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer");
return result;
}
void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
*((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
}
// Used by template based interpreter deoptimization
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
*((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
}
frame frame::sender_for_entry_frame(RegisterMap* map) const {
assert(map != NULL, "map must be set");
// Java frame called from C; skip all C frames and return top C
// frame of that chunk as the sender
JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
assert(!entry_frame_is_first(), "next Java fp must be non zero");
assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
// Since we are walking the stack now this nested anchor is obviously walkable
// even if it wasn't when it was stacked.
if (!jfa->walkable()) {
// Capture _last_Java_pc (if needed) and mark anchor walkable.
jfa->capture_last_Java_pc();
}
map->clear();
assert(map->include_argument_oops(), "should be set by clear");
vmassert(jfa->last_Java_pc() != NULL, "not walkable");
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
return fr;
}
OptimizedEntryBlob::FrameData* OptimizedEntryBlob::frame_data_for_frame(const frame& frame) const {
ShouldNotCallThis();
return nullptr;
}
bool frame::optimized_entry_frame_is_first() const {
ShouldNotCallThis();
return false;
}
frame frame::sender_for_optimized_entry_frame(RegisterMap* map) const {
ShouldNotCallThis();
return {};
}
//------------------------------------------------------------------------------
// frame::verify_deopt_original_pc
//
// Verifies the calculated original PC of a deoptimization PC for the
// given unextended SP.
#ifdef ASSERT
void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) {
frame fr;
// This is ugly but it's better than to change {get,set}_original_pc
// to take an SP value as argument. And it's only a debugging
// method anyway.
fr._unextended_sp = unextended_sp;
address original_pc = nm->get_original_pc(&fr);
assert(nm->insts_contains_inclusive(original_pc),
"original PC must be in the main code section of the the compiled method (or must be immediately following it)");
}
#endif
//------------------------------------------------------------------------------
// frame::adjust_unextended_sp
void frame::adjust_unextended_sp() {
// On aarch64, sites calling method handle intrinsics and lambda forms are treated
// as any other call site. Therefore, no special action is needed when we are
// returning to any of these call sites.
if (_cb != NULL) {
CompiledMethod* sender_cm = _cb->as_compiled_method_or_null();
if (sender_cm != NULL) {
// If the sender PC is a deoptimization point, get the original PC.
if (sender_cm->is_deopt_entry(_pc) ||
sender_cm->is_deopt_mh_entry(_pc)) {
DEBUG_ONLY(verify_deopt_original_pc(sender_cm, _unextended_sp));
}
}
}
}
//------------------------------------------------------------------------------
// frame::update_map_with_saved_link
void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
// The interpreter and compiler(s) always save fp in a known
// location on entry. We must record where that location is
// so that if fp was live on callout from c2 we can find
// the saved copy no matter what it called.
// Since the interpreter always saves fp if we record where it is then
// we don't have to always save fp on entry and exit to c2 compiled
// code, on entry will be enough.
map->set_location(rfp->as_VMReg(), (address) link_addr);
// this is weird "H" ought to be at a higher address however the
// oopMaps seems to have the "H" regs at the same address and the
// vanilla register.
// XXXX make this go away
if (true) {
map->set_location(rfp->as_VMReg()->next(), (address) link_addr);
}
}
//------------------------------------------------------------------------------
// frame::sender_for_interpreter_frame
frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
// SP is the raw SP from the sender after adapter or interpreter
// extension.
intptr_t* sender_sp = this->sender_sp();
// This is the sp before any possible extension (adapter/locals).
intptr_t* unextended_sp = interpreter_frame_sender_sp();
#if COMPILER2_OR_JVMCI
if (map->update_map()) {
update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
}
#endif // COMPILER2_OR_JVMCI
// Use the raw version of pc - the interpreter should not have signed it.
return frame(sender_sp, unextended_sp, link(), sender_pc_maybe_signed());
}
//------------------------------------------------------------------------------
// frame::sender_for_compiled_frame
frame frame::sender_for_compiled_frame(RegisterMap* map) const {
// we cannot rely upon the last fp having been saved to the thread
// in C2 code but it will have been pushed onto the stack. so we
// have to find it relative to the unextended sp
assert(_cb->frame_size() >= 0, "must have non-zero frame size");
intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size();
intptr_t* unextended_sp = l_sender_sp;
// the return_address is always the word on the stack
address sender_pc = (address) *(l_sender_sp-1);
intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp - frame::sender_sp_offset);
// assert (sender_sp() == l_sender_sp, "should be");
// assert (*saved_fp_addr == link(), "should be");
if (map->update_map()) {
// Tell GC to use argument oopmaps for some runtime stubs that need it.
// For C1, the runtime stub might not have oop maps, so set this flag
// outside of update_register_map.
map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
if (_cb->oop_maps() != NULL) {
OopMapSet::update_register_map(this, map);
}
// Since the prolog does the save and restore of FP there is no
// oopmap for it so we must fill in its location as if there was
// an oopmap entry since if our caller was compiled code there
// could be live jvm state in it.
update_map_with_saved_link(map, saved_fp_addr);
}
return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
}
//------------------------------------------------------------------------------
// frame::sender_raw
frame frame::sender_raw(RegisterMap* map) const {
// Default is we done have to follow them. The sender_for_xxx will
// update it accordingly
map->set_include_argument_oops(false);
if (is_entry_frame())
return sender_for_entry_frame(map);
if (is_interpreted_frame())
return sender_for_interpreter_frame(map);
assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
// This test looks odd: why is it not is_compiled_frame() ? That's
// because stubs also have OOP maps.
if (_cb != NULL) {
return sender_for_compiled_frame(map);
}
// Must be native-compiled frame, i.e. the marshaling code for native
// methods that exists in the core system.
return frame(sender_sp(), link(), sender_pc());
}
frame frame::sender(RegisterMap* map) const {
frame result = sender_raw(map);
if (map->process_frames()) {
StackWatermarkSet::on_iteration(map->thread(), result);
}
return result;
}
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
assert(is_interpreted_frame(), "Not an interpreted frame");
// These are reasonable sanity checks
if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
return false;
}
if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
return false;
}
if (fp() + interpreter_frame_initial_sp_offset < sp()) {
return false;
}
// These are hacks to keep us out of trouble.
// The problem with these is that they mask other problems
if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
return false;
}
// do some validation of frame elements
// first the method
Method* m = *interpreter_frame_method_addr();
// validate the method we'd find in this potential sender
if (!Method::is_valid_method(m)) return false;
// stack frames shouldn't be much larger than max_stack elements
// this test requires the use of unextended_sp which is the sp as seen by
// the current frame, and not sp which is the "raw" pc which could point
// further because of local variables of the callee method inserted after
// method arguments
if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
return false;
}
// validate bci/bcx
address bcp = interpreter_frame_bcp();
if (m->validate_bci_from_bcp(bcp) < 0) {
return false;
}
// validate constantPoolCache*
ConstantPoolCache* cp = *interpreter_frame_cache_addr();
if (MetaspaceObj::is_valid(cp) == false) return false;
// validate locals
address locals = (address) *interpreter_frame_locals_addr();
return thread->is_in_stack_range_incl(locals, (address)fp());
}
BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
assert(is_interpreted_frame(), "interpreted frame expected");
Method* method = interpreter_frame_method();
BasicType type = method->result_type();
intptr_t* tos_addr;
if (method->is_native()) {
// TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0
// Prior to calling into the runtime to report the method_exit the possible
// return value is pushed to the native stack. If the result is a jfloat/jdouble
// then ST0 is saved before EAX/EDX. See the note in generate_native_result
tos_addr = (intptr_t*)sp();
if (type == T_FLOAT || type == T_DOUBLE) {
// This is times two because we do a push(ltos) after pushing XMM0
// and that takes two interpreter stack slots.
tos_addr += 2 * Interpreter::stackElementWords;
}
} else {
tos_addr = (intptr_t*)interpreter_frame_tos_address();
}
switch (type) {
case T_OBJECT :
case T_ARRAY : {
oop obj;
if (method->is_native()) {
obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
} else {
oop* obj_p = (oop*)tos_addr;
obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
}
assert(Universe::is_in_heap_or_null(obj), "sanity check");
*oop_result = obj;
break;
}
case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
case T_BYTE : value_result->b = *(jbyte*)tos_addr; break;
case T_CHAR : value_result->c = *(jchar*)tos_addr; break;
case T_SHORT : value_result->s = *(jshort*)tos_addr; break;
case T_INT : value_result->i = *(jint*)tos_addr; break;
case T_LONG : value_result->j = *(jlong*)tos_addr; break;
case T_FLOAT : {
value_result->f = *(jfloat*)tos_addr;
break;
}
case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
case T_VOID : /* Nothing to do */ break;
default : ShouldNotReachHere();
}
return type;
}
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
return &interpreter_frame_tos_address()[index];
}
#ifndef PRODUCT
#define DESCRIBE_FP_OFFSET(name) \
values.describe(frame_no, fp() + frame::name##_offset, #name)
void frame::describe_pd(FrameValues& values, int frame_no) {
if (is_interpreted_frame()) {
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
DESCRIBE_FP_OFFSET(interpreter_frame_method);
DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
}
}
#endif
intptr_t *frame::initial_deoptimization_info() {
// Not used on aarch64, but we must return something.
return NULL;
}
intptr_t* frame::real_fp() const {
if (_cb != NULL) {
// use the frame size if valid
int size = _cb->frame_size();
if (size > 0) {
return unextended_sp() + size;
}
}
// else rely on fp()
assert(! is_compiled_frame(), "unknown compiled frame size");
return fp();
}
#undef DESCRIBE_FP_OFFSET
#define DESCRIBE_FP_OFFSET(name) \
{ \
uintptr_t *p = (uintptr_t *)fp; \
printf(INTPTR_FORMAT " " INTPTR_FORMAT " %s\n", \
(uintptr_t)(p + frame::name##_offset), \
p[frame::name##_offset], #name); \
}
static THREAD_LOCAL uintptr_t nextfp;
static THREAD_LOCAL uintptr_t nextpc;
static THREAD_LOCAL uintptr_t nextsp;
static THREAD_LOCAL RegisterMap *reg_map;
static void printbc(Method *m, intptr_t bcx) {
const char *name;
char buf[16];
if (m->validate_bci_from_bcp((address)bcx) < 0
|| !m->contains((address)bcx)) {
name = "???";
snprintf(buf, sizeof buf, "(bad)");
} else {
int bci = m->bci_from((address)bcx);
snprintf(buf, sizeof buf, "%d", bci);
name = Bytecodes::name(m->code_at(bci));
}
ResourceMark rm;
printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name);
}
void internal_pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, uintptr_t bcx) {
if (! fp)
return;
DESCRIBE_FP_OFFSET(return_addr);
DESCRIBE_FP_OFFSET(link);
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
DESCRIBE_FP_OFFSET(interpreter_frame_method);
DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
uintptr_t *p = (uintptr_t *)fp;
// We want to see all frames, native and Java. For compiled and
// interpreted frames we have special information that allows us to
// unwind them; for everything else we assume that the native frame
// pointer chain is intact.
frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc);
if (this_frame.is_compiled_frame() ||
this_frame.is_interpreted_frame()) {
frame sender = this_frame.sender(reg_map);
nextfp = (uintptr_t)sender.fp();
nextpc = (uintptr_t)sender.pc();
nextsp = (uintptr_t)sender.unextended_sp();
} else {
nextfp = p[frame::link_offset];
nextpc = p[frame::return_addr_offset];
nextsp = (uintptr_t)&p[frame::sender_sp_offset];
}
if (bcx == -1ULL)
bcx = p[frame::interpreter_frame_bcp_offset];
if (Interpreter::contains((address)pc)) {
Method* m = (Method*)p[frame::interpreter_frame_method_offset];
if(m && m->is_method()) {
printbc(m, bcx);
} else
printf("not a Method\n");
} else {
CodeBlob *cb = CodeCache::find_blob((address)pc);
if (cb != NULL) {
if (cb->is_nmethod()) {
ResourceMark rm;
nmethod* nm = (nmethod*)cb;
printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string());
} else if (cb->name()) {
printf("CodeBlob %s\n", cb->name());
}
}
}
}
extern "C" void npf() {
CodeBlob *cb = CodeCache::find_blob((address)nextpc);
// C2 does not always chain the frame pointers when it can, instead
// preferring to use fixed offsets from SP, so a simple leave() does
// not work. Instead, it adds the frame size to SP then pops FP and
// LR. We have to do the same thing to get a good call chain.
if (cb && cb->frame_size())
nextfp = nextsp + wordSize * (cb->frame_size() - 2);
internal_pf (nextsp, nextfp, nextpc, -1);
}
extern "C" void pf(uintptr_t sp, uintptr_t fp, uintptr_t pc,
uintptr_t bcx, uintptr_t thread) {
if (!reg_map) {
reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtInternal);
::new (reg_map) RegisterMap((JavaThread*)thread, false);
} else {
*reg_map = RegisterMap((JavaThread*)thread, false);
}
{
CodeBlob *cb = CodeCache::find_blob((address)pc);
if (cb && cb->frame_size())
fp = sp + wordSize * (cb->frame_size() - 2);
}
internal_pf(sp, fp, pc, bcx);
}
// support for printing out where we are in a Java method
// needs to be passed current fp and bcp register values
// prints method name, bc index and bytecode name
extern "C" void pm(uintptr_t fp, uintptr_t bcx) {
DESCRIBE_FP_OFFSET(interpreter_frame_method);
uintptr_t *p = (uintptr_t *)fp;
Method* m = (Method*)p[frame::interpreter_frame_method_offset];
printbc(m, bcx);
}
#ifndef PRODUCT
// This is a generic constructor which is only used by pns() in debug.cpp.
frame::frame(void* sp, void* fp, void* pc) {
init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
}
void frame::pd_ps() {}
#endif
void JavaFrameAnchor::make_walkable(JavaThread* thread) {
// last frame set?
if (last_Java_sp() == NULL) return;
// already walkable?
if (walkable()) return;
vmassert(Thread::current() == (Thread*)thread, "not current thread");
vmassert(last_Java_sp() != NULL, "not called from Java code?");
vmassert(last_Java_pc() == NULL, "already walkable");
capture_last_Java_pc();
vmassert(walkable(), "something went wrong");
}
void JavaFrameAnchor::capture_last_Java_pc() {
vmassert(_last_Java_sp != NULL, "no last frame set");
vmassert(_last_Java_pc == NULL, "already walkable");
_last_Java_pc = (address)_last_Java_sp[-1];
}