blob: cb650778556bd7b4604faf6a839848f7687a9634 [file] [log] [blame]
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_invocationCounter.cpp.incl"
// Implementation of InvocationCounter
void InvocationCounter::init() {
_counter = 0; // reset all the bits, including the sticky carry
reset();
}
void InvocationCounter::reset() {
// Only reset the state and don't make the method look like it's never
// been executed
set_state(wait_for_compile);
}
void InvocationCounter::set_carry() {
_counter |= carry_mask;
// The carry bit now indicates that this counter had achieved a very
// large value. Now reduce the value, so that the method can be
// executed many more times before re-entering the VM.
int old_count = count();
int new_count = MIN2(old_count, (int) (CompileThreshold / 2));
if (old_count != new_count) set(state(), new_count);
}
void InvocationCounter::set_state(State state) {
assert(0 <= state && state < number_of_states, "illegal state");
int init = _init[state];
// prevent from going to zero, to distinguish from never-executed methods
if (init == 0 && count() > 0) init = 1;
int carry = (_counter & carry_mask); // the carry bit is sticky
_counter = (init << number_of_noncount_bits) | carry | state;
}
void InvocationCounter::print() {
tty->print_cr("invocation count: up = %d, limit = %d, carry = %s, state = %s",
count(), limit(),
carry() ? "true" : "false",
state_as_string(state()));
}
void InvocationCounter::print_short() {
tty->print(" [%d%s;%s]", count(), carry()?"+carry":"", state_as_short_string(state()));
}
// Initialization
int InvocationCounter::_init [InvocationCounter::number_of_states];
InvocationCounter::Action InvocationCounter::_action[InvocationCounter::number_of_states];
int InvocationCounter::InterpreterInvocationLimit;
int InvocationCounter::InterpreterBackwardBranchLimit;
int InvocationCounter::InterpreterProfileLimit;
// Tier1 limits
int InvocationCounter::Tier1InvocationLimit;
int InvocationCounter::Tier1BackEdgeLimit;
const char* InvocationCounter::state_as_string(State state) {
switch (state) {
case wait_for_nothing : return "wait_for_nothing";
case wait_for_compile : return "wait_for_compile";
}
ShouldNotReachHere();
return NULL;
}
const char* InvocationCounter::state_as_short_string(State state) {
switch (state) {
case wait_for_nothing : return "not comp.";
case wait_for_compile : return "compileable";
}
ShouldNotReachHere();
return NULL;
}
static address do_nothing(methodHandle method, TRAPS) {
// dummy action for inactive invocation counters
method->invocation_counter()->set_carry();
method->invocation_counter()->set_state(InvocationCounter::wait_for_nothing);
return NULL;
}
static address do_decay(methodHandle method, TRAPS) {
// decay invocation counters so compilation gets delayed
method->invocation_counter()->decay();
return NULL;
}
void InvocationCounter::def(State state, int init, Action action) {
assert(0 <= state && state < number_of_states, "illegal state");
assert(0 <= init && init < count_limit, "initial value out of range");
_init [state] = init;
_action[state] = action;
}
address dummy_invocation_counter_overflow(methodHandle m, TRAPS) {
ShouldNotReachHere();
return NULL;
}
void InvocationCounter::reinitialize(bool delay_overflow) {
// define states
guarantee((int)number_of_states <= (int)state_limit, "adjust number_of_state_bits");
def(wait_for_nothing, 0, do_nothing);
if (delay_overflow) {
def(wait_for_compile, 0, do_decay);
} else {
def(wait_for_compile, 0, dummy_invocation_counter_overflow);
}
InterpreterInvocationLimit = CompileThreshold << number_of_noncount_bits;
InterpreterProfileLimit = ((CompileThreshold * InterpreterProfilePercentage) / 100)<< number_of_noncount_bits;
Tier1InvocationLimit = Tier2CompileThreshold << number_of_noncount_bits;
Tier1BackEdgeLimit = Tier2BackEdgeThreshold << number_of_noncount_bits;
// When methodData is collected, the backward branch limit is compared against a
// methodData counter, rather than an InvocationCounter. In the former case, we
// don't need the shift by number_of_noncount_bits, but we do need to adjust
// the factor by which we scale the threshold.
if (ProfileInterpreter) {
InterpreterBackwardBranchLimit = (CompileThreshold * (OnStackReplacePercentage - InterpreterProfilePercentage)) / 100;
} else {
InterpreterBackwardBranchLimit = ((CompileThreshold * OnStackReplacePercentage) / 100) << number_of_noncount_bits;
}
assert(0 <= InterpreterBackwardBranchLimit,
"OSR threshold should be non-negative");
assert(0 <= InterpreterProfileLimit &&
InterpreterProfileLimit <= InterpreterInvocationLimit,
"profile threshold should be less than the compilation threshold "
"and non-negative");
}
void invocationCounter_init() {
InvocationCounter::reinitialize(DelayCompilationDuringStartup);
}