blob: d48f8b4f25b7986c862dc49ed32543a92977c879 [file] [log] [blame]
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_typeArrayKlass.cpp.incl"
bool typeArrayKlass::compute_is_subtype_of(klassOop k) {
if (!k->klass_part()->oop_is_typeArray()) {
return arrayKlass::compute_is_subtype_of(k);
}
typeArrayKlass* tak = typeArrayKlass::cast(k);
if (dimension() != tak->dimension()) return false;
return element_type() == tak->element_type();
}
klassOop typeArrayKlass::create_klass(BasicType type, int scale, TRAPS) {
typeArrayKlass o;
symbolHandle sym(symbolOop(NULL));
// bootstrapping: don't create sym if symbolKlass not created yet
if (Universe::symbolKlassObj() != NULL) {
sym = oopFactory::new_symbol_handle(external_name(type), CHECK_NULL);
}
KlassHandle klassklass (THREAD, Universe::typeArrayKlassKlassObj());
arrayKlassHandle k = base_create_array_klass(o.vtbl_value(), header_size(), klassklass, CHECK_NULL);
typeArrayKlass* ak = typeArrayKlass::cast(k());
ak->set_name(sym());
ak->set_layout_helper(array_layout_helper(type));
assert(scale == (1 << ak->log2_element_size()), "scale must check out");
assert(ak->oop_is_javaArray(), "sanity");
assert(ak->oop_is_typeArray(), "sanity");
ak->set_max_length(arrayOopDesc::max_array_length(type));
assert(k()->size() > header_size(), "bad size");
// Call complete_create_array_klass after all instance variables have been initialized.
KlassHandle super (THREAD, k->super());
complete_create_array_klass(k, super, CHECK_NULL);
return k();
}
typeArrayOop typeArrayKlass::allocate(int length, TRAPS) {
assert(log2_element_size() >= 0, "bad scale");
if (length >= 0) {
if (length <= max_length()) {
size_t size = typeArrayOopDesc::object_size(layout_helper(), length);
KlassHandle h_k(THREAD, as_klassOop());
typeArrayOop t;
CollectedHeap* ch = Universe::heap();
if (size < ch->large_typearray_limit()) {
t = (typeArrayOop)CollectedHeap::array_allocate(h_k, (int)size, length, CHECK_NULL);
} else {
t = (typeArrayOop)CollectedHeap::large_typearray_allocate(h_k, (int)size, length, CHECK_NULL);
}
assert(t->is_parsable(), "Don't publish unless parsable");
return t;
} else {
THROW_OOP_0(Universe::out_of_memory_error_array_size());
}
} else {
THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
}
}
typeArrayOop typeArrayKlass::allocate_permanent(int length, TRAPS) {
if (length < 0) THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
int size = typeArrayOopDesc::object_size(layout_helper(), length);
KlassHandle h_k(THREAD, as_klassOop());
typeArrayOop t = (typeArrayOop)
CollectedHeap::permanent_array_allocate(h_k, size, length, CHECK_NULL);
assert(t->is_parsable(), "Can't publish until parsable");
return t;
}
oop typeArrayKlass::multi_allocate(int rank, jint* last_size, TRAPS) {
// For typeArrays this is only called for the last dimension
assert(rank == 1, "just checking");
int length = *last_size;
return allocate(length, THREAD);
}
void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
assert(s->is_typeArray(), "must be type array");
// Check destination
if (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) {
THROW(vmSymbols::java_lang_ArrayStoreException());
}
// Check is all offsets and lengths are non negative
if (src_pos < 0 || dst_pos < 0 || length < 0) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
// Check if the ranges are valid
if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
|| (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
// This is an attempt to make the copy_array fast.
// NB: memmove takes care of overlapping memory segments.
// Potential problem: memmove is not guaranteed to be word atomic
// Revisit in Merlin
int l2es = log2_element_size();
int ihs = array_header_in_bytes() / wordSize;
char* src = (char*) ((oop*)s + ihs) + (src_pos << l2es);
char* dst = (char*) ((oop*)d + ihs) + (dst_pos << l2es);
memmove(dst, src, length << l2es);
}
// create a klass of array holding typeArrays
klassOop typeArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) {
typeArrayKlassHandle h_this(THREAD, as_klassOop());
return array_klass_impl(h_this, or_null, n, THREAD);
}
klassOop typeArrayKlass::array_klass_impl(typeArrayKlassHandle h_this, bool or_null, int n, TRAPS) {
int dimension = h_this->dimension();
assert(dimension <= n, "check order of chain");
if (dimension == n)
return h_this();
objArrayKlassHandle h_ak(THREAD, h_this->higher_dimension());
if (h_ak.is_null()) {
if (or_null) return NULL;
ResourceMark rm;
JavaThread *jt = (JavaThread *)THREAD;
{
MutexLocker mc(Compile_lock, THREAD); // for vtables
// Atomic create higher dimension and link into list
MutexLocker mu(MultiArray_lock, THREAD);
h_ak = objArrayKlassHandle(THREAD, h_this->higher_dimension());
if (h_ak.is_null()) {
klassOop oak = objArrayKlassKlass::cast(
Universe::objArrayKlassKlassObj())->allocate_objArray_klass(
dimension + 1, h_this, CHECK_NULL);
h_ak = objArrayKlassHandle(THREAD, oak);
h_ak->set_lower_dimension(h_this());
h_this->set_higher_dimension(h_ak());
assert(h_ak->oop_is_objArray(), "incorrect initialization of objArrayKlass");
}
}
} else {
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
}
if (or_null) {
return h_ak->array_klass_or_null(n);
}
return h_ak->array_klass(n, CHECK_NULL);
}
klassOop typeArrayKlass::array_klass_impl(bool or_null, TRAPS) {
return array_klass_impl(or_null, dimension() + 1, THREAD);
}
int typeArrayKlass::oop_size(oop obj) const {
assert(obj->is_typeArray(),"must be a type array");
typeArrayOop t = typeArrayOop(obj);
return t->object_size();
}
void typeArrayKlass::oop_follow_contents(oop obj) {
assert(obj->is_typeArray(),"must be a type array");
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::typeArrayKlass never moves.
}
#ifndef SERIALGC
void typeArrayKlass::oop_follow_contents(ParCompactionManager* cm, oop obj) {
assert(obj->is_typeArray(),"must be a type array");
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::typeArrayKlass never moves.
}
#endif // SERIALGC
int typeArrayKlass::oop_adjust_pointers(oop obj) {
assert(obj->is_typeArray(),"must be a type array");
typeArrayOop t = typeArrayOop(obj);
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::typeArrayKlass never moves.
return t->object_size();
}
int typeArrayKlass::oop_oop_iterate(oop obj, OopClosure* blk) {
assert(obj->is_typeArray(),"must be a type array");
typeArrayOop t = typeArrayOop(obj);
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::typeArrayKlass never moves.
return t->object_size();
}
int typeArrayKlass::oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) {
assert(obj->is_typeArray(),"must be a type array");
typeArrayOop t = typeArrayOop(obj);
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::typeArrayKlass never moves.
return t->object_size();
}
#ifndef SERIALGC
void typeArrayKlass::oop_copy_contents(PSPromotionManager* pm, oop obj) {
assert(obj->is_typeArray(),"must be a type array");
}
void typeArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
assert(obj->is_typeArray(),"must be a type array");
}
int
typeArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
assert(obj->is_typeArray(),"must be a type array");
return typeArrayOop(obj)->object_size();
}
int
typeArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj,
HeapWord* beg_addr, HeapWord* end_addr) {
assert(obj->is_typeArray(),"must be a type array");
return typeArrayOop(obj)->object_size();
}
#endif // SERIALGC
void typeArrayKlass::initialize(TRAPS) {
// Nothing to do. Having this function is handy since objArrayKlasses can be
// initialized by calling initialize on their bottom_klass, see objArrayKlass::initialize
}
const char* typeArrayKlass::external_name(BasicType type) {
switch (type) {
case T_BOOLEAN: return "[Z";
case T_CHAR: return "[C";
case T_FLOAT: return "[F";
case T_DOUBLE: return "[D";
case T_BYTE: return "[B";
case T_SHORT: return "[S";
case T_INT: return "[I";
case T_LONG: return "[J";
default: ShouldNotReachHere();
}
return NULL;
}
#ifndef PRODUCT
// Printing
static void print_boolean_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
st->print_cr(" - %3d: %s", index, (ta->bool_at(index) == 0) ? "false" : "true");
}
}
static void print_char_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
jchar c = ta->char_at(index);
st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' ');
}
}
static void print_float_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
st->print_cr(" - %3d: %g", index, ta->float_at(index));
}
}
static void print_double_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
st->print_cr(" - %3d: %g", index, ta->double_at(index));
}
}
static void print_byte_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
jbyte c = ta->byte_at(index);
st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' ');
}
}
static void print_short_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
int v = ta->ushort_at(index);
st->print_cr(" - %3d: 0x%x\t %d", index, v, v);
}
}
static void print_int_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
jint v = ta->int_at(index);
st->print_cr(" - %3d: 0x%x %d", index, v, v);
}
}
static void print_long_array(typeArrayOop ta, int print_len, outputStream* st) {
for (int index = 0; index < print_len; index++) {
jlong v = ta->long_at(index);
st->print_cr(" - %3d: 0x%x 0x%x", index, high(v), low(v));
}
}
void typeArrayKlass::oop_print_on(oop obj, outputStream* st) {
arrayKlass::oop_print_on(obj, st);
typeArrayOop ta = typeArrayOop(obj);
int print_len = MIN2((intx) ta->length(), MaxElementPrintSize);
switch (element_type()) {
case T_BOOLEAN: print_boolean_array(ta, print_len, st); break;
case T_CHAR: print_char_array(ta, print_len, st); break;
case T_FLOAT: print_float_array(ta, print_len, st); break;
case T_DOUBLE: print_double_array(ta, print_len, st); break;
case T_BYTE: print_byte_array(ta, print_len, st); break;
case T_SHORT: print_short_array(ta, print_len, st); break;
case T_INT: print_int_array(ta, print_len, st); break;
case T_LONG: print_long_array(ta, print_len, st); break;
default: ShouldNotReachHere();
}
int remaining = ta->length() - print_len;
if (remaining > 0) {
tty->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining);
}
}
#endif // PRODUCT
const char* typeArrayKlass::internal_name() const {
return Klass::external_name();
}