blob: acaa33818a4c0fa637e6b67c865450bb20b33328 [file] [log] [blame]
/*
* Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_adaptiveSizePolicy.cpp.incl"
elapsedTimer AdaptiveSizePolicy::_minor_timer;
elapsedTimer AdaptiveSizePolicy::_major_timer;
// The throughput goal is implemented as
// _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
// gc_cost_ratio is the ratio
// application cost / gc cost
// For example a gc_cost_ratio of 4 translates into a
// throughput goal of .80
AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size,
double gc_pause_goal_sec,
uint gc_cost_ratio) :
_eden_size(init_eden_size),
_promo_size(init_promo_size),
_survivor_size(init_survivor_size),
_gc_pause_goal_sec(gc_pause_goal_sec),
_throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
_gc_time_limit_exceeded(false),
_print_gc_time_limit_would_be_exceeded(false),
_gc_time_limit_count(0),
_latest_minor_mutator_interval_seconds(0),
_threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
_young_gen_change_for_minor_throughput(0),
_old_gen_change_for_major_throughput(0) {
_avg_minor_pause =
new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
_avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
_avg_minor_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
_avg_major_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
_avg_young_live = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
_avg_old_live = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
_avg_eden_live = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
_avg_survived = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
SurvivorPadding);
_avg_pretenured = new AdaptivePaddedNoZeroDevAverage(
AdaptiveSizePolicyWeight,
SurvivorPadding);
_minor_pause_old_estimator =
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
_minor_pause_young_estimator =
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
_minor_collection_estimator =
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
_major_collection_estimator =
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
// Start the timers
_minor_timer.start();
_young_gen_policy_is_ready = false;
}
bool AdaptiveSizePolicy::tenuring_threshold_change() const {
return decrement_tenuring_threshold_for_gc_cost() ||
increment_tenuring_threshold_for_gc_cost() ||
decrement_tenuring_threshold_for_survivor_limit();
}
void AdaptiveSizePolicy::minor_collection_begin() {
// Update the interval time
_minor_timer.stop();
// Save most recent collection time
_latest_minor_mutator_interval_seconds = _minor_timer.seconds();
_minor_timer.reset();
_minor_timer.start();
}
void AdaptiveSizePolicy::update_minor_pause_young_estimator(
double minor_pause_in_ms) {
double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
_minor_pause_young_estimator->update(eden_size_in_mbytes,
minor_pause_in_ms);
}
void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
// Update the pause time.
_minor_timer.stop();
if (gc_cause != GCCause::_java_lang_system_gc ||
UseAdaptiveSizePolicyWithSystemGC) {
double minor_pause_in_seconds = _minor_timer.seconds();
double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
// Sample for performance counter
_avg_minor_pause->sample(minor_pause_in_seconds);
// Cost of collection (unit-less)
double collection_cost = 0.0;
if ((_latest_minor_mutator_interval_seconds > 0.0) &&
(minor_pause_in_seconds > 0.0)) {
double interval_in_seconds =
_latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
collection_cost =
minor_pause_in_seconds / interval_in_seconds;
_avg_minor_gc_cost->sample(collection_cost);
// Sample for performance counter
_avg_minor_interval->sample(interval_in_seconds);
}
// The policy does not have enough data until at least some
// minor collections have been done.
_young_gen_policy_is_ready =
(_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
// Calculate variables used to estimate pause time vs. gen sizes
double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
update_minor_pause_young_estimator(minor_pause_in_ms);
update_minor_pause_old_estimator(minor_pause_in_ms);
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print("AdaptiveSizePolicy::minor_collection_end: "
"minor gc cost: %f average: %f", collection_cost,
_avg_minor_gc_cost->average());
gclog_or_tty->print_cr(" minor pause: %f minor period %f",
minor_pause_in_ms,
_latest_minor_mutator_interval_seconds * MILLIUNITS);
}
// Calculate variable used to estimate collection cost vs. gen sizes
assert(collection_cost >= 0.0, "Expected to be non-negative");
_minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
}
// Interval times use this timer to measure the mutator time.
// Reset the timer after the GC pause.
_minor_timer.reset();
_minor_timer.start();
}
size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden,
uint percent_change) {
size_t eden_heap_delta;
eden_heap_delta = cur_eden / 100 * percent_change;
return eden_heap_delta;
}
size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
return eden_increment(cur_eden, YoungGenerationSizeIncrement);
}
size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
size_t eden_heap_delta = eden_increment(cur_eden) /
AdaptiveSizeDecrementScaleFactor;
return eden_heap_delta;
}
size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo,
uint percent_change) {
size_t promo_heap_delta;
promo_heap_delta = cur_promo / 100 * percent_change;
return promo_heap_delta;
}
size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
}
size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
size_t promo_heap_delta = promo_increment(cur_promo);
promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
return promo_heap_delta;
}
double AdaptiveSizePolicy::time_since_major_gc() const {
_major_timer.stop();
double result = _major_timer.seconds();
_major_timer.start();
return result;
}
// Linear decay of major gc cost
double AdaptiveSizePolicy::decaying_major_gc_cost() const {
double major_interval = major_gc_interval_average_for_decay();
double major_gc_cost_average = major_gc_cost();
double decayed_major_gc_cost = major_gc_cost_average;
if(time_since_major_gc() > 0.0) {
decayed_major_gc_cost = major_gc_cost() *
(((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
/ time_since_major_gc();
}
// The decayed cost should always be smaller than the
// average cost but the vagaries of finite arithmetic could
// produce a larger value in decayed_major_gc_cost so protect
// against that.
return MIN2(major_gc_cost_average, decayed_major_gc_cost);
}
// Use a value of the major gc cost that has been decayed
// by the factor
//
// average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
// time-since-last-major-gc
//
// if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
// is less than time-since-last-major-gc.
//
// In cases where there are initial major gc's that
// are of a relatively high cost but no later major
// gc's, the total gc cost can remain high because
// the major gc cost remains unchanged (since there are no major
// gc's). In such a situation the value of the unchanging
// major gc cost can keep the mutator throughput below
// the goal when in fact the major gc cost is becoming diminishingly
// small. Use the decaying gc cost only to decide whether to
// adjust for throughput. Using it also to determine the adjustment
// to be made for throughput also seems reasonable but there is
// no test case to use to decide if it is the right thing to do
// don't do it yet.
double AdaptiveSizePolicy::decaying_gc_cost() const {
double decayed_major_gc_cost = major_gc_cost();
double avg_major_interval = major_gc_interval_average_for_decay();
if (UseAdaptiveSizeDecayMajorGCCost &&
(AdaptiveSizeMajorGCDecayTimeScale > 0) &&
(avg_major_interval > 0.00)) {
double time_since_last_major_gc = time_since_major_gc();
// Decay the major gc cost?
if (time_since_last_major_gc >
((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
// Decay using the time-since-last-major-gc
decayed_major_gc_cost = decaying_major_gc_cost();
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("\ndecaying_gc_cost: major interval average:"
" %f time since last major gc: %f",
avg_major_interval, time_since_last_major_gc);
gclog_or_tty->print_cr(" major gc cost: %f decayed major gc cost: %f",
major_gc_cost(), decayed_major_gc_cost);
}
}
}
double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
return result;
}
void AdaptiveSizePolicy::clear_generation_free_space_flags() {
set_change_young_gen_for_min_pauses(0);
set_change_old_gen_for_maj_pauses(0);
set_change_old_gen_for_throughput(0);
set_change_young_gen_for_throughput(0);
set_decrease_for_footprint(0);
set_decide_at_full_gc(0);
}
// Printing
bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {
// Should only be used with adaptive size policy turned on.
// Otherwise, there may be variables that are undefined.
if (!UseAdaptiveSizePolicy) return false;
// Print goal for which action is needed.
char* action = NULL;
bool change_for_pause = false;
if ((change_old_gen_for_maj_pauses() ==
decrease_old_gen_for_maj_pauses_true) ||
(change_young_gen_for_min_pauses() ==
decrease_young_gen_for_min_pauses_true)) {
action = (char*) " *** pause time goal ***";
change_for_pause = true;
} else if ((change_old_gen_for_throughput() ==
increase_old_gen_for_throughput_true) ||
(change_young_gen_for_throughput() ==
increase_young_gen_for_througput_true)) {
action = (char*) " *** throughput goal ***";
} else if (decrease_for_footprint()) {
action = (char*) " *** reduced footprint ***";
} else {
// No actions were taken. This can legitimately be the
// situation if not enough data has been gathered to make
// decisions.
return false;
}
// Pauses
// Currently the size of the old gen is only adjusted to
// change the major pause times.
char* young_gen_action = NULL;
char* tenured_gen_action = NULL;
char* shrink_msg = (char*) "(attempted to shrink)";
char* grow_msg = (char*) "(attempted to grow)";
char* no_change_msg = (char*) "(no change)";
if (change_young_gen_for_min_pauses() ==
decrease_young_gen_for_min_pauses_true) {
young_gen_action = shrink_msg;
} else if (change_for_pause) {
young_gen_action = no_change_msg;
}
if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
tenured_gen_action = shrink_msg;
} else if (change_for_pause) {
tenured_gen_action = no_change_msg;
}
// Throughput
if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
assert(change_young_gen_for_throughput() ==
increase_young_gen_for_througput_true,
"Both generations should be growing");
young_gen_action = grow_msg;
tenured_gen_action = grow_msg;
} else if (change_young_gen_for_throughput() ==
increase_young_gen_for_througput_true) {
// Only the young generation may grow at start up (before
// enough full collections have been done to grow the old generation).
young_gen_action = grow_msg;
tenured_gen_action = no_change_msg;
}
// Minimum footprint
if (decrease_for_footprint() != 0) {
young_gen_action = shrink_msg;
tenured_gen_action = shrink_msg;
}
st->print_cr(" UseAdaptiveSizePolicy actions to meet %s", action);
st->print_cr(" GC overhead (%%)");
st->print_cr(" Young generation: %7.2f\t %s",
100.0 * avg_minor_gc_cost()->average(),
young_gen_action);
st->print_cr(" Tenured generation: %7.2f\t %s",
100.0 * avg_major_gc_cost()->average(),
tenured_gen_action);
return true;
}
bool AdaptiveSizePolicy::print_adaptive_size_policy_on(
outputStream* st,
int tenuring_threshold_arg) const {
if (!AdaptiveSizePolicy::print_adaptive_size_policy_on(st)) {
return false;
}
// Tenuring threshold
bool tenuring_threshold_changed = true;
if (decrement_tenuring_threshold_for_survivor_limit()) {
st->print(" Tenuring threshold: (attempted to decrease to avoid"
" survivor space overflow) = ");
} else if (decrement_tenuring_threshold_for_gc_cost()) {
st->print(" Tenuring threshold: (attempted to decrease to balance"
" GC costs) = ");
} else if (increment_tenuring_threshold_for_gc_cost()) {
st->print(" Tenuring threshold: (attempted to increase to balance"
" GC costs) = ");
} else {
tenuring_threshold_changed = false;
assert(!tenuring_threshold_change(), "(no change was attempted)");
}
if (tenuring_threshold_changed) {
st->print_cr("%d", tenuring_threshold_arg);
}
return true;
}