blob: 2896a1410aac943b258cf06f5794b106309e9904 [file] [log] [blame]
/*
* Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class BytecodeStream;
// The MethodData object collects counts and other profile information
// during zeroth-tier (interpretive) and first-tier execution.
// The profile is used later by compilation heuristics. Some heuristics
// enable use of aggressive (or "heroic") optimizations. An aggressive
// optimization often has a down-side, a corner case that it handles
// poorly, but which is thought to be rare. The profile provides
// evidence of this rarity for a given method or even BCI. It allows
// the compiler to back out of the optimization at places where it
// has historically been a poor choice. Other heuristics try to use
// specific information gathered about types observed at a given site.
//
// All data in the profile is approximate. It is expected to be accurate
// on the whole, but the system expects occasional inaccuraces, due to
// counter overflow, multiprocessor races during data collection, space
// limitations, missing MDO blocks, etc. Bad or missing data will degrade
// optimization quality but will not affect correctness. Also, each MDO
// is marked with its birth-date ("creation_mileage") which can be used
// to assess the quality ("maturity") of its data.
//
// Short (<32-bit) counters are designed to overflow to a known "saturated"
// state. Also, certain recorded per-BCI events are given one-bit counters
// which overflow to a saturated state which applied to all counters at
// that BCI. In other words, there is a small lattice which approximates
// the ideal of an infinite-precision counter for each event at each BCI,
// and the lattice quickly "bottoms out" in a state where all counters
// are taken to be indefinitely large.
//
// The reader will find many data races in profile gathering code, starting
// with invocation counter incrementation. None of these races harm correct
// execution of the compiled code.
// DataLayout
//
// Overlay for generic profiling data.
class DataLayout VALUE_OBJ_CLASS_SPEC {
private:
// Every data layout begins with a header. This header
// contains a tag, which is used to indicate the size/layout
// of the data, 4 bits of flags, which can be used in any way,
// 4 bits of trap history (none/one reason/many reasons),
// and a bci, which is used to tie this piece of data to a
// specific bci in the bytecodes.
union {
intptr_t _bits;
struct {
u1 _tag;
u1 _flags;
u2 _bci;
} _struct;
} _header;
// The data layout has an arbitrary number of cells, each sized
// to accomodate a pointer or an integer.
intptr_t _cells[1];
// Some types of data layouts need a length field.
static bool needs_array_len(u1 tag);
public:
enum {
counter_increment = 1
};
enum {
cell_size = sizeof(intptr_t)
};
// Tag values
enum {
no_tag,
bit_data_tag,
counter_data_tag,
jump_data_tag,
receiver_type_data_tag,
virtual_call_data_tag,
ret_data_tag,
branch_data_tag,
multi_branch_data_tag
};
enum {
// The _struct._flags word is formatted as [trap_state:4 | flags:4].
// The trap state breaks down further as [recompile:1 | reason:3].
// This further breakdown is defined in deoptimization.cpp.
// See Deoptimization::trap_state_reason for an assert that
// trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
//
// The trap_state is collected only if ProfileTraps is true.
trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
trap_shift = BitsPerByte - trap_bits,
trap_mask = right_n_bits(trap_bits),
trap_mask_in_place = (trap_mask << trap_shift),
flag_limit = trap_shift,
flag_mask = right_n_bits(flag_limit),
first_flag = 0
};
// Size computation
static int header_size_in_bytes() {
return cell_size;
}
static int header_size_in_cells() {
return 1;
}
static int compute_size_in_bytes(int cell_count) {
return header_size_in_bytes() + cell_count * cell_size;
}
// Initialization
void initialize(u1 tag, u2 bci, int cell_count);
// Accessors
u1 tag() {
return _header._struct._tag;
}
// Return a few bits of trap state. Range is [0..trap_mask].
// The state tells if traps with zero, one, or many reasons have occurred.
// It also tells whether zero or many recompilations have occurred.
// The associated trap histogram in the MDO itself tells whether
// traps are common or not. If a BCI shows that a trap X has
// occurred, and the MDO shows N occurrences of X, we make the
// simplifying assumption that all N occurrences can be blamed
// on that BCI.
int trap_state() {
return ((_header._struct._flags >> trap_shift) & trap_mask);
}
void set_trap_state(int new_state) {
assert(ProfileTraps, "used only under +ProfileTraps");
uint old_flags = (_header._struct._flags & flag_mask);
_header._struct._flags = (new_state << trap_shift) | old_flags;
assert(trap_state() == new_state, "sanity");
}
u1 flags() {
return _header._struct._flags;
}
u2 bci() {
return _header._struct._bci;
}
void set_header(intptr_t value) {
_header._bits = value;
}
void release_set_header(intptr_t value) {
OrderAccess::release_store_ptr(&_header._bits, value);
}
intptr_t header() {
return _header._bits;
}
void set_cell_at(int index, intptr_t value) {
_cells[index] = value;
}
void release_set_cell_at(int index, intptr_t value) {
OrderAccess::release_store_ptr(&_cells[index], value);
}
intptr_t cell_at(int index) {
return _cells[index];
}
intptr_t* adr_cell_at(int index) {
return &_cells[index];
}
oop* adr_oop_at(int index) {
return (oop*)&(_cells[index]);
}
void set_flag_at(int flag_number) {
assert(flag_number < flag_limit, "oob");
_header._struct._flags |= (0x1 << flag_number);
}
bool flag_at(int flag_number) {
assert(flag_number < flag_limit, "oob");
return (_header._struct._flags & (0x1 << flag_number)) != 0;
}
// Low-level support for code generation.
static ByteSize header_offset() {
return byte_offset_of(DataLayout, _header);
}
static ByteSize tag_offset() {
return byte_offset_of(DataLayout, _header._struct._tag);
}
static ByteSize flags_offset() {
return byte_offset_of(DataLayout, _header._struct._flags);
}
static ByteSize bci_offset() {
return byte_offset_of(DataLayout, _header._struct._bci);
}
static ByteSize cell_offset(int index) {
return byte_offset_of(DataLayout, _cells[index]);
}
// Return a value which, when or-ed as a byte into _flags, sets the flag.
static int flag_number_to_byte_constant(int flag_number) {
assert(0 <= flag_number && flag_number < flag_limit, "oob");
DataLayout temp; temp.set_header(0);
temp.set_flag_at(flag_number);
return temp._header._struct._flags;
}
// Return a value which, when or-ed as a word into _header, sets the flag.
static intptr_t flag_mask_to_header_mask(int byte_constant) {
DataLayout temp; temp.set_header(0);
temp._header._struct._flags = byte_constant;
return temp._header._bits;
}
};
// ProfileData class hierarchy
class ProfileData;
class BitData;
class CounterData;
class ReceiverTypeData;
class VirtualCallData;
class RetData;
class JumpData;
class BranchData;
class ArrayData;
class MultiBranchData;
// ProfileData
//
// A ProfileData object is created to refer to a section of profiling
// data in a structured way.
class ProfileData : public ResourceObj {
private:
#ifndef PRODUCT
enum {
tab_width_one = 16,
tab_width_two = 36
};
#endif // !PRODUCT
// This is a pointer to a section of profiling data.
DataLayout* _data;
protected:
DataLayout* data() { return _data; }
enum {
cell_size = DataLayout::cell_size
};
public:
// How many cells are in this?
virtual int cell_count() {
ShouldNotReachHere();
return -1;
}
// Return the size of this data.
int size_in_bytes() {
return DataLayout::compute_size_in_bytes(cell_count());
}
protected:
// Low-level accessors for underlying data
void set_intptr_at(int index, intptr_t value) {
assert(0 <= index && index < cell_count(), "oob");
data()->set_cell_at(index, value);
}
void release_set_intptr_at(int index, intptr_t value) {
assert(0 <= index && index < cell_count(), "oob");
data()->release_set_cell_at(index, value);
}
intptr_t intptr_at(int index) {
assert(0 <= index && index < cell_count(), "oob");
return data()->cell_at(index);
}
void set_uint_at(int index, uint value) {
set_intptr_at(index, (intptr_t) value);
}
void release_set_uint_at(int index, uint value) {
release_set_intptr_at(index, (intptr_t) value);
}
uint uint_at(int index) {
return (uint)intptr_at(index);
}
void set_int_at(int index, int value) {
set_intptr_at(index, (intptr_t) value);
}
void release_set_int_at(int index, int value) {
release_set_intptr_at(index, (intptr_t) value);
}
int int_at(int index) {
return (int)intptr_at(index);
}
int int_at_unchecked(int index) {
return (int)data()->cell_at(index);
}
void set_oop_at(int index, oop value) {
set_intptr_at(index, (intptr_t) value);
}
oop oop_at(int index) {
return (oop)intptr_at(index);
}
oop* adr_oop_at(int index) {
assert(0 <= index && index < cell_count(), "oob");
return data()->adr_oop_at(index);
}
void set_flag_at(int flag_number) {
data()->set_flag_at(flag_number);
}
bool flag_at(int flag_number) {
return data()->flag_at(flag_number);
}
// two convenient imports for use by subclasses:
static ByteSize cell_offset(int index) {
return DataLayout::cell_offset(index);
}
static int flag_number_to_byte_constant(int flag_number) {
return DataLayout::flag_number_to_byte_constant(flag_number);
}
ProfileData(DataLayout* data) {
_data = data;
}
public:
// Constructor for invalid ProfileData.
ProfileData();
u2 bci() {
return data()->bci();
}
address dp() {
return (address)_data;
}
int trap_state() {
return data()->trap_state();
}
void set_trap_state(int new_state) {
data()->set_trap_state(new_state);
}
// Type checking
virtual bool is_BitData() { return false; }
virtual bool is_CounterData() { return false; }
virtual bool is_JumpData() { return false; }
virtual bool is_ReceiverTypeData(){ return false; }
virtual bool is_VirtualCallData() { return false; }
virtual bool is_RetData() { return false; }
virtual bool is_BranchData() { return false; }
virtual bool is_ArrayData() { return false; }
virtual bool is_MultiBranchData() { return false; }
BitData* as_BitData() {
assert(is_BitData(), "wrong type");
return is_BitData() ? (BitData*) this : NULL;
}
CounterData* as_CounterData() {
assert(is_CounterData(), "wrong type");
return is_CounterData() ? (CounterData*) this : NULL;
}
JumpData* as_JumpData() {
assert(is_JumpData(), "wrong type");
return is_JumpData() ? (JumpData*) this : NULL;
}
ReceiverTypeData* as_ReceiverTypeData() {
assert(is_ReceiverTypeData(), "wrong type");
return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
}
VirtualCallData* as_VirtualCallData() {
assert(is_VirtualCallData(), "wrong type");
return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
}
RetData* as_RetData() {
assert(is_RetData(), "wrong type");
return is_RetData() ? (RetData*) this : NULL;
}
BranchData* as_BranchData() {
assert(is_BranchData(), "wrong type");
return is_BranchData() ? (BranchData*) this : NULL;
}
ArrayData* as_ArrayData() {
assert(is_ArrayData(), "wrong type");
return is_ArrayData() ? (ArrayData*) this : NULL;
}
MultiBranchData* as_MultiBranchData() {
assert(is_MultiBranchData(), "wrong type");
return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
}
// Subclass specific initialization
virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
// GC support
virtual void follow_contents() {}
virtual void oop_iterate(OopClosure* blk) {}
virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
virtual void adjust_pointers() {}
#ifndef SERIALGC
// Parallel old support
virtual void follow_contents(ParCompactionManager* cm) {}
virtual void update_pointers() {}
virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
#endif // SERIALGC
// CI translation: ProfileData can represent both MethodDataOop data
// as well as CIMethodData data. This function is provided for translating
// an oop in a ProfileData to the ci equivalent. Generally speaking,
// most ProfileData don't require any translation, so we provide the null
// translation here, and the required translators are in the ci subclasses.
virtual void translate_from(ProfileData* data) {}
virtual void print_data_on(outputStream* st) {
ShouldNotReachHere();
}
#ifndef PRODUCT
void print_shared(outputStream* st, const char* name);
void tab(outputStream* st);
#endif
};
// BitData
//
// A BitData holds a flag or two in its header.
class BitData : public ProfileData {
protected:
enum {
// null_seen:
// saw a null operand (cast/aastore/instanceof)
null_seen_flag = DataLayout::first_flag + 0
};
enum { bit_cell_count = 0 }; // no additional data fields needed.
public:
BitData(DataLayout* layout) : ProfileData(layout) {
}
virtual bool is_BitData() { return true; }
static int static_cell_count() {
return bit_cell_count;
}
virtual int cell_count() {
return static_cell_count();
}
// Accessor
// The null_seen flag bit is specially known to the interpreter.
// Consulting it allows the compiler to avoid setting up null_check traps.
bool null_seen() { return flag_at(null_seen_flag); }
void set_null_seen() { set_flag_at(null_seen_flag); }
// Code generation support
static int null_seen_byte_constant() {
return flag_number_to_byte_constant(null_seen_flag);
}
static ByteSize bit_data_size() {
return cell_offset(bit_cell_count);
}
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// CounterData
//
// A CounterData corresponds to a simple counter.
class CounterData : public BitData {
protected:
enum {
count_off,
counter_cell_count
};
public:
CounterData(DataLayout* layout) : BitData(layout) {}
virtual bool is_CounterData() { return true; }
static int static_cell_count() {
return counter_cell_count;
}
virtual int cell_count() {
return static_cell_count();
}
// Direct accessor
uint count() {
return uint_at(count_off);
}
// Code generation support
static ByteSize count_offset() {
return cell_offset(count_off);
}
static ByteSize counter_data_size() {
return cell_offset(counter_cell_count);
}
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// JumpData
//
// A JumpData is used to access profiling information for a direct
// branch. It is a counter, used for counting the number of branches,
// plus a data displacement, used for realigning the data pointer to
// the corresponding target bci.
class JumpData : public ProfileData {
protected:
enum {
taken_off_set,
displacement_off_set,
jump_cell_count
};
void set_displacement(int displacement) {
set_int_at(displacement_off_set, displacement);
}
public:
JumpData(DataLayout* layout) : ProfileData(layout) {
assert(layout->tag() == DataLayout::jump_data_tag ||
layout->tag() == DataLayout::branch_data_tag, "wrong type");
}
virtual bool is_JumpData() { return true; }
static int static_cell_count() {
return jump_cell_count;
}
virtual int cell_count() {
return static_cell_count();
}
// Direct accessor
uint taken() {
return uint_at(taken_off_set);
}
// Saturating counter
uint inc_taken() {
uint cnt = taken() + 1;
// Did we wrap? Will compiler screw us??
if (cnt == 0) cnt--;
set_uint_at(taken_off_set, cnt);
return cnt;
}
int displacement() {
return int_at(displacement_off_set);
}
// Code generation support
static ByteSize taken_offset() {
return cell_offset(taken_off_set);
}
static ByteSize displacement_offset() {
return cell_offset(displacement_off_set);
}
// Specific initialization.
void post_initialize(BytecodeStream* stream, methodDataOop mdo);
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// ReceiverTypeData
//
// A ReceiverTypeData is used to access profiling information about a
// dynamic type check. It consists of a counter which counts the total times
// that the check is reached, and a series of (klassOop, count) pairs
// which are used to store a type profile for the receiver of the check.
class ReceiverTypeData : public CounterData {
protected:
enum {
receiver0_offset = counter_cell_count,
count0_offset,
receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
};
public:
ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
assert(layout->tag() == DataLayout::receiver_type_data_tag ||
layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
}
virtual bool is_ReceiverTypeData() { return true; }
static int static_cell_count() {
return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
}
virtual int cell_count() {
return static_cell_count();
}
// Direct accessors
static uint row_limit() {
return TypeProfileWidth;
}
static int receiver_cell_index(uint row) {
return receiver0_offset + row * receiver_type_row_cell_count;
}
static int receiver_count_cell_index(uint row) {
return count0_offset + row * receiver_type_row_cell_count;
}
// Get the receiver at row. The 'unchecked' version is needed by parallel old
// gc; it does not assert the receiver is a klass. During compaction of the
// perm gen, the klass may already have moved, so the is_klass() predicate
// would fail. The 'normal' version should be used whenever possible.
klassOop receiver_unchecked(uint row) {
assert(row < row_limit(), "oob");
oop recv = oop_at(receiver_cell_index(row));
return (klassOop)recv;
}
klassOop receiver(uint row) {
klassOop recv = receiver_unchecked(row);
assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
return recv;
}
uint receiver_count(uint row) {
assert(row < row_limit(), "oob");
return uint_at(receiver_count_cell_index(row));
}
// Code generation support
static ByteSize receiver_offset(uint row) {
return cell_offset(receiver_cell_index(row));
}
static ByteSize receiver_count_offset(uint row) {
return cell_offset(receiver_count_cell_index(row));
}
static ByteSize receiver_type_data_size() {
return cell_offset(static_cell_count());
}
// GC support
virtual void follow_contents();
virtual void oop_iterate(OopClosure* blk);
virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
virtual void adjust_pointers();
#ifndef SERIALGC
// Parallel old support
virtual void follow_contents(ParCompactionManager* cm);
virtual void update_pointers();
virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
#endif // SERIALGC
oop* adr_receiver(uint row) {
return adr_oop_at(receiver_cell_index(row));
}
#ifndef PRODUCT
void print_receiver_data_on(outputStream* st);
void print_data_on(outputStream* st);
#endif
};
// VirtualCallData
//
// A VirtualCallData is used to access profiling information about a
// virtual call. For now, it has nothing more than a ReceiverTypeData.
class VirtualCallData : public ReceiverTypeData {
public:
VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
}
virtual bool is_VirtualCallData() { return true; }
static int static_cell_count() {
// At this point we could add more profile state, e.g., for arguments.
// But for now it's the same size as the base record type.
return ReceiverTypeData::static_cell_count();
}
virtual int cell_count() {
return static_cell_count();
}
// Direct accessors
static ByteSize virtual_call_data_size() {
return cell_offset(static_cell_count());
}
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// RetData
//
// A RetData is used to access profiling information for a ret bytecode.
// It is composed of a count of the number of times that the ret has
// been executed, followed by a series of triples of the form
// (bci, count, di) which count the number of times that some bci was the
// target of the ret and cache a corresponding data displacement.
class RetData : public CounterData {
protected:
enum {
bci0_offset = counter_cell_count,
count0_offset,
displacement0_offset,
ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
};
void set_bci(uint row, int bci) {
assert((uint)row < row_limit(), "oob");
set_int_at(bci0_offset + row * ret_row_cell_count, bci);
}
void release_set_bci(uint row, int bci) {
assert((uint)row < row_limit(), "oob");
// 'release' when setting the bci acts as a valid flag for other
// threads wrt bci_count and bci_displacement.
release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
}
void set_bci_count(uint row, uint count) {
assert((uint)row < row_limit(), "oob");
set_uint_at(count0_offset + row * ret_row_cell_count, count);
}
void set_bci_displacement(uint row, int disp) {
set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
}
public:
RetData(DataLayout* layout) : CounterData(layout) {
assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
}
virtual bool is_RetData() { return true; }
enum {
no_bci = -1 // value of bci when bci1/2 are not in use.
};
static int static_cell_count() {
return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
}
virtual int cell_count() {
return static_cell_count();
}
static uint row_limit() {
return BciProfileWidth;
}
static int bci_cell_index(uint row) {
return bci0_offset + row * ret_row_cell_count;
}
static int bci_count_cell_index(uint row) {
return count0_offset + row * ret_row_cell_count;
}
static int bci_displacement_cell_index(uint row) {
return displacement0_offset + row * ret_row_cell_count;
}
// Direct accessors
int bci(uint row) {
return int_at(bci_cell_index(row));
}
uint bci_count(uint row) {
return uint_at(bci_count_cell_index(row));
}
int bci_displacement(uint row) {
return int_at(bci_displacement_cell_index(row));
}
// Interpreter Runtime support
address fixup_ret(int return_bci, methodDataHandle mdo);
// Code generation support
static ByteSize bci_offset(uint row) {
return cell_offset(bci_cell_index(row));
}
static ByteSize bci_count_offset(uint row) {
return cell_offset(bci_count_cell_index(row));
}
static ByteSize bci_displacement_offset(uint row) {
return cell_offset(bci_displacement_cell_index(row));
}
// Specific initialization.
void post_initialize(BytecodeStream* stream, methodDataOop mdo);
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// BranchData
//
// A BranchData is used to access profiling data for a two-way branch.
// It consists of taken and not_taken counts as well as a data displacement
// for the taken case.
class BranchData : public JumpData {
protected:
enum {
not_taken_off_set = jump_cell_count,
branch_cell_count
};
void set_displacement(int displacement) {
set_int_at(displacement_off_set, displacement);
}
public:
BranchData(DataLayout* layout) : JumpData(layout) {
assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
}
virtual bool is_BranchData() { return true; }
static int static_cell_count() {
return branch_cell_count;
}
virtual int cell_count() {
return static_cell_count();
}
// Direct accessor
uint not_taken() {
return uint_at(not_taken_off_set);
}
uint inc_not_taken() {
uint cnt = not_taken() + 1;
// Did we wrap? Will compiler screw us??
if (cnt == 0) cnt--;
set_uint_at(not_taken_off_set, cnt);
return cnt;
}
// Code generation support
static ByteSize not_taken_offset() {
return cell_offset(not_taken_off_set);
}
static ByteSize branch_data_size() {
return cell_offset(branch_cell_count);
}
// Specific initialization.
void post_initialize(BytecodeStream* stream, methodDataOop mdo);
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// ArrayData
//
// A ArrayData is a base class for accessing profiling data which does
// not have a statically known size. It consists of an array length
// and an array start.
class ArrayData : public ProfileData {
protected:
friend class DataLayout;
enum {
array_len_off_set,
array_start_off_set
};
uint array_uint_at(int index) {
int aindex = index + array_start_off_set;
return uint_at(aindex);
}
int array_int_at(int index) {
int aindex = index + array_start_off_set;
return int_at(aindex);
}
oop array_oop_at(int index) {
int aindex = index + array_start_off_set;
return oop_at(aindex);
}
void array_set_int_at(int index, int value) {
int aindex = index + array_start_off_set;
set_int_at(aindex, value);
}
// Code generation support for subclasses.
static ByteSize array_element_offset(int index) {
return cell_offset(array_start_off_set + index);
}
public:
ArrayData(DataLayout* layout) : ProfileData(layout) {}
virtual bool is_ArrayData() { return true; }
static int static_cell_count() {
return -1;
}
int array_len() {
return int_at_unchecked(array_len_off_set);
}
virtual int cell_count() {
return array_len() + 1;
}
// Code generation support
static ByteSize array_len_offset() {
return cell_offset(array_len_off_set);
}
static ByteSize array_start_offset() {
return cell_offset(array_start_off_set);
}
};
// MultiBranchData
//
// A MultiBranchData is used to access profiling information for
// a multi-way branch (*switch bytecodes). It consists of a series
// of (count, displacement) pairs, which count the number of times each
// case was taken and specify the data displacment for each branch target.
class MultiBranchData : public ArrayData {
protected:
enum {
default_count_off_set,
default_disaplacement_off_set,
case_array_start
};
enum {
relative_count_off_set,
relative_displacement_off_set,
per_case_cell_count
};
void set_default_displacement(int displacement) {
array_set_int_at(default_disaplacement_off_set, displacement);
}
void set_displacement_at(int index, int displacement) {
array_set_int_at(case_array_start +
index * per_case_cell_count +
relative_displacement_off_set,
displacement);
}
public:
MultiBranchData(DataLayout* layout) : ArrayData(layout) {
assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
}
virtual bool is_MultiBranchData() { return true; }
static int compute_cell_count(BytecodeStream* stream);
int number_of_cases() {
int alen = array_len() - 2; // get rid of default case here.
assert(alen % per_case_cell_count == 0, "must be even");
return (alen / per_case_cell_count);
}
uint default_count() {
return array_uint_at(default_count_off_set);
}
int default_displacement() {
return array_int_at(default_disaplacement_off_set);
}
uint count_at(int index) {
return array_uint_at(case_array_start +
index * per_case_cell_count +
relative_count_off_set);
}
int displacement_at(int index) {
return array_int_at(case_array_start +
index * per_case_cell_count +
relative_displacement_off_set);
}
// Code generation support
static ByteSize default_count_offset() {
return array_element_offset(default_count_off_set);
}
static ByteSize default_displacement_offset() {
return array_element_offset(default_disaplacement_off_set);
}
static ByteSize case_count_offset(int index) {
return case_array_offset() +
(per_case_size() * index) +
relative_count_offset();
}
static ByteSize case_array_offset() {
return array_element_offset(case_array_start);
}
static ByteSize per_case_size() {
return in_ByteSize(per_case_cell_count) * cell_size;
}
static ByteSize relative_count_offset() {
return in_ByteSize(relative_count_off_set) * cell_size;
}
static ByteSize relative_displacement_offset() {
return in_ByteSize(relative_displacement_off_set) * cell_size;
}
// Specific initialization.
void post_initialize(BytecodeStream* stream, methodDataOop mdo);
#ifndef PRODUCT
void print_data_on(outputStream* st);
#endif
};
// methodDataOop
//
// A methodDataOop holds information which has been collected about
// a method. Its layout looks like this:
//
// -----------------------------
// | header |
// | klass |
// -----------------------------
// | method |
// | size of the methodDataOop |
// -----------------------------
// | Data entries... |
// | (variable size) |
// | |
// . .
// . .
// . .
// | |
// -----------------------------
//
// The data entry area is a heterogeneous array of DataLayouts. Each
// DataLayout in the array corresponds to a specific bytecode in the
// method. The entries in the array are sorted by the corresponding
// bytecode. Access to the data is via resource-allocated ProfileData,
// which point to the underlying blocks of DataLayout structures.
//
// During interpretation, if profiling in enabled, the interpreter
// maintains a method data pointer (mdp), which points at the entry
// in the array corresponding to the current bci. In the course of
// intepretation, when a bytecode is encountered that has profile data
// associated with it, the entry pointed to by mdp is updated, then the
// mdp is adjusted to point to the next appropriate DataLayout. If mdp
// is NULL to begin with, the interpreter assumes that the current method
// is not (yet) being profiled.
//
// In methodDataOop parlance, "dp" is a "data pointer", the actual address
// of a DataLayout element. A "di" is a "data index", the offset in bytes
// from the base of the data entry array. A "displacement" is the byte offset
// in certain ProfileData objects that indicate the amount the mdp must be
// adjusted in the event of a change in control flow.
//
class methodDataOopDesc : public oopDesc {
friend class VMStructs;
private:
friend class ProfileData;
// Back pointer to the methodOop
methodOop _method;
// Size of this oop in bytes
int _size;
// Cached hint for bci_to_dp and bci_to_data
int _hint_di;
// Whole-method sticky bits and flags
public:
enum {
_trap_hist_limit = 16, // decoupled from Deoptimization::Reason_LIMIT
_trap_hist_mask = max_jubyte,
_extra_data_count = 4 // extra DataLayout headers, for trap history
}; // Public flag values
private:
uint _nof_decompiles; // count of all nmethod removals
uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
uint _nof_overflow_traps; // trap count, excluding _trap_hist
union {
intptr_t _align;
u1 _array[_trap_hist_limit];
} _trap_hist;
// Support for interprocedural escape analysis, from Thomas Kotzmann.
intx _eflags; // flags on escape information
intx _arg_local; // bit set of non-escaping arguments
intx _arg_stack; // bit set of stack-allocatable arguments
intx _arg_returned; // bit set of returned arguments
int _creation_mileage; // method mileage at MDO creation
// Size of _data array in bytes. (Excludes header and extra_data fields.)
int _data_size;
// Beginning of the data entries
intptr_t _data[1];
// Helper for size computation
static int compute_data_size(BytecodeStream* stream);
static int bytecode_cell_count(Bytecodes::Code code);
enum { no_profile_data = -1, variable_cell_count = -2 };
// Helper for initialization
DataLayout* data_layout_at(int data_index) {
assert(data_index % sizeof(intptr_t) == 0, "unaligned");
return (DataLayout*) (((address)_data) + data_index);
}
// Initialize an individual data segment. Returns the size of
// the segment in bytes.
int initialize_data(BytecodeStream* stream, int data_index);
// Helper for data_at
DataLayout* limit_data_position() {
return (DataLayout*)((address)data_base() + _data_size);
}
bool out_of_bounds(int data_index) {
return data_index >= data_size();
}
// Give each of the data entries a chance to perform specific
// data initialization.
void post_initialize(BytecodeStream* stream);
// hint accessors
int hint_di() const { return _hint_di; }
void set_hint_di(int di) {
assert(!out_of_bounds(di), "hint_di out of bounds");
_hint_di = di;
}
ProfileData* data_before(int bci) {
// avoid SEGV on this edge case
if (data_size() == 0)
return NULL;
int hint = hint_di();
if (data_layout_at(hint)->bci() <= bci)
return data_at(hint);
return first_data();
}
// What is the index of the first data entry?
int first_di() { return 0; }
// Find or create an extra ProfileData:
ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
public:
static int header_size() {
return sizeof(methodDataOopDesc)/wordSize;
}
// Compute the size of a methodDataOop before it is created.
static int compute_allocation_size_in_bytes(methodHandle method);
static int compute_allocation_size_in_words(methodHandle method);
static int compute_extra_data_count(int data_size, int empty_bc_count);
// Determine if a given bytecode can have profile information.
static bool bytecode_has_profile(Bytecodes::Code code) {
return bytecode_cell_count(code) != no_profile_data;
}
// Perform initialization of a new methodDataOop
void initialize(methodHandle method);
// My size
int object_size_in_bytes() { return _size; }
int object_size() {
return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
}
int creation_mileage() const { return _creation_mileage; }
void set_creation_mileage(int x) { _creation_mileage = x; }
bool is_mature() const; // consult mileage and ProfileMaturityPercentage
static int mileage_of(methodOop m);
// Support for interprocedural escape analysis, from Thomas Kotzmann.
enum EscapeFlag {
estimated = 1 << 0,
return_local = 1 << 1
};
intx eflags() { return _eflags; }
intx arg_local() { return _arg_local; }
intx arg_stack() { return _arg_stack; }
intx arg_returned() { return _arg_returned; }
void set_eflags(intx v) { _eflags = v; }
void set_arg_local(intx v) { _arg_local = v; }
void set_arg_stack(intx v) { _arg_stack = v; }
void set_arg_returned(intx v) { _arg_returned = v; }
void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
// Location and size of data area
address data_base() const {
return (address) _data;
}
int data_size() {
return _data_size;
}
// Accessors
methodOop method() { return _method; }
// Get the data at an arbitrary (sort of) data index.
ProfileData* data_at(int data_index);
// Walk through the data in order.
ProfileData* first_data() { return data_at(first_di()); }
ProfileData* next_data(ProfileData* current);
bool is_valid(ProfileData* current) { return current != NULL; }
// Convert a dp (data pointer) to a di (data index).
int dp_to_di(address dp) {
return dp - ((address)_data);
}
address di_to_dp(int di) {
return (address)data_layout_at(di);
}
// bci to di/dp conversion.
address bci_to_dp(int bci);
int bci_to_di(int bci) {
return dp_to_di(bci_to_dp(bci));
}
// Get the data at an arbitrary bci, or NULL if there is none.
ProfileData* bci_to_data(int bci);
// Same, but try to create an extra_data record if one is needed:
ProfileData* allocate_bci_to_data(int bci) {
ProfileData* data = bci_to_data(bci);
return (data != NULL) ? data : bci_to_extra_data(bci, true);
}
// Add a handful of extra data records, for trap tracking.
DataLayout* extra_data_base() { return limit_data_position(); }
DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
int extra_data_size() { return (address)extra_data_limit()
- (address)extra_data_base(); }
static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
// Return (uint)-1 for overflow.
uint trap_count(int reason) const {
assert((uint)reason < _trap_hist_limit, "oob");
return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
}
// For loops:
static uint trap_reason_limit() { return _trap_hist_limit; }
static uint trap_count_limit() { return _trap_hist_mask; }
uint inc_trap_count(int reason) {
// Count another trap, anywhere in this method.
assert(reason >= 0, "must be single trap");
if ((uint)reason < _trap_hist_limit) {
uint cnt1 = 1 + _trap_hist._array[reason];
if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
_trap_hist._array[reason] = cnt1;
return cnt1;
} else {
return _trap_hist_mask + (++_nof_overflow_traps);
}
} else {
// Could not represent the count in the histogram.
return (++_nof_overflow_traps);
}
}
uint overflow_trap_count() const {
return _nof_overflow_traps;
}
uint overflow_recompile_count() const {
return _nof_overflow_recompiles;
}
void inc_overflow_recompile_count() {
_nof_overflow_recompiles += 1;
}
uint decompile_count() const {
return _nof_decompiles;
}
void inc_decompile_count() {
_nof_decompiles += 1;
}
// Support for code generation
static ByteSize data_offset() {
return byte_offset_of(methodDataOopDesc, _data[0]);
}
// GC support
oop* adr_method() const { return (oop*)&_method; }
bool object_is_parsable() const { return _size != 0; }
void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
#ifndef PRODUCT
// printing support for method data
void print_data_on(outputStream* st);
#endif
// verification
void verify_data_on(outputStream* st);
};