blob: 14ca5243c5acc5438f869b736a24a9b08b6552b6 [file] [log] [blame]
/*
* Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_lowMemoryDetector.cpp.incl"
LowMemoryDetectorThread* LowMemoryDetector::_detector_thread = NULL;
volatile bool LowMemoryDetector::_enabled_for_collected_pools = false;
volatile jint LowMemoryDetector::_disabled_count = 0;
void LowMemoryDetector::initialize() {
EXCEPTION_MARK;
instanceKlassHandle klass (THREAD, SystemDictionary::thread_klass());
instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
const char thread_name[] = "Low Memory Detector";
Handle string = java_lang_String::create_from_str(thread_name, CHECK);
// Initialize thread_oop to put it into the system threadGroup
Handle thread_group (THREAD, Universe::system_thread_group());
JavaValue result(T_VOID);
JavaCalls::call_special(&result, thread_oop,
klass,
vmSymbolHandles::object_initializer_name(),
vmSymbolHandles::threadgroup_string_void_signature(),
thread_group,
string,
CHECK);
{
MutexLocker mu(Threads_lock);
_detector_thread = new LowMemoryDetectorThread(&low_memory_detector_thread_entry);
// At this point it may be possible that no osthread was created for the
// JavaThread due to lack of memory. We would have to throw an exception
// in that case. However, since this must work and we do not allow
// exceptions anyway, check and abort if this fails.
if (_detector_thread == NULL || _detector_thread->osthread() == NULL) {
vm_exit_during_initialization("java.lang.OutOfMemoryError",
"unable to create new native thread");
}
java_lang_Thread::set_thread(thread_oop(), _detector_thread);
java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
java_lang_Thread::set_daemon(thread_oop());
_detector_thread->set_threadObj(thread_oop());
Threads::add(_detector_thread);
Thread::start(_detector_thread);
}
}
bool LowMemoryDetector::has_pending_requests() {
assert(LowMemory_lock->owned_by_self(), "Must own LowMemory_lock");
bool has_requests = false;
int num_memory_pools = MemoryService::num_memory_pools();
for (int i = 0; i < num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
SensorInfo* sensor = pool->usage_sensor();
if (sensor != NULL) {
has_requests = has_requests || sensor->has_pending_requests();
}
SensorInfo* gc_sensor = pool->gc_usage_sensor();
if (gc_sensor != NULL) {
has_requests = has_requests || gc_sensor->has_pending_requests();
}
}
return has_requests;
}
void LowMemoryDetector::low_memory_detector_thread_entry(JavaThread* jt, TRAPS) {
while (true) {
bool sensors_changed = false;
{
// _no_safepoint_check_flag is used here as LowMemory_lock is a
// special lock and the VMThread may acquire this lock at safepoint.
// Need state transition ThreadBlockInVM so that this thread
// will be handled by safepoint correctly when this thread is
// notified at a safepoint.
// This ThreadBlockInVM object is not also considered to be
// suspend-equivalent because LowMemoryDetector threads are
// not visible to external suspension.
ThreadBlockInVM tbivm(jt);
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
while (!(sensors_changed = has_pending_requests())) {
// wait until one of the sensors has pending requests
LowMemory_lock->wait(Mutex::_no_safepoint_check_flag);
}
}
{
ResourceMark rm(THREAD);
HandleMark hm(THREAD);
// No need to hold LowMemory_lock to call out to Java
int num_memory_pools = MemoryService::num_memory_pools();
for (int i = 0; i < num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
SensorInfo* sensor = pool->usage_sensor();
SensorInfo* gc_sensor = pool->gc_usage_sensor();
if (sensor != NULL && sensor->has_pending_requests()) {
sensor->process_pending_requests(CHECK);
}
if (gc_sensor != NULL && gc_sensor->has_pending_requests()) {
gc_sensor->process_pending_requests(CHECK);
}
}
}
}
}
// This method could be called from any Java threads
// and also VMThread.
void LowMemoryDetector::detect_low_memory() {
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
bool has_pending_requests = false;
int num_memory_pools = MemoryService::num_memory_pools();
for (int i = 0; i < num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
SensorInfo* sensor = pool->usage_sensor();
if (sensor != NULL &&
pool->usage_threshold()->is_high_threshold_supported() &&
pool->usage_threshold()->high_threshold() != 0) {
MemoryUsage usage = pool->get_memory_usage();
sensor->set_gauge_sensor_level(usage,
pool->usage_threshold());
has_pending_requests = has_pending_requests || sensor->has_pending_requests();
}
}
if (has_pending_requests) {
LowMemory_lock->notify_all();
}
}
// This method could be called from any Java threads
// and also VMThread.
void LowMemoryDetector::detect_low_memory(MemoryPool* pool) {
SensorInfo* sensor = pool->usage_sensor();
if (sensor == NULL ||
!pool->usage_threshold()->is_high_threshold_supported() ||
pool->usage_threshold()->high_threshold() == 0) {
return;
}
{
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
MemoryUsage usage = pool->get_memory_usage();
sensor->set_gauge_sensor_level(usage,
pool->usage_threshold());
if (sensor->has_pending_requests()) {
// notify sensor state update
LowMemory_lock->notify_all();
}
}
}
// Only called by VMThread at GC time
void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) {
SensorInfo* sensor = pool->gc_usage_sensor();
if (sensor == NULL ||
!pool->gc_usage_threshold()->is_high_threshold_supported() ||
pool->gc_usage_threshold()->high_threshold() == 0) {
return;
}
{
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
MemoryUsage usage = pool->get_last_collection_usage();
sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold());
if (sensor->has_pending_requests()) {
// notify sensor state update
LowMemory_lock->notify_all();
}
}
}
// recompute enabled flag
void LowMemoryDetector::recompute_enabled_for_collected_pools() {
bool enabled = false;
int num_memory_pools = MemoryService::num_memory_pools();
for (int i=0; i<num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
if (pool->is_collected_pool() && is_enabled(pool)) {
enabled = true;
break;
}
}
_enabled_for_collected_pools = enabled;
}
SensorInfo::SensorInfo() {
_sensor_obj = NULL;
_sensor_on = false;
_sensor_count = 0;
_pending_trigger_count = 0;
_pending_clear_count = 0;
}
// When this method is used, the memory usage is monitored
// as a gauge attribute. Sensor notifications (trigger or
// clear) is only emitted at the first time it crosses
// a threshold.
//
// High and low thresholds are designed to provide a
// hysteresis mechanism to avoid repeated triggering
// of notifications when the attribute value makes small oscillations
// around the high or low threshold value.
//
// The sensor will be triggered if:
// (1) the usage is crossing above the high threshold and
// the sensor is currently off and no pending
// trigger requests; or
// (2) the usage is crossing above the high threshold and
// the sensor will be off (i.e. sensor is currently on
// and has pending clear requests).
//
// Subsequent crossings of the high threshold value do not cause
// any triggers unless the usage becomes less than the low threshold.
//
// The sensor will be cleared if:
// (1) the usage is crossing below the low threshold and
// the sensor is currently on and no pending
// clear requests; or
// (2) the usage is crossing below the low threshold and
// the sensor will be on (i.e. sensor is currently off
// and has pending trigger requests).
//
// Subsequent crossings of the low threshold value do not cause
// any clears unless the usage becomes greater than or equal
// to the high threshold.
//
// If the current level is between high and low threhsold, no change.
//
void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
assert(high_low_threshold->is_high_threshold_supported(), "just checking");
bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage);
assert(!(is_over_high && is_below_low), "Can't be both true");
if (is_over_high &&
((!_sensor_on && _pending_trigger_count == 0) ||
_pending_clear_count > 0)) {
// low memory detected and need to increment the trigger pending count
// if the sensor is off or will be off due to _pending_clear_ > 0
// Request to trigger the sensor
_pending_trigger_count++;
_usage = usage;
if (_pending_clear_count > 0) {
// non-zero pending clear requests indicates that there are
// pending requests to clear this sensor.
// This trigger request needs to clear this clear count
// since the resulting sensor flag should be on.
_pending_clear_count = 0;
}
} else if (is_below_low &&
((_sensor_on && _pending_clear_count == 0) ||
(_pending_trigger_count > 0 && _pending_clear_count == 0))) {
// memory usage returns below the threshold
// Request to clear the sensor if the sensor is on or will be on due to
// _pending_trigger_count > 0 and also no clear request
_pending_clear_count++;
}
}
// When this method is used, the memory usage is monitored as a
// simple counter attribute. The sensor will be triggered
// whenever the usage is crossing the threshold to keep track
// of the number of times the VM detects such a condition occurs.
//
// High and low thresholds are designed to provide a
// hysteresis mechanism to avoid repeated triggering
// of notifications when the attribute value makes small oscillations
// around the high or low threshold value.
//
// The sensor will be triggered if:
// - the usage is crossing above the high threshold regardless
// of the current sensor state.
//
// The sensor will be cleared if:
// (1) the usage is crossing below the low threshold and
// the sensor is currently on; or
// (2) the usage is crossing below the low threshold and
// the sensor will be on (i.e. sensor is currently off
// and has pending trigger requests).
void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
assert(counter_threshold->is_high_threshold_supported(), "just checking");
bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
bool is_below_low = counter_threshold->is_low_threshold_crossed(usage);
assert(!(is_over_high && is_below_low), "Can't be both true");
if (is_over_high) {
_pending_trigger_count++;
_usage = usage;
_pending_clear_count = 0;
} else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) {
_pending_clear_count++;
}
}
void SensorInfo::oops_do(OopClosure* f) {
f->do_oop((oop*) &_sensor_obj);
}
void SensorInfo::process_pending_requests(TRAPS) {
if (!has_pending_requests()) {
return;
}
int pending_count = pending_trigger_count();
if (pending_clear_count() > 0) {
clear(pending_count, CHECK);
} else {
trigger(pending_count, CHECK);
}
}
void SensorInfo::trigger(int count, TRAPS) {
assert(count <= _pending_trigger_count, "just checking");
if (_sensor_obj != NULL) {
klassOop k = Management::sun_management_Sensor_klass(CHECK);
instanceKlassHandle sensorKlass (THREAD, k);
Handle sensor_h(THREAD, _sensor_obj);
Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, CHECK);
JavaValue result(T_VOID);
JavaCallArguments args(sensor_h);
args.push_int((int) count);
args.push_oop(usage_h);
JavaCalls::call_virtual(&result,
sensorKlass,
vmSymbolHandles::trigger_name(),
vmSymbolHandles::trigger_method_signature(),
&args,
CHECK);
}
{
// Holds LowMemory_lock and update the sensor state
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
_sensor_on = true;
_sensor_count += count;
_pending_trigger_count = _pending_trigger_count - count;
}
}
void SensorInfo::clear(int count, TRAPS) {
if (_sensor_obj != NULL) {
klassOop k = Management::sun_management_Sensor_klass(CHECK);
instanceKlassHandle sensorKlass (THREAD, k);
Handle sensor(THREAD, _sensor_obj);
JavaValue result(T_VOID);
JavaCallArguments args(sensor);
args.push_int((int) count);
JavaCalls::call_virtual(&result,
sensorKlass,
vmSymbolHandles::clear_name(),
vmSymbolHandles::int_void_signature(),
&args,
CHECK);
}
{
// Holds LowMemory_lock and update the sensor state
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
_sensor_on = false;
_pending_clear_count = 0;
_pending_trigger_count = _pending_trigger_count - count;
}
}
//--------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
void SensorInfo::print() {
tty->print_cr("%s count = %ld pending_triggers = %ld pending_clears = %ld",
(_sensor_on ? "on" : "off"),
_sensor_count, _pending_trigger_count, _pending_clear_count);
}
#endif // PRODUCT