blob: c21393ce5a031d279873eb455ae804ac3e7b4598 [file] [log] [blame]
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_klass.cpp.incl"
bool Klass::is_subclass_of(klassOop k) const {
// Run up the super chain and check
klassOop t = as_klassOop();
if (t == k) return true;
t = Klass::cast(t)->super();
while (t != NULL) {
if (t == k) return true;
t = Klass::cast(t)->super();
}
return false;
}
bool Klass::search_secondary_supers(klassOop k) const {
// Put some extra logic here out-of-line, before the search proper.
// This cuts down the size of the inline method.
// This is necessary, since I am never in my own secondary_super list.
if (this->as_klassOop() == k)
return true;
// Scan the array-of-objects for a match
int cnt = secondary_supers()->length();
for (int i = 0; i < cnt; i++) {
if (secondary_supers()->obj_at(i) == k) {
((Klass*)this)->set_secondary_super_cache(k);
return true;
}
}
return false;
}
// Return self, except for abstract classes with exactly 1
// implementor. Then return the 1 concrete implementation.
Klass *Klass::up_cast_abstract() {
Klass *r = this;
while( r->is_abstract() ) { // Receiver is abstract?
Klass *s = r->subklass(); // Check for exactly 1 subklass
if( !s || s->next_sibling() ) // Oops; wrong count; give up
return this; // Return 'this' as a no-progress flag
r = s; // Loop till find concrete class
}
return r; // Return the 1 concrete class
}
// Find LCA in class heirarchy
Klass *Klass::LCA( Klass *k2 ) {
Klass *k1 = this;
while( 1 ) {
if( k1->is_subtype_of(k2->as_klassOop()) ) return k2;
if( k2->is_subtype_of(k1->as_klassOop()) ) return k1;
k1 = k1->super()->klass_part();
k2 = k2->super()->klass_part();
}
}
void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
ResourceMark rm(THREAD);
THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
: vmSymbols::java_lang_InstantiationException(), external_name());
}
void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
THROW(vmSymbols::java_lang_ArrayStoreException());
}
void Klass::initialize(TRAPS) {
ShouldNotReachHere();
}
bool Klass::compute_is_subtype_of(klassOop k) {
assert(k->is_klass(), "argument must be a class");
return is_subclass_of(k);
}
methodOop Klass::uncached_lookup_method(symbolOop name, symbolOop signature) const {
#ifdef ASSERT
tty->print_cr("Error: uncached_lookup_method called on a klass oop."
" Likely error: reflection method does not correctly"
" wrap return value in a mirror object.");
#endif
ShouldNotReachHere();
return NULL;
}
klassOop Klass::base_create_klass_oop(KlassHandle& klass, int size,
const Klass_vtbl& vtbl, TRAPS) {
size = align_object_size(size);
// allocate and initialize vtable
Klass* kl = (Klass*) vtbl.allocate_permanent(klass, size, CHECK_NULL);
klassOop k = kl->as_klassOop();
{ // Preinitialize supertype information.
// A later call to initialize_supers() may update these settings:
kl->set_super(NULL);
for (juint i = 0; i < Klass::primary_super_limit(); i++) {
kl->_primary_supers[i] = NULL;
}
kl->set_secondary_supers(NULL);
oop_store_without_check((oop*) &kl->_primary_supers[0], k);
kl->set_super_check_offset(primary_supers_offset_in_bytes() + sizeof(oopDesc));
}
kl->set_java_mirror(NULL);
kl->set_modifier_flags(0);
kl->set_layout_helper(Klass::_lh_neutral_value);
kl->set_name(NULL);
AccessFlags af;
af.set_flags(0);
kl->set_access_flags(af);
kl->set_subklass(NULL);
kl->set_next_sibling(NULL);
kl->set_alloc_count(0);
kl->set_alloc_size(0);
kl->set_prototype_header(markOopDesc::prototype());
kl->set_biased_lock_revocation_count(0);
kl->set_last_biased_lock_bulk_revocation_time(0);
return k;
}
KlassHandle Klass::base_create_klass(KlassHandle& klass, int size,
const Klass_vtbl& vtbl, TRAPS) {
klassOop ek = base_create_klass_oop(klass, size, vtbl, THREAD);
return KlassHandle(THREAD, ek);
}
void Klass_vtbl::post_new_init_klass(KlassHandle& klass,
klassOop new_klass,
int size) const {
assert(!new_klass->klass_part()->null_vtbl(), "Not a complete klass");
CollectedHeap::post_allocation_install_obj_klass(klass, new_klass, size);
}
void* Klass_vtbl::operator new(size_t ignored, KlassHandle& klass,
int size, TRAPS) {
// The vtable pointer is installed during the execution of
// constructors in the call to permanent_obj_allocate(). Delay
// the installation of the klass pointer into the new klass "k"
// until after the vtable pointer has been installed (i.e., until
// after the return of permanent_obj_allocate().
klassOop k =
(klassOop) CollectedHeap::permanent_obj_allocate_no_klass_install(klass,
size, CHECK_NULL);
return k->klass_part();
}
jint Klass::array_layout_helper(BasicType etype) {
assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
// Note that T_ARRAY is not allowed here.
int hsize = arrayOopDesc::base_offset_in_bytes(etype);
int esize = type2aelembytes[etype];
bool isobj = (etype == T_OBJECT);
int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
assert(lh < (int)_lh_neutral_value, "must look like an array layout");
assert(layout_helper_is_javaArray(lh), "correct kind");
assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
assert(layout_helper_header_size(lh) == hsize, "correct decode");
assert(layout_helper_element_type(lh) == etype, "correct decode");
assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
return lh;
}
bool Klass::can_be_primary_super_slow() const {
if (super() == NULL)
return true;
else if (super()->klass_part()->super_depth() >= primary_super_limit()-1)
return false;
else
return true;
}
void Klass::initialize_supers(klassOop k, TRAPS) {
if (FastSuperclassLimit == 0) {
// None of the other machinery matters.
set_super(k);
return;
}
if (k == NULL) {
set_super(NULL);
oop_store_without_check((oop*) &_primary_supers[0], (oop) this->as_klassOop());
assert(super_depth() == 0, "Object must already be initialized properly");
} else if (k != super() || k == SystemDictionary::object_klass()) {
assert(super() == NULL || super() == SystemDictionary::object_klass(),
"initialize this only once to a non-trivial value");
set_super(k);
Klass* sup = k->klass_part();
int sup_depth = sup->super_depth();
juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit());
if (!can_be_primary_super_slow())
my_depth = primary_super_limit();
for (juint i = 0; i < my_depth; i++) {
oop_store_without_check((oop*) &_primary_supers[i], (oop) sup->_primary_supers[i]);
}
klassOop *super_check_cell;
if (my_depth < primary_super_limit()) {
oop_store_without_check((oop*) &_primary_supers[my_depth], (oop) this->as_klassOop());
super_check_cell = &_primary_supers[my_depth];
} else {
// Overflow of the primary_supers array forces me to be secondary.
super_check_cell = &_secondary_super_cache;
}
set_super_check_offset((address)super_check_cell - (address) this->as_klassOop());
#ifdef ASSERT
{
juint j = super_depth();
assert(j == my_depth, "computed accessor gets right answer");
klassOop t = as_klassOop();
while (!Klass::cast(t)->can_be_primary_super()) {
t = Klass::cast(t)->super();
j = Klass::cast(t)->super_depth();
}
for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
assert(primary_super_of_depth(j1) == NULL, "super list padding");
}
while (t != NULL) {
assert(primary_super_of_depth(j) == t, "super list initialization");
t = Klass::cast(t)->super();
--j;
}
assert(j == (juint)-1, "correct depth count");
}
#endif
}
if (secondary_supers() == NULL) {
KlassHandle this_kh (THREAD, this);
// Now compute the list of secondary supertypes.
// Secondaries can occasionally be on the super chain,
// if the inline "_primary_supers" array overflows.
int extras = 0;
klassOop p;
for (p = super(); !(p == NULL || p->klass_part()->can_be_primary_super()); p = p->klass_part()->super()) {
++extras;
}
// Compute the "real" non-extra secondaries.
objArrayOop secondary_oops = compute_secondary_supers(extras, CHECK);
objArrayHandle secondaries (THREAD, secondary_oops);
// Store the extra secondaries in the first array positions:
int fillp = extras;
for (p = this_kh->super(); !(p == NULL || p->klass_part()->can_be_primary_super()); p = p->klass_part()->super()) {
int i; // Scan for overflow primaries being duplicates of 2nd'arys
// This happens frequently for very deeply nested arrays: the
// primary superclass chain overflows into the secondary. The
// secondary list contains the element_klass's secondaries with
// an extra array dimension added. If the element_klass's
// secondary list already contains some primary overflows, they
// (with the extra level of array-ness) will collide with the
// normal primary superclass overflows.
for( i = extras; i < secondaries->length(); i++ )
if( secondaries->obj_at(i) == p )
break;
if( i < secondaries->length() )
continue; // It's a dup, don't put it in
secondaries->obj_at_put(--fillp, p);
}
// See if we had some dup's, so the array has holes in it.
if( fillp > 0 ) {
// Pack the array. Drop the old secondaries array on the floor
// and let GC reclaim it.
objArrayOop s2 = oopFactory::new_system_objArray(secondaries->length() - fillp, CHECK);
for( int i = 0; i < s2->length(); i++ )
s2->obj_at_put( i, secondaries->obj_at(i+fillp) );
secondaries = objArrayHandle(THREAD, s2);
}
#ifdef ASSERT
if (secondaries() != Universe::the_array_interfaces_array()) {
// We must not copy any NULL placeholders left over from bootstrap.
for (int j = 0; j < secondaries->length(); j++) {
assert(secondaries->obj_at(j) != NULL, "correct bootstrapping order");
}
}
#endif
this_kh->set_secondary_supers(secondaries());
}
}
objArrayOop Klass::compute_secondary_supers(int num_extra_slots, TRAPS) {
assert(num_extra_slots == 0, "override for complex klasses");
return Universe::the_empty_system_obj_array();
}
Klass* Klass::subklass() const {
return _subklass == NULL ? NULL : Klass::cast(_subklass);
}
instanceKlass* Klass::superklass() const {
assert(super() == NULL || super()->klass_part()->oop_is_instance(), "must be instance klass");
return _super == NULL ? NULL : instanceKlass::cast(_super);
}
Klass* Klass::next_sibling() const {
return _next_sibling == NULL ? NULL : Klass::cast(_next_sibling);
}
void Klass::set_subklass(klassOop s) {
assert(s != as_klassOop(), "sanity check");
oop_store_without_check((oop*)&_subklass, s);
}
void Klass::set_next_sibling(klassOop s) {
assert(s != as_klassOop(), "sanity check");
oop_store_without_check((oop*)&_next_sibling, s);
}
void Klass::append_to_sibling_list() {
debug_only(if (!SharedSkipVerify) as_klassOop()->verify();)
// add ourselves to superklass' subklass list
instanceKlass* super = superklass();
if (super == NULL) return; // special case: class Object
assert(SharedSkipVerify ||
(!super->is_interface() // interfaces cannot be supers
&& (super->superklass() == NULL || !is_interface())),
"an interface can only be a subklass of Object");
klassOop prev_first_subklass = super->subklass_oop();
if (prev_first_subklass != NULL) {
// set our sibling to be the superklass' previous first subklass
set_next_sibling(prev_first_subklass);
}
// make ourselves the superklass' first subklass
super->set_subklass(as_klassOop());
debug_only(if (!SharedSkipVerify) as_klassOop()->verify();)
}
void Klass::remove_from_sibling_list() {
// remove receiver from sibling list
instanceKlass* super = superklass();
assert(super != NULL || as_klassOop() == SystemDictionary::object_klass(), "should have super");
if (super == NULL) return; // special case: class Object
if (super->subklass() == this) {
// first subklass
super->set_subklass(_next_sibling);
} else {
Klass* sib = super->subklass();
while (sib->next_sibling() != this) {
sib = sib->next_sibling();
};
sib->set_next_sibling(_next_sibling);
}
}
void Klass::follow_weak_klass_links( BoolObjectClosure* is_alive, OopClosure* keep_alive) {
// This klass is alive but the subklass and siblings are not followed/updated.
// We update the subklass link and the subklass' sibling links here.
// Our own sibling link will be updated by our superclass (which must be alive
// since we are).
assert(is_alive->do_object_b(as_klassOop()), "just checking, this should be live");
if (ClassUnloading) {
klassOop sub = subklass_oop();
if (sub != NULL && !is_alive->do_object_b(sub)) {
// first subklass not alive, find first one alive
do {
#ifndef PRODUCT
if (TraceClassUnloading && WizardMode) {
ResourceMark rm;
tty->print_cr("[Unlinking class (subclass) %s]", sub->klass_part()->external_name());
}
#endif
sub = sub->klass_part()->next_sibling_oop();
} while (sub != NULL && !is_alive->do_object_b(sub));
set_subklass(sub);
}
// now update the subklass' sibling list
while (sub != NULL) {
klassOop next = sub->klass_part()->next_sibling_oop();
if (next != NULL && !is_alive->do_object_b(next)) {
// first sibling not alive, find first one alive
do {
#ifndef PRODUCT
if (TraceClassUnloading && WizardMode) {
ResourceMark rm;
tty->print_cr("[Unlinking class (sibling) %s]", next->klass_part()->external_name());
}
#endif
next = next->klass_part()->next_sibling_oop();
} while (next != NULL && !is_alive->do_object_b(next));
sub->klass_part()->set_next_sibling(next);
}
sub = next;
}
} else {
// Always follow subklass and sibling link. This will prevent any klasses from
// being unloaded (all classes are transitively linked from java.lang.Object).
keep_alive->do_oop(adr_subklass());
keep_alive->do_oop(adr_next_sibling());
}
}
void Klass::remove_unshareable_info() {
if (oop_is_instance()) {
instanceKlass* ik = (instanceKlass*)this;
if (ik->is_linked()) {
ik->unlink_class();
}
}
set_subklass(NULL);
set_next_sibling(NULL);
}
klassOop Klass::array_klass_or_null(int rank) {
EXCEPTION_MARK;
// No exception can be thrown by array_klass_impl when called with or_null == true.
// (In anycase, the execption mark will fail if it do so)
return array_klass_impl(true, rank, THREAD);
}
klassOop Klass::array_klass_or_null() {
EXCEPTION_MARK;
// No exception can be thrown by array_klass_impl when called with or_null == true.
// (In anycase, the execption mark will fail if it do so)
return array_klass_impl(true, THREAD);
}
klassOop Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
fatal("array_klass should be dispatched to instanceKlass, objArrayKlass or typeArrayKlass");
return NULL;
}
klassOop Klass::array_klass_impl(bool or_null, TRAPS) {
fatal("array_klass should be dispatched to instanceKlass, objArrayKlass or typeArrayKlass");
return NULL;
}
void Klass::with_array_klasses_do(void f(klassOop k)) {
f(as_klassOop());
}
const char* Klass::external_name() const {
return name()->as_klass_external_name();
}
char* Klass::signature_name() const {
return name()->as_C_string();
}
// Unless overridden, modifier_flags is 0.
jint Klass::compute_modifier_flags(TRAPS) const {
return 0;
}
int Klass::atomic_incr_biased_lock_revocation_count() {
return (int) Atomic::add(1, &_biased_lock_revocation_count);
}
// Unless overridden, jvmti_class_status has no flags set.
jint Klass::jvmti_class_status() const {
return 0;
}
#ifndef PRODUCT
// Printing
void Klass::oop_print_on(oop obj, outputStream* st) {
ResourceMark rm;
// print title
st->print_cr("%s ", internal_name());
obj->print_address_on(st);
if (WizardMode) {
// print header
obj->mark()->print_on(st);
}
// print class
st->print(" - klass: ");
obj->klass()->print_value_on(st);
st->cr();
}
void Klass::oop_print_value_on(oop obj, outputStream* st) {
// print title
ResourceMark rm; // Cannot print in debug mode without this
st->print("%s", internal_name());
obj->print_address_on(st);
}
#endif
// Verification
void Klass::oop_verify_on(oop obj, outputStream* st) {
guarantee(obj->is_oop(), "should be oop");
guarantee(obj->klass()->is_perm(), "should be in permspace");
guarantee(obj->klass()->is_klass(), "klass field is not a klass");
}
void Klass::oop_verify_old_oop(oop obj, oop* p, bool allow_dirty) {
/* $$$ I think this functionality should be handled by verification of
RememberedSet::verify_old_oop(obj, p, allow_dirty, false);
the card table. */
}
#ifndef PRODUCT
void Klass::verify_vtable_index(int i) {
assert(oop_is_instance() || oop_is_array(), "only instanceKlass and arrayKlass have vtables");
if (oop_is_instance()) {
assert(i>=0 && i<((instanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
} else {
assert(i>=0 && i<((arrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
}
}
#endif