blob: 81c2d47a647763c5b38efc5cc2a8344e06430611 [file] [log] [blame]
/*
* Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_psParallelCompact.cpp.incl"
#include <math.h>
// All sizes are in HeapWords.
const size_t ParallelCompactData::Log2ChunkSize = 9; // 512 words
const size_t ParallelCompactData::ChunkSize = (size_t)1 << Log2ChunkSize;
const size_t ParallelCompactData::ChunkSizeBytes = ChunkSize << LogHeapWordSize;
const size_t ParallelCompactData::ChunkSizeOffsetMask = ChunkSize - 1;
const size_t ParallelCompactData::ChunkAddrOffsetMask = ChunkSizeBytes - 1;
const size_t ParallelCompactData::ChunkAddrMask = ~ChunkAddrOffsetMask;
// 32-bit: 128 words covers 4 bitmap words
// 64-bit: 128 words covers 2 bitmap words
const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words
const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize;
const size_t ParallelCompactData::BlockOffsetMask = BlockSize - 1;
const size_t ParallelCompactData::BlockMask = ~BlockOffsetMask;
const size_t ParallelCompactData::BlocksPerChunk = ChunkSize / BlockSize;
const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_shift = 27;
const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_mask = ~0U << dc_shift;
const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_one = 0x1U << dc_shift;
const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::los_mask = ~dc_mask;
const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_claimed = 0x8U << dc_shift;
const ParallelCompactData::ChunkData::chunk_sz_t
ParallelCompactData::ChunkData::dc_completed = 0xcU << dc_shift;
#ifdef ASSERT
short ParallelCompactData::BlockData::_cur_phase = 0;
#endif
SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool PSParallelCompact::_print_phases = false;
ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
klassOop PSParallelCompact::_updated_int_array_klass_obj = NULL;
double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef ASSERT
bool PSParallelCompact::_dwl_initialized = false;
#endif // #ifdef ASSERT
#ifdef VALIDATE_MARK_SWEEP
GrowableArray<oop*>* PSParallelCompact::_root_refs_stack = NULL;
GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
size_t PSParallelCompact::_live_oops_index = 0;
size_t PSParallelCompact::_live_oops_index_at_perm = 0;
GrowableArray<oop*>* PSParallelCompact::_other_refs_stack = NULL;
GrowableArray<oop*>* PSParallelCompact::_adjusted_pointers = NULL;
bool PSParallelCompact::_pointer_tracking = false;
bool PSParallelCompact::_root_tracking = true;
GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
#endif
// XXX beg - verification code; only works while we also mark in object headers
static void
verify_mark_bitmap(ParMarkBitMap& _mark_bitmap)
{
ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
PSPermGen* perm_gen = heap->perm_gen();
PSOldGen* old_gen = heap->old_gen();
PSYoungGen* young_gen = heap->young_gen();
MutableSpace* perm_space = perm_gen->object_space();
MutableSpace* old_space = old_gen->object_space();
MutableSpace* eden_space = young_gen->eden_space();
MutableSpace* from_space = young_gen->from_space();
MutableSpace* to_space = young_gen->to_space();
// 'from_space' here is the survivor space at the lower address.
if (to_space->bottom() < from_space->bottom()) {
from_space = to_space;
to_space = young_gen->from_space();
}
HeapWord* boundaries[12];
unsigned int bidx = 0;
const unsigned int bidx_max = sizeof(boundaries) / sizeof(boundaries[0]);
boundaries[0] = perm_space->bottom();
boundaries[1] = perm_space->top();
boundaries[2] = old_space->bottom();
boundaries[3] = old_space->top();
boundaries[4] = eden_space->bottom();
boundaries[5] = eden_space->top();
boundaries[6] = from_space->bottom();
boundaries[7] = from_space->top();
boundaries[8] = to_space->bottom();
boundaries[9] = to_space->top();
boundaries[10] = to_space->end();
boundaries[11] = to_space->end();
BitMap::idx_t beg_bit = 0;
BitMap::idx_t end_bit;
BitMap::idx_t tmp_bit;
const BitMap::idx_t last_bit = _mark_bitmap.size();
do {
HeapWord* addr = _mark_bitmap.bit_to_addr(beg_bit);
if (_mark_bitmap.is_marked(beg_bit)) {
oop obj = (oop)addr;
assert(obj->is_gc_marked(), "obj header is not marked");
end_bit = _mark_bitmap.find_obj_end(beg_bit, last_bit);
const size_t size = _mark_bitmap.obj_size(beg_bit, end_bit);
assert(size == (size_t)obj->size(), "end bit wrong?");
beg_bit = _mark_bitmap.find_obj_beg(beg_bit + 1, last_bit);
assert(beg_bit > end_bit, "bit set in middle of an obj");
} else {
if (addr >= boundaries[bidx] && addr < boundaries[bidx + 1]) {
// a dead object in the current space.
oop obj = (oop)addr;
end_bit = _mark_bitmap.addr_to_bit(addr + obj->size());
assert(!obj->is_gc_marked(), "obj marked in header, not in bitmap");
tmp_bit = beg_bit + 1;
beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
assert(beg_bit == end_bit, "beg bit set in unmarked obj");
beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
assert(beg_bit == end_bit, "end bit set in unmarked obj");
} else if (addr < boundaries[bidx + 2]) {
// addr is between top in the current space and bottom in the next.
end_bit = beg_bit + pointer_delta(boundaries[bidx + 2], addr);
tmp_bit = beg_bit;
beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
assert(beg_bit == end_bit, "beg bit set above top");
beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
assert(beg_bit == end_bit, "end bit set above top");
bidx += 2;
} else if (bidx < bidx_max - 2) {
bidx += 2; // ???
} else {
tmp_bit = beg_bit;
beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, last_bit);
assert(beg_bit == last_bit, "beg bit set outside heap");
beg_bit = _mark_bitmap.find_obj_end(tmp_bit, last_bit);
assert(beg_bit == last_bit, "end bit set outside heap");
}
}
} while (beg_bit < last_bit);
}
// XXX end - verification code; only works while we also mark in object headers
#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
"perm", "old ", "eden", "from", "to "
};
void PSParallelCompact::print_chunk_ranges()
{
tty->print_cr("space bottom top end new_top");
tty->print_cr("------ ---------- ---------- ---------- ----------");
for (unsigned int id = 0; id < last_space_id; ++id) {
const MutableSpace* space = _space_info[id].space();
tty->print_cr("%u %s "
SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " "
SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " ",
id, space_names[id],
summary_data().addr_to_chunk_idx(space->bottom()),
summary_data().addr_to_chunk_idx(space->top()),
summary_data().addr_to_chunk_idx(space->end()),
summary_data().addr_to_chunk_idx(_space_info[id].new_top()));
}
}
void
print_generic_summary_chunk(size_t i, const ParallelCompactData::ChunkData* c)
{
#define CHUNK_IDX_FORMAT SIZE_FORMAT_W("7")
#define CHUNK_DATA_FORMAT SIZE_FORMAT_W("5")
ParallelCompactData& sd = PSParallelCompact::summary_data();
size_t dci = c->destination() ? sd.addr_to_chunk_idx(c->destination()) : 0;
tty->print_cr(CHUNK_IDX_FORMAT " " PTR_FORMAT " "
CHUNK_IDX_FORMAT " " PTR_FORMAT " "
CHUNK_DATA_FORMAT " " CHUNK_DATA_FORMAT " "
CHUNK_DATA_FORMAT " " CHUNK_IDX_FORMAT " %d",
i, c->data_location(), dci, c->destination(),
c->partial_obj_size(), c->live_obj_size(),
c->data_size(), c->source_chunk(), c->destination_count());
#undef CHUNK_IDX_FORMAT
#undef CHUNK_DATA_FORMAT
}
void
print_generic_summary_data(ParallelCompactData& summary_data,
HeapWord* const beg_addr,
HeapWord* const end_addr)
{
size_t total_words = 0;
size_t i = summary_data.addr_to_chunk_idx(beg_addr);
const size_t last = summary_data.addr_to_chunk_idx(end_addr);
HeapWord* pdest = 0;
while (i <= last) {
ParallelCompactData::ChunkData* c = summary_data.chunk(i);
if (c->data_size() != 0 || c->destination() != pdest) {
print_generic_summary_chunk(i, c);
total_words += c->data_size();
pdest = c->destination();
}
++i;
}
tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}
void
print_generic_summary_data(ParallelCompactData& summary_data,
SpaceInfo* space_info)
{
for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
const MutableSpace* space = space_info[id].space();
print_generic_summary_data(summary_data, space->bottom(),
MAX2(space->top(), space_info[id].new_top()));
}
}
void
print_initial_summary_chunk(size_t i,
const ParallelCompactData::ChunkData* c,
bool newline = true)
{
tty->print(SIZE_FORMAT_W("5") " " PTR_FORMAT " "
SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " "
SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " %d",
i, c->destination(),
c->partial_obj_size(), c->live_obj_size(),
c->data_size(), c->source_chunk(), c->destination_count());
if (newline) tty->cr();
}
void
print_initial_summary_data(ParallelCompactData& summary_data,
const MutableSpace* space) {
if (space->top() == space->bottom()) {
return;
}
const size_t chunk_size = ParallelCompactData::ChunkSize;
HeapWord* const top_aligned_up = summary_data.chunk_align_up(space->top());
const size_t end_chunk = summary_data.addr_to_chunk_idx(top_aligned_up);
const ParallelCompactData::ChunkData* c = summary_data.chunk(end_chunk - 1);
HeapWord* end_addr = c->destination() + c->data_size();
const size_t live_in_space = pointer_delta(end_addr, space->bottom());
// Print (and count) the full chunks at the beginning of the space.
size_t full_chunk_count = 0;
size_t i = summary_data.addr_to_chunk_idx(space->bottom());
while (i < end_chunk && summary_data.chunk(i)->data_size() == chunk_size) {
print_initial_summary_chunk(i, summary_data.chunk(i));
++full_chunk_count;
++i;
}
size_t live_to_right = live_in_space - full_chunk_count * chunk_size;
double max_reclaimed_ratio = 0.0;
size_t max_reclaimed_ratio_chunk = 0;
size_t max_dead_to_right = 0;
size_t max_live_to_right = 0;
// Print the 'reclaimed ratio' for chunks while there is something live in the
// chunk or to the right of it. The remaining chunks are empty (and
// uninteresting), and computing the ratio will result in division by 0.
while (i < end_chunk && live_to_right > 0) {
c = summary_data.chunk(i);
HeapWord* const chunk_addr = summary_data.chunk_to_addr(i);
const size_t used_to_right = pointer_delta(space->top(), chunk_addr);
const size_t dead_to_right = used_to_right - live_to_right;
const double reclaimed_ratio = double(dead_to_right) / live_to_right;
if (reclaimed_ratio > max_reclaimed_ratio) {
max_reclaimed_ratio = reclaimed_ratio;
max_reclaimed_ratio_chunk = i;
max_dead_to_right = dead_to_right;
max_live_to_right = live_to_right;
}
print_initial_summary_chunk(i, c, false);
tty->print_cr(" %12.10f " SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10"),
reclaimed_ratio, dead_to_right, live_to_right);
live_to_right -= c->data_size();
++i;
}
// Any remaining chunks are empty. Print one more if there is one.
if (i < end_chunk) {
print_initial_summary_chunk(i, summary_data.chunk(i));
}
tty->print_cr("max: " SIZE_FORMAT_W("4") " d2r=" SIZE_FORMAT_W("10") " "
"l2r=" SIZE_FORMAT_W("10") " max_ratio=%14.12f",
max_reclaimed_ratio_chunk, max_dead_to_right,
max_live_to_right, max_reclaimed_ratio);
}
void
print_initial_summary_data(ParallelCompactData& summary_data,
SpaceInfo* space_info) {
unsigned int id = PSParallelCompact::perm_space_id;
const MutableSpace* space;
do {
space = space_info[id].space();
print_initial_summary_data(summary_data, space);
} while (++id < PSParallelCompact::eden_space_id);
do {
space = space_info[id].space();
print_generic_summary_data(summary_data, space->bottom(), space->top());
} while (++id < PSParallelCompact::last_space_id);
}
#endif // #ifndef PRODUCT
#ifdef ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif // #ifdef ASSERT
ParallelCompactData::ParallelCompactData()
{
_region_start = 0;
_chunk_vspace = 0;
_chunk_data = 0;
_chunk_count = 0;
_block_vspace = 0;
_block_data = 0;
_block_count = 0;
}
bool ParallelCompactData::initialize(MemRegion covered_region)
{
_region_start = covered_region.start();
const size_t region_size = covered_region.word_size();
DEBUG_ONLY(_region_end = _region_start + region_size;)
assert(chunk_align_down(_region_start) == _region_start,
"region start not aligned");
assert((region_size & ChunkSizeOffsetMask) == 0,
"region size not a multiple of ChunkSize");
bool result = initialize_chunk_data(region_size);
// Initialize the block data if it will be used for updating pointers, or if
// this is a debug build.
if (!UseParallelOldGCChunkPointerCalc || trueInDebug) {
result = result && initialize_block_data(region_size);
}
return result;
}
PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
const size_t raw_bytes = count * element_size;
const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
const size_t granularity = os::vm_allocation_granularity();
const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
MAX2(page_sz, granularity);
ReservedSpace rs(bytes, rs_align, false);
os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
rs.size());
PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
if (vspace != 0) {
if (vspace->expand_by(bytes)) {
return vspace;
}
delete vspace;
}
return 0;
}
bool ParallelCompactData::initialize_chunk_data(size_t region_size)
{
const size_t count = (region_size + ChunkSizeOffsetMask) >> Log2ChunkSize;
_chunk_vspace = create_vspace(count, sizeof(ChunkData));
if (_chunk_vspace != 0) {
_chunk_data = (ChunkData*)_chunk_vspace->reserved_low_addr();
_chunk_count = count;
return true;
}
return false;
}
bool ParallelCompactData::initialize_block_data(size_t region_size)
{
const size_t count = (region_size + BlockOffsetMask) >> Log2BlockSize;
_block_vspace = create_vspace(count, sizeof(BlockData));
if (_block_vspace != 0) {
_block_data = (BlockData*)_block_vspace->reserved_low_addr();
_block_count = count;
return true;
}
return false;
}
void ParallelCompactData::clear()
{
if (_block_data) {
memset(_block_data, 0, _block_vspace->committed_size());
}
memset(_chunk_data, 0, _chunk_vspace->committed_size());
}
void ParallelCompactData::clear_range(size_t beg_chunk, size_t end_chunk) {
assert(beg_chunk <= _chunk_count, "beg_chunk out of range");
assert(end_chunk <= _chunk_count, "end_chunk out of range");
assert(ChunkSize % BlockSize == 0, "ChunkSize not a multiple of BlockSize");
const size_t chunk_cnt = end_chunk - beg_chunk;
if (_block_data) {
const size_t blocks_per_chunk = ChunkSize / BlockSize;
const size_t beg_block = beg_chunk * blocks_per_chunk;
const size_t block_cnt = chunk_cnt * blocks_per_chunk;
memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
}
memset(_chunk_data + beg_chunk, 0, chunk_cnt * sizeof(ChunkData));
}
HeapWord* ParallelCompactData::partial_obj_end(size_t chunk_idx) const
{
const ChunkData* cur_cp = chunk(chunk_idx);
const ChunkData* const end_cp = chunk(chunk_count() - 1);
HeapWord* result = chunk_to_addr(chunk_idx);
if (cur_cp < end_cp) {
do {
result += cur_cp->partial_obj_size();
} while (cur_cp->partial_obj_size() == ChunkSize && ++cur_cp < end_cp);
}
return result;
}
void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
const size_t obj_ofs = pointer_delta(addr, _region_start);
const size_t beg_chunk = obj_ofs >> Log2ChunkSize;
const size_t end_chunk = (obj_ofs + len - 1) >> Log2ChunkSize;
DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
if (beg_chunk == end_chunk) {
// All in one chunk.
_chunk_data[beg_chunk].add_live_obj(len);
return;
}
// First chunk.
const size_t beg_ofs = chunk_offset(addr);
_chunk_data[beg_chunk].add_live_obj(ChunkSize - beg_ofs);
klassOop klass = ((oop)addr)->klass();
// Middle chunks--completely spanned by this object.
for (size_t chunk = beg_chunk + 1; chunk < end_chunk; ++chunk) {
_chunk_data[chunk].set_partial_obj_size(ChunkSize);
_chunk_data[chunk].set_partial_obj_addr(addr);
}
// Last chunk.
const size_t end_ofs = chunk_offset(addr + len - 1);
_chunk_data[end_chunk].set_partial_obj_size(end_ofs + 1);
_chunk_data[end_chunk].set_partial_obj_addr(addr);
}
void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
assert(chunk_offset(beg) == 0, "not ChunkSize aligned");
assert(chunk_offset(end) == 0, "not ChunkSize aligned");
size_t cur_chunk = addr_to_chunk_idx(beg);
const size_t end_chunk = addr_to_chunk_idx(end);
HeapWord* addr = beg;
while (cur_chunk < end_chunk) {
_chunk_data[cur_chunk].set_destination(addr);
_chunk_data[cur_chunk].set_destination_count(0);
_chunk_data[cur_chunk].set_source_chunk(cur_chunk);
_chunk_data[cur_chunk].set_data_location(addr);
// Update live_obj_size so the chunk appears completely full.
size_t live_size = ChunkSize - _chunk_data[cur_chunk].partial_obj_size();
_chunk_data[cur_chunk].set_live_obj_size(live_size);
++cur_chunk;
addr += ChunkSize;
}
}
bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
HeapWord* source_beg, HeapWord* source_end,
HeapWord** target_next,
HeapWord** source_next) {
// This is too strict.
// assert(chunk_offset(source_beg) == 0, "not ChunkSize aligned");
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
"sb=" PTR_FORMAT " se=" PTR_FORMAT " "
"tn=" PTR_FORMAT " sn=" PTR_FORMAT,
target_beg, target_end,
source_beg, source_end,
target_next != 0 ? *target_next : (HeapWord*) 0,
source_next != 0 ? *source_next : (HeapWord*) 0);
}
size_t cur_chunk = addr_to_chunk_idx(source_beg);
const size_t end_chunk = addr_to_chunk_idx(chunk_align_up(source_end));
HeapWord *dest_addr = target_beg;
while (cur_chunk < end_chunk) {
size_t words = _chunk_data[cur_chunk].data_size();
#if 1
assert(pointer_delta(target_end, dest_addr) >= words,
"source region does not fit into target region");
#else
// XXX - need some work on the corner cases here. If the chunk does not
// fit, then must either make sure any partial_obj from the chunk fits, or
// 'undo' the initial part of the partial_obj that is in the previous chunk.
if (dest_addr + words >= target_end) {
// Let the caller know where to continue.
*target_next = dest_addr;
*source_next = chunk_to_addr(cur_chunk);
return false;
}
#endif // #if 1
_chunk_data[cur_chunk].set_destination(dest_addr);
// Set the destination_count for cur_chunk, and if necessary, update
// source_chunk for a destination chunk. The source_chunk field is updated
// if cur_chunk is the first (left-most) chunk to be copied to a destination
// chunk.
//
// The destination_count calculation is a bit subtle. A chunk that has data
// that compacts into itself does not count itself as a destination. This
// maintains the invariant that a zero count means the chunk is available
// and can be claimed and then filled.
if (words > 0) {
HeapWord* const last_addr = dest_addr + words - 1;
const size_t dest_chunk_1 = addr_to_chunk_idx(dest_addr);
const size_t dest_chunk_2 = addr_to_chunk_idx(last_addr);
#if 0
// Initially assume that the destination chunks will be the same and
// adjust the value below if necessary. Under this assumption, if
// cur_chunk == dest_chunk_2, then cur_chunk will be compacted completely
// into itself.
uint destination_count = cur_chunk == dest_chunk_2 ? 0 : 1;
if (dest_chunk_1 != dest_chunk_2) {
// Destination chunks differ; adjust destination_count.
destination_count += 1;
// Data from cur_chunk will be copied to the start of dest_chunk_2.
_chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
} else if (chunk_offset(dest_addr) == 0) {
// Data from cur_chunk will be copied to the start of the destination
// chunk.
_chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
}
#else
// Initially assume that the destination chunks will be different and
// adjust the value below if necessary. Under this assumption, if
// cur_chunk == dest_chunk2, then cur_chunk will be compacted partially
// into dest_chunk_1 and partially into itself.
uint destination_count = cur_chunk == dest_chunk_2 ? 1 : 2;
if (dest_chunk_1 != dest_chunk_2) {
// Data from cur_chunk will be copied to the start of dest_chunk_2.
_chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
} else {
// Destination chunks are the same; adjust destination_count.
destination_count -= 1;
if (chunk_offset(dest_addr) == 0) {
// Data from cur_chunk will be copied to the start of the destination
// chunk.
_chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
}
}
#endif // #if 0
_chunk_data[cur_chunk].set_destination_count(destination_count);
_chunk_data[cur_chunk].set_data_location(chunk_to_addr(cur_chunk));
dest_addr += words;
}
++cur_chunk;
}
*target_next = dest_addr;
return true;
}
bool ParallelCompactData::partial_obj_ends_in_block(size_t block_index) {
HeapWord* block_addr = block_to_addr(block_index);
HeapWord* block_end_addr = block_addr + BlockSize;
size_t chunk_index = addr_to_chunk_idx(block_addr);
HeapWord* partial_obj_end_addr = partial_obj_end(chunk_index);
// An object that ends at the end of the block, ends
// in the block (the last word of the object is to
// the left of the end).
if ((block_addr < partial_obj_end_addr) &&
(partial_obj_end_addr <= block_end_addr)) {
return true;
}
return false;
}
HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
HeapWord* result = NULL;
if (UseParallelOldGCChunkPointerCalc) {
result = chunk_calc_new_pointer(addr);
} else {
result = block_calc_new_pointer(addr);
}
return result;
}
// This method is overly complicated (expensive) to be called
// for every reference.
// Try to restructure this so that a NULL is returned if
// the object is dead. But don't wast the cycles to explicitly check
// that it is dead since only live objects should be passed in.
HeapWord* ParallelCompactData::chunk_calc_new_pointer(HeapWord* addr) {
assert(addr != NULL, "Should detect NULL oop earlier");
assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
}
#endif
assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
// Chunk covering the object.
size_t chunk_index = addr_to_chunk_idx(addr);
const ChunkData* const chunk_ptr = chunk(chunk_index);
HeapWord* const chunk_addr = chunk_align_down(addr);
assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
HeapWord* result = chunk_ptr->destination();
// If all the data in the chunk is live, then the new location of the object
// can be calculated from the destination of the chunk plus the offset of the
// object in the chunk.
if (chunk_ptr->data_size() == ChunkSize) {
result += pointer_delta(addr, chunk_addr);
return result;
}
// The new location of the object is
// chunk destination +
// size of the partial object extending onto the chunk +
// sizes of the live objects in the Chunk that are to the left of addr
const size_t partial_obj_size = chunk_ptr->partial_obj_size();
HeapWord* const search_start = chunk_addr + partial_obj_size;
const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
result += partial_obj_size + live_to_left;
assert(result <= addr, "object cannot move to the right");
return result;
}
HeapWord* ParallelCompactData::block_calc_new_pointer(HeapWord* addr) {
assert(addr != NULL, "Should detect NULL oop earlier");
assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
}
#endif
assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
// Chunk covering the object.
size_t chunk_index = addr_to_chunk_idx(addr);
const ChunkData* const chunk_ptr = chunk(chunk_index);
HeapWord* const chunk_addr = chunk_align_down(addr);
assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
HeapWord* result = chunk_ptr->destination();
// If all the data in the chunk is live, then the new location of the object
// can be calculated from the destination of the chunk plus the offset of the
// object in the chunk.
if (chunk_ptr->data_size() == ChunkSize) {
result += pointer_delta(addr, chunk_addr);
return result;
}
// The new location of the object is
// chunk destination +
// block offset +
// sizes of the live objects in the Block that are to the left of addr
const size_t block_offset = addr_to_block_ptr(addr)->offset();
HeapWord* const search_start = chunk_addr + block_offset;
const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
result += block_offset + live_to_left;
assert(result <= addr, "object cannot move to the right");
assert(result == chunk_calc_new_pointer(addr), "Should match");
return result;
}
klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
klassOop updated_klass;
if (PSParallelCompact::should_update_klass(old_klass)) {
updated_klass = (klassOop) calc_new_pointer(old_klass);
} else {
updated_klass = old_klass;
}
return updated_klass;
}
#ifdef ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
const size_t* const beg = (const size_t*)vspace->committed_low_addr();
const size_t* const end = (const size_t*)vspace->committed_high_addr();
for (const size_t* p = beg; p < end; ++p) {
assert(*p == 0, "not zero");
}
}
void ParallelCompactData::verify_clear()
{
verify_clear(_chunk_vspace);
verify_clear(_block_vspace);
}
#endif // #ifdef ASSERT
#ifdef NOT_PRODUCT
ParallelCompactData::ChunkData* debug_chunk(size_t chunk_index) {
ParallelCompactData& sd = PSParallelCompact::summary_data();
return sd.chunk(chunk_index);
}
#endif
elapsedTimer PSParallelCompact::_accumulated_time;
unsigned int PSParallelCompact::_total_invocations = 0;
unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters* PSParallelCompact::_counters = NULL;
ParMarkBitMap PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;
PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) {
#ifdef VALIDATE_MARK_SWEEP
if (ValidateMarkSweep) {
if (!Universe::heap()->is_in_reserved(p)) {
_root_refs_stack->push(p);
} else {
_other_refs_stack->push(p);
}
}
#endif
mark_and_push(_compaction_manager, p);
}
void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
oop* p) {
assert(Universe::heap()->is_in_reserved(p),
"we should only be traversing objects here");
oop m = *p;
if (m != NULL && mark_bitmap()->is_unmarked(m)) {
if (mark_obj(m)) {
m->follow_contents(cm); // Follow contents of the marked object
}
}
}
// Anything associated with this variable is temporary.
void PSParallelCompact::mark_and_push_internal(ParCompactionManager* cm,
oop* p) {
// Push marked object, contents will be followed later
oop m = *p;
if (mark_obj(m)) {
// This thread marked the object and
// owns the subsequent processing of it.
cm->save_for_scanning(m);
}
}
void PSParallelCompact::post_initialize() {
ParallelScavengeHeap* heap = gc_heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
MemRegion mr = heap->reserved_region();
_ref_processor = ReferenceProcessor::create_ref_processor(
mr, // span
true, // atomic_discovery
true, // mt_discovery
&_is_alive_closure,
ParallelGCThreads,
ParallelRefProcEnabled);
_counters = new CollectorCounters("PSParallelCompact", 1);
// Initialize static fields in ParCompactionManager.
ParCompactionManager::initialize(mark_bitmap());
}
bool PSParallelCompact::initialize() {
ParallelScavengeHeap* heap = gc_heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
MemRegion mr = heap->reserved_region();
// Was the old gen get allocated successfully?
if (!heap->old_gen()->is_allocated()) {
return false;
}
initialize_space_info();
initialize_dead_wood_limiter();
if (!_mark_bitmap.initialize(mr)) {
vm_shutdown_during_initialization("Unable to allocate bit map for "
"parallel garbage collection for the requested heap size.");
return false;
}
if (!_summary_data.initialize(mr)) {
vm_shutdown_during_initialization("Unable to allocate tables for "
"parallel garbage collection for the requested heap size.");
return false;
}
return true;
}
void PSParallelCompact::initialize_space_info()
{
memset(&_space_info, 0, sizeof(_space_info));
ParallelScavengeHeap* heap = gc_heap();
PSYoungGen* young_gen = heap->young_gen();
MutableSpace* perm_space = heap->perm_gen()->object_space();
_space_info[perm_space_id].set_space(perm_space);
_space_info[old_space_id].set_space(heap->old_gen()->object_space());
_space_info[eden_space_id].set_space(young_gen->eden_space());
_space_info[from_space_id].set_space(young_gen->from_space());
_space_info[to_space_id].set_space(young_gen->to_space());
_space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
_space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
_space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
if (TraceParallelOldGCDensePrefix) {
tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
_space_info[perm_space_id].min_dense_prefix());
}
}
void PSParallelCompact::initialize_dead_wood_limiter()
{
const size_t max = 100;
_dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
_dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
_dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
DEBUG_ONLY(_dwl_initialized = true;)
_dwl_adjustment = normal_distribution(1.0);
}
// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
PreGCValues() { }
PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
void fill(ParallelScavengeHeap* heap) {
_heap_used = heap->used();
_young_gen_used = heap->young_gen()->used_in_bytes();
_old_gen_used = heap->old_gen()->used_in_bytes();
_perm_gen_used = heap->perm_gen()->used_in_bytes();
};
size_t heap_used() const { return _heap_used; }
size_t young_gen_used() const { return _young_gen_used; }
size_t old_gen_used() const { return _old_gen_used; }
size_t perm_gen_used() const { return _perm_gen_used; }
private:
size_t _heap_used;
size_t _young_gen_used;
size_t _old_gen_used;
size_t _perm_gen_used;
};
void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
// At this point, top is the value before GC, new_top() is the value that will
// be set at the end of GC. The marking bitmap is cleared to top; nothing
// should be marked above top. The summary data is cleared to the larger of
// top & new_top.
MutableSpace* const space = _space_info[id].space();
HeapWord* const bot = space->bottom();
HeapWord* const top = space->top();
HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
_mark_bitmap.clear_range(beg_bit, end_bit);
const size_t beg_chunk = _summary_data.addr_to_chunk_idx(bot);
const size_t end_chunk =
_summary_data.addr_to_chunk_idx(_summary_data.chunk_align_up(max_top));
_summary_data.clear_range(beg_chunk, end_chunk);
}
void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
// Update the from & to space pointers in space_info, since they are swapped
// at each young gen gc. Do the update unconditionally (even though a
// promotion failure does not swap spaces) because an unknown number of minor
// collections will have swapped the spaces an unknown number of times.
TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
ParallelScavengeHeap* heap = gc_heap();
_space_info[from_space_id].set_space(heap->young_gen()->from_space());
_space_info[to_space_id].set_space(heap->young_gen()->to_space());
pre_gc_values->fill(heap);
ParCompactionManager::reset();
NOT_PRODUCT(_mark_bitmap.reset_counters());
DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
// Increment the invocation count
heap->increment_total_collections();
// We need to track unique mark sweep invocations as well.
_total_invocations++;
if (PrintHeapAtGC) {
Universe::print_heap_before_gc();
}
// Fill in TLABs
heap->accumulate_statistics_all_tlabs();
heap->ensure_parsability(true); // retire TLABs
if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
HandleMark hm; // Discard invalid handles created during verification
gclog_or_tty->print(" VerifyBeforeGC:");
Universe::verify(true);
}
// Verify object start arrays
if (VerifyObjectStartArray &&
VerifyBeforeGC) {
heap->old_gen()->verify_object_start_array();
heap->perm_gen()->verify_object_start_array();
}
DEBUG_ONLY(mark_bitmap()->verify_clear();)
DEBUG_ONLY(summary_data().verify_clear();)
}
void PSParallelCompact::post_compact()
{
TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
// Clear the marking bitmap and summary data and update top() in each space.
for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
clear_data_covering_space(SpaceId(id));
_space_info[id].space()->set_top(_space_info[id].new_top());
}
MutableSpace* const eden_space = _space_info[eden_space_id].space();
MutableSpace* const from_space = _space_info[from_space_id].space();
MutableSpace* const to_space = _space_info[to_space_id].space();
ParallelScavengeHeap* heap = gc_heap();
bool eden_empty = eden_space->is_empty();
if (!eden_empty) {
eden_empty = absorb_live_data_from_eden(heap->size_policy(),
heap->young_gen(), heap->old_gen());
}
// Update heap occupancy information which is used as input to the soft ref
// clearing policy at the next gc.
Universe::update_heap_info_at_gc();
bool young_gen_empty = eden_empty && from_space->is_empty() &&
to_space->is_empty();
BarrierSet* bs = heap->barrier_set();
if (bs->is_a(BarrierSet::ModRef)) {
ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
MemRegion old_mr = heap->old_gen()->reserved();
MemRegion perm_mr = heap->perm_gen()->reserved();
assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
if (young_gen_empty) {
modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
} else {
modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
}
}
Threads::gc_epilogue();
CodeCache::gc_epilogue();
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
ref_processor()->enqueue_discovered_references(NULL);
// Update time of last GC
reset_millis_since_last_gc();
}
HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
bool maximum_compaction)
{
const size_t chunk_size = ParallelCompactData::ChunkSize;
const ParallelCompactData& sd = summary_data();
const MutableSpace* const space = _space_info[id].space();
HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(space->bottom());
const ChunkData* const end_cp = sd.addr_to_chunk_ptr(top_aligned_up);
// Skip full chunks at the beginning of the space--they are necessarily part
// of the dense prefix.
size_t full_count = 0;
const ChunkData* cp;
for (cp = beg_cp; cp < end_cp && cp->data_size() == chunk_size; ++cp) {
++full_count;
}
assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
if (maximum_compaction || cp == end_cp || interval_ended) {
_maximum_compaction_gc_num = total_invocations();
return sd.chunk_to_addr(cp);
}
HeapWord* const new_top = _space_info[id].new_top();
const size_t space_live = pointer_delta(new_top, space->bottom());
const size_t space_used = space->used_in_words();
const size_t space_capacity = space->capacity_in_words();
const double cur_density = double(space_live) / space_capacity;
const double deadwood_density =
(1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
if (TraceParallelOldGCDensePrefix) {
tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
cur_density, deadwood_density, deadwood_goal);
tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
"space_cap=" SIZE_FORMAT,
space_live, space_used,
space_capacity);
}
// XXX - Use binary search?
HeapWord* dense_prefix = sd.chunk_to_addr(cp);
const ChunkData* full_cp = cp;
const ChunkData* const top_cp = sd.addr_to_chunk_ptr(space->top() - 1);
while (cp < end_cp) {
HeapWord* chunk_destination = cp->destination();
const size_t cur_deadwood = pointer_delta(dense_prefix, chunk_destination);
if (TraceParallelOldGCDensePrefix && Verbose) {
tty->print_cr("c#=" SIZE_FORMAT_W("04") " dst=" PTR_FORMAT " "
"dp=" SIZE_FORMAT_W("08") " " "cdw=" SIZE_FORMAT_W("08"),
sd.chunk(cp), chunk_destination,
dense_prefix, cur_deadwood);
}
if (cur_deadwood >= deadwood_goal) {
// Found the chunk that has the correct amount of deadwood to the left.
// This typically occurs after crossing a fairly sparse set of chunks, so
// iterate backwards over those sparse chunks, looking for the chunk that
// has the lowest density of live objects 'to the right.'
size_t space_to_left = sd.chunk(cp) * chunk_size;
size_t live_to_left = space_to_left - cur_deadwood;
size_t space_to_right = space_capacity - space_to_left;
size_t live_to_right = space_live - live_to_left;
double density_to_right = double(live_to_right) / space_to_right;
while (cp > full_cp) {
--cp;
const size_t prev_chunk_live_to_right = live_to_right - cp->data_size();
const size_t prev_chunk_space_to_right = space_to_right + chunk_size;
double prev_chunk_density_to_right =
double(prev_chunk_live_to_right) / prev_chunk_space_to_right;
if (density_to_right <= prev_chunk_density_to_right) {
return dense_prefix;
}
if (TraceParallelOldGCDensePrefix && Verbose) {
tty->print_cr("backing up from c=" SIZE_FORMAT_W("4") " d2r=%10.8f "
"pc_d2r=%10.8f", sd.chunk(cp), density_to_right,
prev_chunk_density_to_right);
}
dense_prefix -= chunk_size;
live_to_right = prev_chunk_live_to_right;
space_to_right = prev_chunk_space_to_right;
density_to_right = prev_chunk_density_to_right;
}
return dense_prefix;
}
dense_prefix += chunk_size;
++cp;
}
return dense_prefix;
}
#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
const SpaceId id,
const bool maximum_compaction,
HeapWord* const addr)
{
const size_t chunk_idx = summary_data().addr_to_chunk_idx(addr);
ChunkData* const cp = summary_data().chunk(chunk_idx);
const MutableSpace* const space = _space_info[id].space();
HeapWord* const new_top = _space_info[id].new_top();
const size_t space_live = pointer_delta(new_top, space->bottom());
const size_t dead_to_left = pointer_delta(addr, cp->destination());
const size_t space_cap = space->capacity_in_words();
const double dead_to_left_pct = double(dead_to_left) / space_cap;
const size_t live_to_right = new_top - cp->destination();
const size_t dead_to_right = space->top() - addr - live_to_right;
tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W("05") " "
"spl=" SIZE_FORMAT " "
"d2l=" SIZE_FORMAT " d2l%%=%6.4f "
"d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
" ratio=%10.8f",
algorithm, addr, chunk_idx,
space_live,
dead_to_left, dead_to_left_pct,
dead_to_right, live_to_right,
double(dead_to_right) / live_to_right);
}
#endif // #ifndef PRODUCT
// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed). The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
// fraction allowed as dead wood
// -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
assert(_dwl_initialized, "uninitialized");
// The raw limit is the value of the normal distribution at x = density.
const double raw_limit = normal_distribution(density);
// Adjust the raw limit so it becomes the minimum when the density is 1.
//
// First subtract the adjustment value (which is simply the precomputed value
// normal_distribution(1.0)); this yields a value of 0 when the density is 1.
// Then add the minimum value, so the minimum is returned when the density is
// 1. Finally, prevent negative values, which occur when the mean is not 0.5.
const double min = double(min_percent) / 100.0;
const double limit = raw_limit - _dwl_adjustment + min;
return MAX2(limit, 0.0);
}
ParallelCompactData::ChunkData*
PSParallelCompact::first_dead_space_chunk(const ChunkData* beg,
const ChunkData* end)
{
const size_t chunk_size = ParallelCompactData::ChunkSize;
ParallelCompactData& sd = summary_data();
size_t left = sd.chunk(beg);
size_t right = end > beg ? sd.chunk(end) - 1 : left;
// Binary search.
while (left < right) {
// Equivalent to (left + right) / 2, but does not overflow.
const size_t middle = left + (right - left) / 2;
ChunkData* const middle_ptr = sd.chunk(middle);
HeapWord* const dest = middle_ptr->destination();
HeapWord* const addr = sd.chunk_to_addr(middle);
assert(dest != NULL, "sanity");
assert(dest <= addr, "must move left");
if (middle > left && dest < addr) {
right = middle - 1;
} else if (middle < right && middle_ptr->data_size() == chunk_size) {
left = middle + 1;
} else {
return middle_ptr;
}
}
return sd.chunk(left);
}
ParallelCompactData::ChunkData*
PSParallelCompact::dead_wood_limit_chunk(const ChunkData* beg,
const ChunkData* end,
size_t dead_words)
{
ParallelCompactData& sd = summary_data();
size_t left = sd.chunk(beg);
size_t right = end > beg ? sd.chunk(end) - 1 : left;
// Binary search.
while (left < right) {
// Equivalent to (left + right) / 2, but does not overflow.
const size_t middle = left + (right - left) / 2;
ChunkData* const middle_ptr = sd.chunk(middle);
HeapWord* const dest = middle_ptr->destination();
HeapWord* const addr = sd.chunk_to_addr(middle);
assert(dest != NULL, "sanity");
assert(dest <= addr, "must move left");
const size_t dead_to_left = pointer_delta(addr, dest);
if (middle > left && dead_to_left > dead_words) {
right = middle - 1;
} else if (middle < right && dead_to_left < dead_words) {
left = middle + 1;
} else {
return middle_ptr;
}
}
return sd.chunk(left);
}
// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
PSParallelCompact::reclaimed_ratio(const ChunkData* const cp,
HeapWord* const bottom,
HeapWord* const top,
HeapWord* const new_top)
{
ParallelCompactData& sd = summary_data();
assert(cp != NULL, "sanity");
assert(bottom != NULL, "sanity");
assert(top != NULL, "sanity");
assert(new_top != NULL, "sanity");
assert(top >= new_top, "summary data problem?");
assert(new_top > bottom, "space is empty; should not be here");
assert(new_top >= cp->destination(), "sanity");
assert(top >= sd.chunk_to_addr(cp), "sanity");
HeapWord* const destination = cp->destination();
const size_t dense_prefix_live = pointer_delta(destination, bottom);
const size_t compacted_region_live = pointer_delta(new_top, destination);
const size_t compacted_region_used = pointer_delta(top, sd.chunk_to_addr(cp));
const size_t reclaimable = compacted_region_used - compacted_region_live;
const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
return double(reclaimable) / divisor;
}
// Return the address of the end of the dense prefix, a.k.a. the start of the
// compacted region. The address is always on a chunk boundary.
//
// Completely full chunks at the left are skipped, since no compaction can occur
// in those chunks. Then the maximum amount of dead wood to allow is computed,
// based on the density (amount live / capacity) of the generation; the chunk
// with approximately that amount of dead space to the left is identified as the
// limit chunk. Chunks between the last completely full chunk and the limit
// chunk are scanned and the one that has the best (maximum) reclaimed_ratio()
// is selected.
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
bool maximum_compaction)
{
const size_t chunk_size = ParallelCompactData::ChunkSize;
const ParallelCompactData& sd = summary_data();
const MutableSpace* const space = _space_info[id].space();
HeapWord* const top = space->top();
HeapWord* const top_aligned_up = sd.chunk_align_up(top);
HeapWord* const new_top = _space_info[id].new_top();
HeapWord* const new_top_aligned_up = sd.chunk_align_up(new_top);
HeapWord* const bottom = space->bottom();
const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(bottom);
const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
const ChunkData* const new_top_cp = sd.addr_to_chunk_ptr(new_top_aligned_up);
// Skip full chunks at the beginning of the space--they are necessarily part
// of the dense prefix.
const ChunkData* const full_cp = first_dead_space_chunk(beg_cp, new_top_cp);
assert(full_cp->destination() == sd.chunk_to_addr(full_cp) ||
space->is_empty(), "no dead space allowed to the left");
assert(full_cp->data_size() < chunk_size || full_cp == new_top_cp - 1,
"chunk must have dead space");
// The gc number is saved whenever a maximum compaction is done, and used to
// determine when the maximum compaction interval has expired. This avoids
// successive max compactions for different reasons.
assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
total_invocations() == HeapFirstMaximumCompactionCount;
if (maximum_compaction || full_cp == top_cp || interval_ended) {
_maximum_compaction_gc_num = total_invocations();
return sd.chunk_to_addr(full_cp);
}
const size_t space_live = pointer_delta(new_top, bottom);
const size_t space_used = space->used_in_words();
const size_t space_capacity = space->capacity_in_words();
const double density = double(space_live) / double(space_capacity);
const size_t min_percent_free =
id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
const double limiter = dead_wood_limiter(density, min_percent_free);
const size_t dead_wood_max = space_used - space_live;
const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
dead_wood_max);
if (TraceParallelOldGCDensePrefix) {
tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
"space_cap=" SIZE_FORMAT,
space_live, space_used,
space_capacity);
tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
"dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
density, min_percent_free, limiter,
dead_wood_max, dead_wood_limit);
}
// Locate the chunk with the desired amount of dead space to the left.
const ChunkData* const limit_cp =
dead_wood_limit_chunk(full_cp, top_cp, dead_wood_limit);
// Scan from the first chunk with dead space to the limit chunk and find the
// one with the best (largest) reclaimed ratio.
double best_ratio = 0.0;
const ChunkData* best_cp = full_cp;
for (const ChunkData* cp = full_cp; cp < limit_cp; ++cp) {
double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
if (tmp_ratio > best_ratio) {
best_cp = cp;
best_ratio = tmp_ratio;
}
}
#if 0
// Something to consider: if the chunk with the best ratio is 'close to' the
// first chunk w/free space, choose the first chunk with free space
// ("first-free"). The first-free chunk is usually near the start of the
// heap, which means we are copying most of the heap already, so copy a bit
// more to get complete compaction.
if (pointer_delta(best_cp, full_cp, sizeof(ChunkData)) < 4) {
_maximum_compaction_gc_num = total_invocations();
best_cp = full_cp;
}
#endif // #if 0
return sd.chunk_to_addr(best_cp);
}
void PSParallelCompact::summarize_spaces_quick()
{
for (unsigned int i = 0; i < last_space_id; ++i) {
const MutableSpace* space = _space_info[i].space();
bool result = _summary_data.summarize(space->bottom(), space->end(),
space->bottom(), space->top(),
_space_info[i].new_top_addr());
assert(result, "should never fail");
_space_info[i].set_dense_prefix(space->bottom());
}
}
void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
HeapWord* const dense_prefix_end = dense_prefix(id);
const ChunkData* chunk = _summary_data.addr_to_chunk_ptr(dense_prefix_end);
const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
if (dead_space_crosses_boundary(chunk, dense_prefix_bit)) {
// Only enough dead space is filled so that any remaining dead space to the
// left is larger than the minimum filler object. (The remainder is filled
// during the copy/update phase.)
//
// The size of the dead space to the right of the boundary is not a
// concern, since compaction will be able to use whatever space is
// available.
//
// Here '||' is the boundary, 'x' represents a don't care bit and a box
// surrounds the space to be filled with an object.
//
// In the 32-bit VM, each bit represents two 32-bit words:
// +---+
// a) beg_bits: ... x x x | 0 | || 0 x x ...
// end_bits: ... x x x | 0 | || 0 x x ...
// +---+
//
// In the 64-bit VM, each bit represents one 64-bit word:
// +------------+
// b) beg_bits: ... x x x | 0 || 0 | x x ...
// end_bits: ... x x 1 | 0 || 0 | x x ...
// +------------+
// +-------+
// c) beg_bits: ... x x | 0 0 | || 0 x x ...
// end_bits: ... x 1 | 0 0 | || 0 x x ...
// +-------+
// +-----------+
// d) beg_bits: ... x | 0 0 0 | || 0 x x ...
// end_bits: ... 1 | 0 0 0 | || 0 x x ...
// +-----------+
// +-------+
// e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
// end_bits: ... 0 0 | 0 0 | || 0 x x ...
// +-------+
// Initially assume case a, c or e will apply.
size_t obj_len = (size_t)oopDesc::header_size();
HeapWord* obj_beg = dense_prefix_end - obj_len;
#ifdef _LP64
if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
// Case b above.
obj_beg = dense_prefix_end - 1;
} else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
_mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
// Case d above.
obj_beg = dense_prefix_end - 3;
obj_len = 3;
}
#endif // #ifdef _LP64
MemRegion region(obj_beg, obj_len);
SharedHeap::fill_region_with_object(region);
_mark_bitmap.mark_obj(obj_beg, obj_len);
_summary_data.add_obj(obj_beg, obj_len);
assert(start_array(id) != NULL, "sanity");
start_array(id)->allocate_block(obj_beg);
}
}
void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
assert(id < last_space_id, "id out of range");
const MutableSpace* space = _space_info[id].space();
HeapWord** new_top_addr = _space_info[id].new_top_addr();
HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
_space_info[id].set_dense_prefix(dense_prefix_end);
#ifndef PRODUCT
if (TraceParallelOldGCDensePrefix) {
print_dense_prefix_stats("ratio", id, maximum_compaction, dense_prefix_end);
HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
print_dense_prefix_stats("density", id, maximum_compaction, addr);
}
#endif // #ifndef PRODUCT
// If dead space crosses the dense prefix boundary, it is (at least partially)
// filled with a dummy object, marked live and added to the summary data.
// This simplifies the copy/update phase and must be done before the final
// locations of objects are determined, to prevent leaving a fragment of dead
// space that is too small to fill with an object.
if (!maximum_compaction && dense_prefix_end != space->bottom()) {
fill_dense_prefix_end(id);
}
// Compute the destination of each Chunk, and thus each object.
_summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
_summary_data.summarize(dense_prefix_end, space->end(),
dense_prefix_end, space->top(),
new_top_addr);
if (TraceParallelOldGCSummaryPhase) {
const size_t chunk_size = ParallelCompactData::ChunkSize;
const size_t dp_chunk = _summary_data.addr_to_chunk_idx(dense_prefix_end);
const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
const HeapWord* nt_aligned_up = _summary_data.chunk_align_up(*new_top_addr);
const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
"dp_chunk=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
"cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
id, space->capacity_in_words(), dense_prefix_end,
dp_chunk, dp_words / chunk_size,
cr_words / chunk_size, *new_top_addr);
}
}
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
bool maximum_compaction)
{
EventMark m("2 summarize");
TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
// trace("2");
#ifdef ASSERT
if (VerifyParallelOldWithMarkSweep &&
(PSParallelCompact::total_invocations() %
VerifyParallelOldWithMarkSweepInterval) == 0) {
verify_mark_bitmap(_mark_bitmap);
}
if (TraceParallelOldGCMarkingPhase) {
tty->print_cr("add_obj_count=" SIZE_FORMAT " "
"add_obj_bytes=" SIZE_FORMAT,
add_obj_count, add_obj_size * HeapWordSize);
tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
"mark_bitmap_bytes=" SIZE_FORMAT,
mark_bitmap_count, mark_bitmap_size * HeapWordSize);
}
#endif // #ifdef ASSERT
// Quick summarization of each space into itself, to see how much is live.
summarize_spaces_quick();
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("summary_phase: after summarizing each space to self");
Universe::print();
NOT_PRODUCT(print_chunk_ranges());
if (Verbose) {
NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
}
}
// The amount of live data that will end up in old space (assuming it fits).
size_t old_space_total_live = 0;
unsigned int id;
for (id = old_space_id; id < last_space_id; ++id) {
old_space_total_live += pointer_delta(_space_info[id].new_top(),
_space_info[id].space()->bottom());
}
const MutableSpace* old_space = _space_info[old_space_id].space();
if (old_space_total_live > old_space->capacity_in_words()) {
// XXX - should also try to expand
maximum_compaction = true;
} else if (!UseParallelOldGCDensePrefix) {
maximum_compaction = true;
}
// Permanent and Old generations.
summarize_space(perm_space_id, maximum_compaction);
summarize_space(old_space_id, maximum_compaction);
// Summarize the remaining spaces (those in the young gen) into old space. If
// the live data from a space doesn't fit, the existing summarization is left
// intact, so the data is compacted down within the space itself.
HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
HeapWord* const target_space_end = old_space->end();
for (id = eden_space_id; id < last_space_id; ++id) {
const MutableSpace* space = _space_info[id].space();
const size_t live = pointer_delta(_space_info[id].new_top(),
space->bottom());
const size_t available = pointer_delta(target_space_end, *new_top_addr);
if (live <= available) {
// All the live data will fit.
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
id, *new_top_addr);
}
_summary_data.summarize(*new_top_addr, target_space_end,
space->bottom(), space->top(),
new_top_addr);
// Reset the new_top value for the space.
_space_info[id].set_new_top(space->bottom());
// Clear the source_chunk field for each chunk in the space.
ChunkData* beg_chunk = _summary_data.addr_to_chunk_ptr(space->bottom());
ChunkData* end_chunk = _summary_data.addr_to_chunk_ptr(space->top() - 1);
while (beg_chunk <= end_chunk) {
beg_chunk->set_source_chunk(0);
++beg_chunk;
}
}
}
// Fill in the block data after any changes to the chunks have
// been made.
#ifdef ASSERT
summarize_blocks(cm, perm_space_id);
summarize_blocks(cm, old_space_id);
#else
if (!UseParallelOldGCChunkPointerCalc) {
summarize_blocks(cm, perm_space_id);
summarize_blocks(cm, old_space_id);
}
#endif
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("summary_phase: after final summarization");
Universe::print();
NOT_PRODUCT(print_chunk_ranges());
if (Verbose) {
NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
}
}
}
// Fill in the BlockData.
// Iterate over the spaces and within each space iterate over
// the chunks and fill in the BlockData for each chunk.
void PSParallelCompact::summarize_blocks(ParCompactionManager* cm,
SpaceId first_compaction_space_id) {
#if 0
DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(1);)
for (SpaceId cur_space_id = first_compaction_space_id;
cur_space_id != last_space_id;
cur_space_id = next_compaction_space_id(cur_space_id)) {
// Iterate over the chunks in the space
size_t start_chunk_index =
_summary_data.addr_to_chunk_idx(space(cur_space_id)->bottom());
BitBlockUpdateClosure bbu(mark_bitmap(),
cm,
start_chunk_index);
// Iterate over blocks.
for (size_t chunk_index = start_chunk_index;
chunk_index < _summary_data.chunk_count() &&
_summary_data.chunk_to_addr(chunk_index) < space(cur_space_id)->top();
chunk_index++) {
// Reset the closure for the new chunk. Note that the closure
// maintains some data that does not get reset for each chunk
// so a new instance of the closure is no appropriate.
bbu.reset_chunk(chunk_index);
// Start the iteration with the first live object. This
// may return the end of the chunk. That is acceptable since
// it will properly limit the iterations.
ParMarkBitMap::idx_t left_offset = mark_bitmap()->addr_to_bit(
_summary_data.first_live_or_end_in_chunk(chunk_index));
// End the iteration at the end of the chunk.
HeapWord* chunk_addr = _summary_data.chunk_to_addr(chunk_index);
HeapWord* chunk_end = chunk_addr + ParallelCompactData::ChunkSize;
ParMarkBitMap::idx_t right_offset =
mark_bitmap()->addr_to_bit(chunk_end);
// Blocks that have not objects starting in them can be
// skipped because their data will never be used.
if (left_offset < right_offset) {
// Iterate through the objects in the chunk.
ParMarkBitMap::idx_t last_offset =
mark_bitmap()->pair_iterate(&bbu, left_offset, right_offset);
// If last_offset is less than right_offset, then the iterations
// terminated while it was looking for an end bit. "last_offset"
// is then the offset for the last start bit. In this situation
// the "offset" field for the next block to the right (_cur_block + 1)
// will not have been update although there may be live data
// to the left of the chunk.
size_t cur_block_plus_1 = bbu.cur_block() + 1;
HeapWord* cur_block_plus_1_addr =
_summary_data.block_to_addr(bbu.cur_block()) +
ParallelCompactData::BlockSize;
HeapWord* last_offset_addr = mark_bitmap()->bit_to_addr(last_offset);
#if 1 // This code works. The else doesn't but should. Why does it?
// The current block (cur_block()) has already been updated.
// The last block that may need to be updated is either the
// next block (current block + 1) or the block where the
// last object starts (which can be greater than the
// next block if there were no objects found in intervening
// blocks).
size_t last_block =
MAX2(bbu.cur_block() + 1,
_summary_data.addr_to_block_idx(last_offset_addr));
#else
// The current block has already been updated. The only block
// that remains to be updated is the block where the last
// object in the chunk starts.
size_t last_block = _summary_data.addr_to_block_idx(last_offset_addr);
#endif
assert_bit_is_start(last_offset);
assert((last_block == _summary_data.block_count()) ||
(_summary_data.block(last_block)->raw_offset() == 0),
"Should not have been set");
// Is the last block still in the current chunk? If still
// in this chunk, update the last block (the counting that
// included the current block is meant for the offset of the last
// block). If not in this chunk, do nothing. Should not
// update a block in the next chunk.
if (ParallelCompactData::chunk_contains_block(bbu.chunk_index(),
last_block)) {
if (last_offset < right_offset) {
// The last object started in this chunk but ends beyond
// this chunk. Update the block for this last object.
assert(mark_bitmap()->is_marked(last_offset), "Should be marked");
// No end bit was found. The closure takes care of
// the cases where
// an objects crosses over into the next block
// an objects starts and ends in the next block
// It does not handle the case where an object is
// the first object in a later block and extends
// past the end of the chunk (i.e., the closure
// only handles complete objects that are in the range
// it is given). That object is handed back here
// for any special consideration necessary.
//
// Is the first bit in the last block a start or end bit?
//
// If the partial object ends in the last block L,
// then the 1st bit in L may be an end bit.
//
// Else does the last object start in a block after the current
// block? A block AA will already have been updated if an
// object ends in the next block AA+1. An object found to end in
// the AA+1 is the trigger that updates AA. Objects are being
// counted in the current block for updaing a following
// block. An object may start in later block
// block but may extend beyond the last block in the chunk.
// Updates are only done when the end of an object has been
// found. If the last object (covered by block L) starts
// beyond the current block, then no object ends in L (otherwise
// L would be the current block). So the first bit in L is
// a start bit.
//
// Else the last objects start in the current block and ends
// beyond the chunk. The current block has already been
// updated and there is no later block (with an object
// starting in it) that needs to be updated.
//
if (_summary_data.partial_obj_ends_in_block(last_block)) {
_summary_data.block(last_block)->set_end_bit_offset(
bbu.live_data_left());
} else if (last_offset_addr >= cur_block_plus_1_addr) {
// The start of the object is on a later block
// (to the right of the current block and there are no
// complete live objects to the left of this last object
// within the chunk.
// The first bit in the block is for the start of the
// last object.
_summary_data.block(last_block)->set_start_bit_offset(
bbu.live_data_left());
} else {
// The start of the last object was found in
// the current chunk (which has already
// been updated).
assert(bbu.cur_block() ==
_summary_data.addr_to_block_idx(last_offset_addr),
"Should be a block already processed");
}
#ifdef ASSERT
// Is there enough block information to find this object?
// The destination of the chunk has not been set so the
// values returned by calc_new_pointer() and
// block_calc_new_pointer() will only be
// offsets. But they should agree.
HeapWord* moved_obj_with_chunks =
_summary_data.chunk_calc_new_pointer(last_offset_addr);
HeapWord* moved_obj_with_blocks =
_summary_data.calc_new_pointer(last_offset_addr);
assert(moved_obj_with_chunks == moved_obj_with_blocks,
"Block calculation is wrong");
#endif
} else if (last_block < _summary_data.block_count()) {
// Iterations ended looking for a start bit (but
// did not run off the end of the block table).
_summary_data.block(last_block)->set_start_bit_offset(
bbu.live_data_left());
}
}
#ifdef ASSERT
// Is there enough block information to find this object?
HeapWord* left_offset_addr = mark_bitmap()->bit_to_addr(left_offset);
HeapWord* moved_obj_with_chunks =
_summary_data.calc_new_pointer(left_offset_addr);
HeapWord* moved_obj_with_blocks =
_summary_data.calc_new_pointer(left_offset_addr);
assert(moved_obj_with_chunks == moved_obj_with_blocks,
"Block calculation is wrong");
#endif
// Is there another block after the end of this chunk?
#ifdef ASSERT
if (last_block < _summary_data.block_count()) {
// No object may have been found in a block. If that
// block is at the end of the chunk, the iteration will
// terminate without incrementing the current block so
// that the current block is not the last block in the
// chunk. That situation precludes asserting that the
// current block is the last block in the chunk. Assert
// the lesser condition that the current block does not
// exceed the chunk.
assert(_summary_data.block_to_addr(last_block) <=
(_summary_data.chunk_to_addr(chunk_index) +
ParallelCompactData::ChunkSize),
"Chunk and block inconsistency");
assert(last_offset <= right_offset, "Iteration over ran end");
}
#endif
}
#ifdef ASSERT
if (PrintGCDetails && Verbose) {
if (_summary_data.chunk(chunk_index)->partial_obj_size() == 1) {
size_t first_block =
chunk_index / ParallelCompactData::BlocksPerChunk;
gclog_or_tty->print_cr("first_block " PTR_FORMAT
" _offset " PTR_FORMAT
"_first_is_start_bit %d",
first_block,
_summary_data.block(first_block)->raw_offset(),
_summary_data.block(first_block)->first_is_start_bit());
}
}
#endif
}
}
DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(16);)
#endif // #if 0
}
// This method should contain all heap-specific policy for invoking a full
// collection. invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further. If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(),
"should be in vm thread");
ParallelScavengeHeap* heap = gc_heap();
GCCause::Cause gc_cause = heap->gc_cause();
assert(!heap->is_gc_active(), "not reentrant");
PSAdaptiveSizePolicy* policy = heap->size_policy();
// Before each allocation/collection attempt, find out from the
// policy object if GCs are, on the whole, taking too long. If so,
// bail out without attempting a collection. The exceptions are
// for explicitly requested GC's.
if (!policy->gc_time_limit_exceeded() ||
GCCause::is_user_requested_gc(gc_cause) ||
GCCause::is_serviceability_requested_gc(gc_cause)) {
IsGCActiveMark mark;
if (ScavengeBeforeFullGC) {
PSScavenge::invoke_no_policy();
}
PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
}
}
bool ParallelCompactData::chunk_contains(size_t chunk_index, HeapWord* addr) {
size_t addr_chunk_index = addr_to_chunk_idx(addr);
return chunk_index == addr_chunk_index;
}
bool ParallelCompactData::chunk_contains_block(size_t chunk_index,
size_t block_index) {
size_t first_block_in_chunk = chunk_index * BlocksPerChunk;
size_t last_block_in_chunk = (chunk_index + 1) * BlocksPerChunk - 1;
return (first_block_in_chunk <= block_index) &&
(block_index <= last_block_in_chunk);
}
// This method contains no policy. You should probably
// be calling invoke() instead.
void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
assert(ref_processor() != NULL, "Sanity");
if (GC_locker::is_active()) {
return;
}
TimeStamp marking_start;
TimeStamp compaction_start;
TimeStamp collection_exit;
// "serial_CM" is needed until the parallel implementation
// of the move and update is done.
ParCompactionManager* serial_CM = new ParCompactionManager();
// Don't initialize more than once.
// serial_CM->initialize(&summary_data(), mark_bitmap());
ParallelScavengeHeap* heap = gc_heap();
GCCause::Cause gc_cause = heap->gc_cause();
PSYoungGen* young_gen = heap->young_gen();
PSOldGen* old_gen = heap->old_gen();
PSPermGen* perm_gen = heap->perm_gen();
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
_print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
// Make sure data structures are sane, make the heap parsable, and do other
// miscellaneous bookkeeping.
PreGCValues pre_gc_values;
pre_compact(&pre_gc_values);
// Place after pre_compact() where the number of invocations is incremented.
AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
{
ResourceMark rm;
HandleMark hm;
const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
// This is useful for debugging but don't change the output the
// the customer sees.
const char* gc_cause_str = "Full GC";
if (is_system_gc && PrintGCDetails) {
gc_cause_str = "Full GC (System)";
}
gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
TraceCollectorStats tcs(counters());
TraceMemoryManagerStats tms(true /* Full GC */);
if (TraceGen1Time) accumulated_time()->start();
// Let the size policy know we're starting
size_policy->major_collection_begin();
// When collecting the permanent generation methodOops may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
Threads::gc_prologue();
NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
COMPILER2_PRESENT(DerivedPointerTable::clear());
ref_processor()->enable_discovery();
bool marked_for_unloading = false;
marking_start.update();
marking_phase(serial_CM, maximum_heap_compaction);
#ifndef PRODUCT
if (TraceParallelOldGCMarkingPhase) {
gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
"cas_by_another %d",
mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
mark_bitmap()->cas_by_another());
}
#endif // #ifndef PRODUCT
#ifdef ASSERT
if (VerifyParallelOldWithMarkSweep &&
(PSParallelCompact::total_invocations() %
VerifyParallelOldWithMarkSweepInterval) == 0) {
gclog_or_tty->print_cr("Verify marking with mark_sweep_phase1()");
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("mark_sweep_phase1:");
}
// Clear the discovered lists so that discovered objects
// don't look like they have been discovered twice.
ref_processor()->clear_discovered_references();
PSMarkSweep::allocate_stacks();
MemRegion mr = Universe::heap()->reserved_region();
PSMarkSweep::ref_processor()->enable_discovery();
PSMarkSweep::mark_sweep_phase1(maximum_heap_compaction);
}
#endif
bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
summary_phase(serial_CM, maximum_heap_compaction || max_on_system_gc);
#ifdef ASSERT
if (VerifyParallelOldWithMarkSweep &&
(PSParallelCompact::total_invocations() %
VerifyParallelOldWithMarkSweepInterval) == 0) {
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("mark_sweep_phase2:");
}
PSMarkSweep::mark_sweep_phase2();
}
#endif
COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
// adjust_roots() updates Universe::_intArrayKlassObj which is
// needed by the compaction for filling holes in the dense prefix.
adjust_roots();
#ifdef ASSERT
if (VerifyParallelOldWithMarkSweep &&
(PSParallelCompact::total_invocations() %
VerifyParallelOldWithMarkSweepInterval) == 0) {
// Do a separate verify phase so that the verify
// code can use the the forwarding pointers to
// check the new pointer calculation. The restore_marks()
// has to be done before the real compact.
serial_CM->set_action(ParCompactionManager::VerifyUpdate);
compact_perm(serial_CM);
compact_serial(serial_CM);
serial_CM->set_action(ParCompactionManager::ResetObjects);
compact_perm(serial_CM);
compact_serial(serial_CM);
serial_CM->set_action(ParCompactionManager::UpdateAndCopy);
// For debugging only
PSMarkSweep::restore_marks();
PSMarkSweep::deallocate_stacks();
}
#endif
compaction_start.update();
// Does the perm gen always have to be done serially because
// klasses are used in the update of an object?
compact_perm(serial_CM);
if (UseParallelOldGCCompacting) {
compact();
} else {
compact_serial(serial_CM);
}
delete serial_CM;
// Reset the mark bitmap, summary data, and do other bookkeeping. Must be
// done before resizing.
post_compact();
// Let the size policy know we're done
size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
if (UseAdaptiveSizePolicy) {
if (PrintAdaptiveSizePolicy) {
gclog_or_tty->print("AdaptiveSizeStart: ");
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" collection: %d ",
heap->total_collections());
if (Verbose) {
gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
" perm_gen_capacity: %d ",
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
perm_gen->capacity_in_bytes());
}
}
// Don't check if the size_policy is ready here. Let
// the size_policy check that internally.
if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
((gc_cause != GCCause::_java_lang_system_gc) ||
UseAdaptiveSizePolicyWithSystemGC)) {
// Calculate optimal free space amounts
assert(young_gen->max_size() >
young_gen->from_space()->capacity_in_bytes() +
young_gen->to_space()->capacity_in_bytes(),
"Sizes of space in young gen are out-of-bounds");
size_t max_eden_size = young_gen->max_size() -
young_gen->from_space()->capacity_in_bytes() -
young_gen->to_space()->capacity_in_bytes();
size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
young_gen->eden_space()->used_in_bytes(),
old_gen->used_in_bytes(),
perm_gen->used_in_bytes(),
young_gen->eden_space()->capacity_in_bytes(),
old_gen->max_gen_size(),
max_eden_size,
true /* full gc*/,
gc_cause);
heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
// Don't resize the young generation at an major collection. A
// desired young generation size may have been calculated but
// resizing the young generation complicates the code because the
// resizing of the old generation may have moved the boundary
// between the young generation and the old generation. Let the
// young generation resizing happen at the minor collections.
}
if (PrintAdaptiveSizePolicy) {
gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
heap->total_collections());
}
}
if (UsePerfData) {
PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
counters->update_counters();
counters->update_old_capacity(old_gen->capacity_in_bytes());
counters->update_young_capacity(young_gen->capacity_in_bytes());
}
heap->resize_all_tlabs();
// We collected the perm gen, so we'll resize it here.
perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
if (TraceGen1Time) accumulated_time()->stop();
if (PrintGC) {
if (PrintGCDetails) {
// No GC timestamp here. This is after GC so it would be confusing.
young_gen->print_used_change(pre_gc_values.young_gen_used());
old_gen->print_used_change(pre_gc_values.old_gen_used());
heap->print_heap_change(pre_gc_values.heap_used());
// Print perm gen last (print_heap_change() excludes the perm gen).
perm_gen->print_used_change(pre_gc_values.perm_gen_used());
} else {
heap->print_heap_change(pre_gc_values.heap_used());
}
}
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
if (PrintGCDetails) {
if (size_policy->print_gc_time_limit_would_be_exceeded()) {
if (size_policy->gc_time_limit_exceeded()) {
gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
"of %d%%", GCTimeLimit);
} else {
gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
"of %d%%", GCTimeLimit);
}
}
size_policy->set_print_gc_time_limit_would_be_exceeded(false);
}
}
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
HandleMark hm; // Discard invalid handles created during verification
gclog_or_tty->print(" VerifyAfterGC:");
Universe::verify(false);
}
// Re-verify object start arrays
if (VerifyObjectStartArray &&
VerifyAfterGC) {
old_gen->verify_object_start_array();
perm_gen->verify_object_start_array();
}
NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
collection_exit.update();
if (PrintHeapAtGC) {
Universe::print_heap_after_gc();
}
if (PrintGCTaskTimeStamps) {
gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
INT64_FORMAT,
marking_start.ticks(), compaction_start.ticks(),
collection_exit.ticks());
gc_task_manager()->print_task_time_stamps();
}
}
bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
PSYoungGen* young_gen,
PSOldGen* old_gen) {
MutableSpace* const eden_space = young_gen->eden_space();
assert(!eden_space->is_empty(), "eden must be non-empty");
assert(young_gen->virtual_space()->alignment() ==
old_gen->virtual_space()->alignment(), "alignments do not match");
if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
return false;
}
// Both generations must be completely committed.
if (young_gen->virtual_space()->uncommitted_size() != 0) {
return false;
}
if (old_gen->virtual_space()->uncommitted_size() != 0) {
return false;
}
// Figure out how much to take from eden. Include the average amount promoted
// in the total; otherwise the next young gen GC will simply bail out to a
// full GC.
const size_t alignment = old_gen->virtual_space()->alignment();
const size_t eden_used = eden_space->used_in_bytes();
const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
const size_t eden_capacity = eden_space->capacity_in_bytes();
if (absorb_size >= eden_capacity) {
return false; // Must leave some space in eden.
}
const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
if (new_young_size < young_gen->min_gen_size()) {
return false; // Respect young gen minimum size.
}
if (TraceAdaptiveGCBoundary && Verbose) {
gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
"eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
"from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
"young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
absorb_size / K,
eden_capacity / K, (eden_capacity - absorb_size) / K,
young_gen->from_space()->used_in_bytes() / K,
young_gen->to_space()->used_in_bytes() / K,
young_gen->capacity_in_bytes() / K, new_young_size / K);
}
// Fill the unused part of the old gen.
MutableSpace* const old_space = old_gen->object_space();
MemRegion old_gen_unused(old_space->top(), old_space->end());
if (!old_gen_unused.is_empty()) {
SharedHeap::fill_region_with_object(old_gen_unused);
}
// Take the live data from eden and set both top and end in the old gen to
// eden top. (Need to set end because reset_after_change() mangles the region
// from end to virtual_space->high() in debug builds).
HeapWord* const new_top = eden_space->top();
old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
absorb_size);
young_gen->reset_after_change();
old_space->set_top(new_top);
old_space->set_end(new_top);
old_gen->reset_after_change();
// Update the object start array for the filler object and the data from eden.
ObjectStartArray* const start_array = old_gen->start_array();
HeapWord* const start = old_gen_unused.start();
for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
start_array->allocate_block(addr);
}
// Could update the promoted average here, but it is not typically updated at
// full GCs and the value to use is unclear. Something like
//
// cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
size_policy->set_bytes_absorbed_from_eden(absorb_size);
return true;
}
GCTaskManager* const PSParallelCompact::gc_task_manager() {
assert(ParallelScavengeHeap::gc_task_manager() != NULL,
"shouldn't return NULL");
return ParallelScavengeHeap::gc_task_manager();
}
void PSParallelCompact::marking_phase(ParCompactionManager* cm,
bool maximum_heap_compaction) {
// Recursively traverse all live objects and mark them
EventMark m("1 mark object");
TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
ParallelScavengeHeap* heap = gc_heap();
uint parallel_gc_threads = heap->gc_task_manager()->workers();
TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
ParallelTaskTerminator terminator(parallel_gc_threads, qset);
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
{
TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
GCTaskQueue* q = GCTaskQueue::create();
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
// We scan the thread roots in parallel
Threads::create_thread_roots_marking_tasks(q);
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
if (parallel_gc_threads > 1) {
for (uint j = 0; j < parallel_gc_threads; j++) {
q->enqueue(new StealMarkingTask(&terminator));
}
}
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
q->enqueue(fin);
gc_task_manager()->add_list(q);
fin->wait_for();
// We have to release the barrier tasks!
WaitForBarrierGCTask::destroy(fin);
}
// Process reference objects found during marking
{
TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
ReferencePolicy *soft_ref_policy;
if (maximum_heap_compaction) {
soft_ref_policy = new AlwaysClearPolicy();
} else {
#ifdef COMPILER2
soft_ref_policy = new LRUMaxHeapPolicy();
#else
soft_ref_policy = new LRUCurrentHeapPolicy();
#endif // COMPILER2
}
assert(soft_ref_policy != NULL, "No soft reference policy");
if (ref_processor()->processing_is_mt()) {
RefProcTaskExecutor task_executor;
ref_processor()->process_discovered_references(
soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
&follow_stack_closure, &task_executor);
} else {
ref_processor()->process_discovered_references(
soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
&follow_stack_closure, NULL);
}
}
TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
// Follow system dictionary roots and unload classes.
bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
// Follow code cache roots.
CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
purged_class);
follow_stack(cm); // Flush marking stack.
// Update subklass/sibling/implementor links of live klasses
// revisit_klass_stack is used in follow_weak_klass_links().
follow_weak_klass_links(cm);
// Visit symbol and interned string tables and delete unmarked oops
SymbolTable::unlink(is_alive_closure());
StringTable::unlink(is_alive_closure());
assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
}
// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
void do_object(oop p) { ShouldNotReachHere(); }
bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;
void PSParallelCompact::adjust_roots() {
// Adjust the pointers to reflect the new locations
EventMark m("3 adjust roots");
TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
// General strong roots.
Universe::oops_do(adjust_root_pointer_closure());
ReferenceProcessor::oops_do(adjust_root_pointer_closure());
JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
Threads::oops_do(adjust_root_pointer_closure());
ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
FlatProfiler::oops_do(adjust_root_pointer_closure());
Management::oops_do(adjust_root_pointer_closure());
JvmtiExport::oops_do(adjust_root_pointer_closure());
// SO_AllClasses
SystemDictionary::oops_do(adjust_root_pointer_closure());
vmSymbols::oops_do(adjust_root_pointer_closure());
// Now adjust pointers in remaining weak roots. (All of which should
// have been cleared if they pointed to non-surviving objects.)
// Global (weak) JNI handles
JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
CodeCache::oops_do(adjust_pointer_closure());
SymbolTable::oops_do(adjust_root_pointer_closure());
StringTable::oops_do(adjust_root_pointer_closure());
ref_processor()->weak_oops_do(adjust_root_pointer_closure());
// Roots were visited so references into the young gen in roots
// may have been scanned. Process them also.
// Should the reference processor have a span that excludes
// young gen objects?
PSScavenge::reference_processor()->weak_oops_do(
adjust_root_pointer_closure());
}
void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
EventMark m("4 compact perm");
TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
// trace("4");
gc_heap()->perm_gen()->start_array()->reset();
move_and_update(cm, perm_space_id);
}
void PSParallelCompact::enqueue_chunk_draining_tasks(GCTaskQueue* q,
uint parallel_gc_threads) {
TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
for (unsigned int j = 0; j < task_count; j++) {
q->enqueue(new DrainStacksCompactionTask());
}
// Find all chunks that are available (can be filled immediately) and
// distribute them to the thread stacks. The iteration is done in reverse
// order (high to low) so the chunks will be removed in ascending order.
const ParallelCompactData& sd = PSParallelCompact::summary_data();
size_t fillable_chunks = 0; // A count for diagnostic purposes.
unsigned int which = 0; // The worker thread number.
for (unsigned int id = to_space_id; id > perm_space_id; --id) {
SpaceInfo* const space_info = _space_info + id;
MutableSpace* const space = space_info->space();
HeapWord* const new_top = space_info->new_top();
const size_t beg_chunk = sd.addr_to_chunk_idx(space_info->dense_prefix());
const size_t end_chunk = sd.addr_to_chunk_idx(sd.chunk_align_up(new_top));
assert(end_chunk > 0, "perm gen cannot be empty");
for (size_t cur = end_chunk - 1; cur >= beg_chunk; --cur) {
if (sd.chunk(cur)->claim_unsafe()) {
ParCompactionManager* cm = ParCompactionManager::manager_array(which);
cm->save_for_processing(cur);
if (TraceParallelOldGCCompactionPhase && Verbose) {
const size_t count_mod_8 = fillable_chunks & 7;
if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
gclog_or_tty->print(" " SIZE_FORMAT_W("7"), cur);
if (count_mod_8 == 7) gclog_or_tty->cr();
}
NOT_PRODUCT(++fillable_chunks;)
// Assign chunks to threads in round-robin fashion.
if (++which == task_count) {
which = 0;
}
}
}
}
if (TraceParallelOldGCCompactionPhase) {
if (Verbose && (fillable_chunks & 7) != 0) gclog_or_tty->cr();
gclog_or_tty->print_cr("%u initially fillable chunks", fillable_chunks);
}
}
#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
uint parallel_gc_threads) {
TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
ParallelCompactData& sd = PSParallelCompact::summary_data();
// Iterate over all the spaces adding tasks for updating
// chunks in the dense prefix. Assume that 1 gc thread
// will work on opening the gaps and the remaining gc threads
// will work on the dense prefix.
SpaceId space_id = old_space_id;
while (space_id != last_space_id) {
HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
const MutableSpace* const space = _space_info[space_id].space();
if (dense_prefix_end == space->bottom()) {
// There is no dense prefix for this space.
space_id = next_compaction_space_id(space_id);
continue;
}
// The dense prefix is before this chunk.
size_t chunk_index_end_dense_prefix =
sd.addr_to_chunk_idx(dense_prefix_end);
ChunkData* const dense_prefix_cp = sd.chunk(chunk_index_end_dense_prefix);
assert(dense_prefix_end == space->end() ||
dense_prefix_cp->available() ||
dense_prefix_cp->claimed(),
"The chunk after the dense prefix should always be ready to fill");
size_t chunk_index_start = sd.addr_to_chunk_idx(space->bottom());
// Is there dense prefix work?
size_t total_dense_prefix_chunks =
chunk_index_end_dense_prefix - chunk_index_start;
// How many chunks of the dense prefix should be given to
// each thread?
if (total_dense_prefix_chunks > 0) {
uint tasks_for_dense_prefix = 1;
if (UseParallelDensePrefixUpdate) {
if (total_dense_prefix_chunks <=
(parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
// Don't over partition. This assumes that
// PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
// so there are not many chunks to process.
tasks_for_dense_prefix = parallel_gc_threads;
} else {
// Over partition
tasks_for_dense_prefix = parallel_gc_threads *
PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
}
}
size_t chunks_per_thread = total_dense_prefix_chunks /
tasks_for_dense_prefix;
// Give each thread at least 1 chunk.
if (chunks_per_thread == 0) {
chunks_per_thread = 1;
}
for (uint k = 0; k < tasks_for_dense_prefix; k++) {
if (chunk_index_start >= chunk_index_end_dense_prefix) {
break;
}
// chunk_index_end is not processed
size_t chunk_index_end = MIN2(chunk_index_start + chunks_per_thread,
chunk_index_end_dense_prefix);
q->enqueue(new UpdateDensePrefixTask(
space_id,
chunk_index_start,
chunk_index_end));
chunk_index_start = chunk_index_end;
}
}
// This gets any part of the dense prefix that did not
// fit evenly.
if (chunk_index_start < chunk_index_end_dense_prefix) {
q->enqueue(new UpdateDensePrefixTask(
space_id,
chunk_index_start,
chunk_index_end_dense_prefix));
}
space_id = next_compaction_space_id(space_id);
} // End tasks for dense prefix
}
void PSParallelCompact::enqueue_chunk_stealing_tasks(
GCTaskQueue* q,
ParallelTaskTerminator* terminator_ptr,
uint parallel_gc_threads) {
TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
// Once a thread has drained it's stack, it should try to steal chunks from
// other threads.
if (parallel_gc_threads > 1) {
for (uint j = 0; j < parallel_gc_threads; j++) {
q->enqueue(new StealChunkCompactionTask(terminator_ptr));
}
}
}
void PSParallelCompact::compact() {
EventMark m("5 compact");
// trace("5");
TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSOldGen* old_gen = heap->old_gen();
old_gen->start_array()->reset();
uint parallel_gc_threads = heap->gc_task_manager()->workers();
TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
ParallelTaskTerminator terminator(parallel_gc_threads, qset);
GCTaskQueue* q = GCTaskQueue::create();
enqueue_chunk_draining_tasks(q, parallel_gc_threads);
enqueue_dense_prefix_tasks(q, parallel_gc_threads);
enqueue_chunk_stealing_tasks(q, &terminator, parallel_gc_threads);
{
TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
q->enqueue(fin);
gc_task_manager()->add_list(q);
fin->wait_for();
// We have to release the barrier tasks!
WaitForBarrierGCTask::destroy(fin);
#ifdef ASSERT
// Verify that all chunks have been processed before the deferred updates.
// Note that perm_space_id is skipped; this type of verification is not
// valid until the perm gen is compacted by chunks.
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
verify_complete(SpaceId(id));
}
#endif
}
{
// Update the deferred objects, if any. Any compaction manager can be used.
TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
ParCompactionManager* cm = ParCompactionManager::manager_array(0);
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
update_deferred_objects(cm, SpaceId(id));
}
}
}
#ifdef ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
// All Chunks between space bottom() to new_top() should be marked as filled
// and all Chunks between new_top() and top() should be available (i.e.,
// should have been emptied).
ParallelCompactData& sd = summary_data();
SpaceInfo si = _space_info[space_id];
HeapWord* new_top_addr = sd.chunk_align_up(si.new_top());
HeapWord* old_top_addr = sd.chunk_align_up(si.space()->top());
const size_t beg_chunk = sd.addr_to_chunk_idx(si.space()->bottom());
const size_t new_top_chunk = sd.addr_to_chunk_idx(new_top_addr);
const size_t old_top_chunk = sd.addr_to_chunk_idx(old_top_addr);
bool issued_a_warning = false;
size_t cur_chunk;
for (cur_chunk = beg_chunk; cur_chunk < new_top_chunk; ++cur_chunk) {
const ChunkData* const c = sd.chunk(cur_chunk);
if (!c->completed()) {
warning("chunk " SIZE_FORMAT " not filled: "
"destination_count=" SIZE_FORMAT,
cur_chunk, c->destination_count());
issued_a_warning = true;
}
}
for (cur_chunk = new_top_chunk; cur_chunk < old_top_chunk; ++cur_chunk) {
const ChunkData* const c = sd.chunk(cur_chunk);
if (!c->available()) {
warning("chunk " SIZE_FORMAT " not empty: "
"destination_count=" SIZE_FORMAT,
cur_chunk, c->destination_count());
issued_a_warning = true;
}
}
if (issued_a_warning) {
print_chunk_ranges();
}
}
#endif // #ifdef ASSERT
void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
EventMark m("5 compact serial");
TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSYoungGen* young_gen = heap->young_gen();
PSOldGen* old_gen = heap->old_gen();
old_gen->start_array()->reset();
old_gen->move_and_update(cm);
young_gen->move_and_update(cm);
}
void PSParallelCompact::follow_root(ParCompactionManager* cm, oop* p) {
assert(!Universe::heap()->is_in_reserved(p),
"roots shouldn't be things within the heap");
#ifdef VALIDATE_MARK_SWEEP
if (ValidateMarkSweep) {
guarantee(!_root_refs_stack->contains(p), "should only be in here once");
_root_refs_stack->push(p);
}
#endif
oop m = *p;
if (m != NULL && mark_bitmap()->is_unmarked(m)) {
if (mark_obj(m)) {
m->follow_contents(cm); // Follow contents of the marked object
}
}
follow_stack(cm);
}
void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
while(!cm->overflow_stack()->is_empty()) {
oop obj = cm->overflow_stack()->pop();
obj->follow_contents(cm);
}
oop obj;
// obj is a reference!!!
while (cm->marking_stack()->pop_local(obj)) {
// It would be nice to assert about the type of objects we might
// pop, but they can come from anywhere, unfortunately.
obj->follow_contents(cm);
}
}
void
PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
// All klasses on the revisit stack are marked at this point.
// Update and follow all subklass, sibling and implementor links.
for (uint i = 0; i < ParallelGCThreads+1; i++) {
ParCompactionManager* cm = ParCompactionManager::manager_array(i);
KeepAliveClosure keep_alive_closure(cm);
for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
is_alive_closure(),
&keep_alive_closure);
}
follow_stack(cm);
}
}
void
PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
cm->revisit_klass_stack()->push(k);
}
#ifdef VALIDATE_MARK_SWEEP
void PSParallelCompact::track_adjusted_pointer(oop* p, oop newobj, bool isroot) {
if (!ValidateMarkSweep)
return;
if (!isroot) {
if (_pointer_tracking) {
guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
_adjusted_pointers->remove(p);
}
} else {
ptrdiff_t index = _root_refs_stack->find(p);
if (index != -1) {
int l = _root_refs_stack->length();
if (l > 0 && l - 1 != index) {
oop* last = _root_refs_stack->pop();
assert(last != p, "should be different");
_root_refs_stack->at_put(index, last);
} else {
_root_refs_stack->remove(p);
}
}
}
}
void PSParallelCompact::check_adjust_pointer(oop* p) {
_adjusted_pointers->push(p);
}
class AdjusterTracker: public OopClosure {
public:
AdjusterTracker() {};
void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
};
void PSParallelCompact::track_interior_pointers(oop obj) {
if (ValidateMarkSweep) {
_adjusted_pointers->clear();
_pointer_tracking = true;
AdjusterTracker checker;
obj->oop_iterate(&checker);
}
}
void PSParallelCompact::check_interior_pointers() {
if (ValidateMarkSweep) {
_pointer_tracking = false;
guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
}
}
void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
if (ValidateMarkSweep) {
guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
_live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
}
}
void PSParallelCompact::register_live_oop(oop p, size_t size) {
if (ValidateMarkSweep) {
_live_oops->push(p);
_live_oops_size->push(size);
_live_oops_index++;
}
}
void PSParallelCompact::validate_live_oop(oop p, size_t size) {
if (ValidateMarkSweep) {
oop obj = _live_oops->at((int)_live_oops_index);
guarantee(obj == p, "should be the same object");
guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
_live_oops_index++;
}
}
void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
HeapWord* compaction_top) {
assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
"should be moved to forwarded location");
if (ValidateMarkSweep) {
PSParallelCompact::validate_live_oop(oop(q), size);
_live_oops_moved_to->push(oop(compaction_top));
}
if (RecordMarkSweepCompaction) {
_cur_gc_live_oops->push(q);
_cur_gc_live_oops_moved_to->push(compaction_top);
_cur_gc_live_oops_size->push(size);
}
}
void PSParallelCompact::compaction_complete() {
if (RecordMarkSweepCompaction) {
GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
_cur_gc_live_oops = _last_gc_live_oops;
_cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
_cur_gc_live_oops_size = _last_gc_live_oops_size;
_last_gc_live_oops = _tmp_live_oops;
_last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
_last_gc_live_oops_size = _tmp_live_oops_size;
}
}
void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
if (!RecordMarkSweepCompaction) {
tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
return;
}
if (_last_gc_live_oops == NULL) {
tty->print_cr("No compaction information gathered yet");
return;
}
for (int i = 0; i < _last_gc_live_oops->length(); i++) {
HeapWord* old_oop = _last_gc_live_oops->at(i);
size_t sz = _last_gc_live_oops_size->at(i);
if (old_oop <= q && q < (old_oop + sz)) {
HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
size_t offset = (q - old_oop);
tty->print_cr("Address " PTR_FORMAT, q);
tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
return;
}
}
tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
}
#endif //VALIDATE_MARK_SWEEP
void PSParallelCompact::adjust_pointer(oop* p, bool isroot) {
oop obj = *p;
VALIDATE_MARK_SWEEP_ONLY(oop saved_new_pointer = NULL);
if (obj != NULL) {
oop new_pointer = (oop) summary_data().calc_new_pointer(obj);
assert(new_pointer != NULL || // is forwarding ptr?
obj->is_shared(), // never forwarded?
"should have a new location");
// Just always do the update unconditionally?
if (new_pointer != NULL) {
*p = new_pointer;
assert(Universe::heap()->is_in_reserved(new_pointer),
"should be in object space");
VALIDATE_MARK_SWEEP_ONLY(saved_new_pointer = new_pointer);
}
}
VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, saved_new_pointer, isroot));
}
// Update interior oops in the ranges of chunks [beg_chunk, end_chunk).
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
SpaceId space_id,
size_t beg_chunk,
size_t end_chunk) {
ParallelCompactData& sd = summary_data();
ParMarkBitMap* const mbm = mark_bitmap();
HeapWord* beg_addr = sd.chunk_to_addr(beg_chunk);
HeapWord* const end_addr = sd.chunk_to_addr(end_chunk);
assert(beg_chunk <= end_chunk, "bad chunk range");
assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
#ifdef ASSERT
// Claim the chunks to avoid triggering an assert when they are marked as
// filled.
for (size_t claim_chunk = beg_chunk; claim_chunk < end_chunk; ++claim_chunk) {
assert(sd.chunk(claim_chunk)->claim_unsafe(), "claim() failed");
}
#endif // #ifdef ASSERT
if (beg_addr != space(space_id)->bottom()) {
// Find the first live object or block of dead space that *starts* in this
// range of chunks. If a partial object crosses onto the chunk, skip it; it
// will be marked for 'deferred update' when the object head is processed.
// If dead space crosses onto the chunk, it is also skipped; it will be
// filled when the prior chunk is processed. If neither of those apply, the
// first word in the chunk is the start of a live object or dead space.
assert(beg_addr > space(space_id)->bottom(), "sanity");
const ChunkData* const cp = sd.chunk(beg_chunk);
if (cp->partial_obj_size() != 0) {
beg_addr = sd.partial_obj_end(beg_chunk);
} else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
}
}
if (beg_addr < end_addr) {
// A live object or block of dead space starts in this range of Chunks.
HeapWord* const dense_prefix_end = dense_prefix(space_id);
// Create closures and iterate.
UpdateOnlyClosure update_closure(mbm, cm, space_id);
FillClosure fill_closure(cm, space_id);
ParMarkBitMap::IterationStatus status;
status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
dense_prefix_end);
if (status == ParMarkBitMap::incomplete) {
update_closure.do_addr(update_closure.source());
}
}
// Mark the chunks as filled.
ChunkData* const beg_cp = sd.chunk(beg_chunk);
ChunkData* const end_cp = sd.chunk(end_chunk);
for (ChunkData* cp = beg_cp; cp < end_cp; ++cp) {
cp->set_completed();
}
}
// Return the SpaceId for the space containing addr. If addr is not in the
// heap, last_space_id is returned. In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
if (_space_info[id].space()->contains(addr)) {
return SpaceId(id);
}
}
assert(false, "no space contains the addr");
return last_space_id;
}
void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
SpaceId id) {
assert(id < last_space_id, "bad space id");
ParallelCompactData& sd = summary_data();
const SpaceInfo* const space_info = _space_info + id;
ObjectStartArray* const start_array = space_info->start_array();
const MutableSpace* const space = space_info->space();
assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
HeapWord* const beg_addr = space_info->dense_prefix();
HeapWord* const end_addr = sd.chunk_align_up(space_info->new_top());
const ChunkData* const beg_chunk = sd.addr_to_chunk_ptr(beg_addr);
const ChunkData* const end_chunk = sd.addr_to_chunk_ptr(end_addr);
const ChunkData* cur_chunk;
for (cur_chunk = beg_chunk; cur_chunk < end_chunk; ++cur_chunk) {
HeapWord* const addr = cur_chunk->deferred_obj_addr();
if (addr != NULL) {
if (start_array != NULL) {
start_array->allocate_block(addr);
}
oop(addr)->update_contents(cm);
assert(oop(addr)->is_oop_or_null(), "should be an oop now");
}
}
}
// Skip over count live words starting from beg, and return the address of the
// next live word. Unless marked, the word corresponding to beg is assumed to
// be dead. Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way. Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
assert(count > 0, "sanity");
ParMarkBitMap* m = mark_bitmap();
idx_t bits_to_skip = m->words_to_bits(count);
idx_t cur_beg = m->addr_to_bit(beg);
const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
do {
cur_beg = m->find_obj_beg(cur_beg, search_end);
idx_t cur_end = m->find_obj_end(cur_beg, search_end);
const size_t obj_bits = cur_end - cur_beg + 1;
if (obj_bits > bits_to_skip) {
return m->bit_to_addr(cur_beg + bits_to_skip);
}
bits_to_skip -= obj_bits;
cur_beg = cur_end + 1;
} while (bits_to_skip > 0);
// Skipping the desired number of words landed just past the end of an object.
// Find the start of the next object.
cur_beg = m->find_obj_beg(cur_beg, search_end);
assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
return m->bit_to_addr(cur_beg);
}
HeapWord*
PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
size_t src_chunk_idx)
{
ParMarkBitMap* const bitmap = mark_bitmap();
const ParallelCompactData& sd = summary_data();
const size_t ChunkSize = ParallelCompactData::ChunkSize;
assert(sd.is_chunk_aligned(dest_addr), "not aligned");
const ChunkData* const src_chunk_ptr = sd.chunk(src_chunk_idx);
const size_t partial_obj_size = src_chunk_ptr->partial_obj_size();
HeapWord* const src_chunk_destination = src_chunk_ptr->destination();
assert(dest_addr >= src_chunk_destination, "wrong src chunk");
assert(src_chunk_ptr->data_size() > 0, "src chunk cannot be empty");
HeapWord* const src_chunk_beg = sd.chunk_to_addr(src_chunk_idx);
HeapWord* const src_chunk_end = src_chunk_beg + ChunkSize;
HeapWord* addr = src_chunk_beg;
if (dest_addr == src_chunk_destination) {
// Return the first live word in the source chunk.
if (partial_obj_size == 0) {
addr = bitmap->find_obj_beg(addr, src_chunk_end);
assert(addr < src_chunk_end, "no objects start in src chunk");
}
return addr;
}
// Must skip some live data.
size_t words_to_skip = dest_addr - src_chunk_destination;
assert(src_chunk_ptr->data_size() > words_to_skip, "wrong src chunk");
if (partial_obj_size >= words_to_skip) {
// All the live words to skip are part of the partial object.
addr += words_to_skip;
if (partial_obj_size == words_to_skip) {
// Find the first live word past the partial object.
addr = bitmap->find_obj_beg(addr, src_chunk_end);
assert(addr < src_chunk_end, "wrong src chunk");
}
return addr;
}
// Skip over the partial object (if any).
if (partial_obj_size != 0) {
words_to_skip -= partial_obj_size;
addr += partial_obj_size;
}
// Skip over live words due to objects that start in the chunk.
addr = skip_live_words(addr, src_chunk_end, words_to_skip);
assert(addr < src_chunk_end, "wrong src chunk");
return addr;
}
void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
size_t beg_chunk,
HeapWord* end_addr)
{
ParallelCompactData& sd = summary_data();
ChunkData* const beg = sd.chunk(beg_chunk);
HeapWord* const end_addr_aligned_up = sd.chunk_align_up(end_addr);
ChunkData* const end = sd.addr_to_chunk_ptr(end_addr_aligned_up);
size_t cur_idx = beg_chunk;
for (ChunkData* cur = beg; cur < end; ++cur, ++cur_idx) {
assert(cur->data_size() > 0, "chunk must have live data");
cur->decrement_destination_count();
if (cur_idx <= cur->source_chunk() && cur->available() && cur->claim()) {
cm->save_for_processing(cur_idx);
}
}
}
size_t PSParallelCompact::next_src_chunk(MoveAndUpdateClosure& closure,
SpaceId& src_space_id,
HeapWord*& src_space_top,
HeapWord* end_addr)
{
typedef ParallelCompactData::ChunkData ChunkData;
ParallelCompactData& sd = PSParallelCompact::summary_data();
const size_t chunk_size = ParallelCompactData::ChunkSize;
size_t src_chunk_idx = 0;
// Skip empty chunks (if any) up to the top of the space.
HeapWord* const src_aligned_up = sd.chunk_align_up(end_addr);
ChunkData* src_chunk_ptr = sd.addr_to_chunk_ptr(src_aligned_up);
HeapWord* const top_aligned_up = sd.chunk_align_up(src_space_top);
const ChunkData* const top_chunk_ptr = sd.addr_to_chunk_ptr(top_aligned_up);
while (src_chunk_ptr < top_chunk_ptr && src_chunk_ptr->data_size() == 0) {
++src_chunk_ptr;
}
if (src_chunk_ptr < top_chunk_ptr) {
// The next source chunk is in the current space. Update src_chunk_idx and
// the source address to match src_chunk_ptr.
src_chunk_idx = sd.chunk(src_chunk_ptr);
HeapWord* const src_chunk_addr = sd.chunk_to_addr(src_chunk_idx);
if (src_chunk_addr > closure.source()) {
closure.set_source(src_chunk_addr);
}
return src_chunk_idx;
}
// Switch to a new source space and find the first non-empty chunk.
unsigned int space_id = src_space_id + 1;
assert(space_id < last_space_id, "not enough spaces");
HeapWord* const destination = closure.destination();
do {
MutableSpace* space = _space_info[space_id].space();
HeapWord* const bottom = space->bottom();
const ChunkData* const bottom_cp = sd.addr_to_chunk_ptr(bottom);
// Iterate over the spaces that do not compact into themselves.
if (bottom_cp->destination() != bottom) {
HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
for (const ChunkData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
if (src_cp->live_obj_size() > 0) {
// Found it.
assert(src_cp->destination() == destination,
"first live obj in the space must match the destination");
assert(src_cp->partial_obj_size() == 0,
"a space cannot begin with a partial obj");
src_space_id = SpaceId(space_id);
src_space_top = space->top();
const size_t src_chunk_idx = sd.chunk(src_cp);
closure.set_source(sd.chunk_to_addr(src_chunk_idx));
return src_chunk_idx;
} else {
assert(src_cp->data_size() == 0, "sanity");
}
}
}
} while (++space_id < last_space_id);
assert(false, "no source chunk was found");
return 0;
}
void PSParallelCompact::fill_chunk(ParCompactionManager* cm, size_t chunk_idx)
{
typedef ParMarkBitMap::IterationStatus IterationStatus;
const size_t ChunkSize = ParallelCompactData::ChunkSize;
ParMarkBitMap* const bitmap = mark_bitmap();
ParallelCompactData& sd = summary_data();
ChunkData* const chunk_ptr = sd.chunk(chunk_idx);
// Get the items needed to construct the closure.
HeapWord* dest_addr = sd.chunk_to_addr(chunk_idx);
SpaceId dest_space_id = space_id(dest_addr);
ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
HeapWord* new_top = _space_info[dest_space_id].new_top();
assert(dest_addr < new_top, "sanity");
const size_t words = MIN2(pointer_delta(new_top, dest_addr), ChunkSize);
// Get the source chunk and related info.
size_t src_chunk_idx = chunk_ptr->source_chunk();
SpaceId src_space_id = space_id(sd.chunk_to_addr(src_chunk_idx));
HeapWord* src_space_top = _space_info[src_space_id].space()->top();
MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
closure.set_source(first_src_addr(dest_addr, src_chunk_idx));
// Adjust src_chunk_idx to prepare for decrementing destination counts (the
// destination count is not decremented when a chunk is copied to itself).
if (src_chunk_idx == chunk_idx) {
src_chunk_idx += 1;
}
if (bitmap->is_unmarked(closure.source())) {
// The first source word is in the middle of an object; copy the remainder
// of the object or as much as will fit. The fact that pointer updates were
// deferred will be noted when the object header is processed.
HeapWord* const old_src_addr = closure.source();
closure.copy_partial_obj();
if (closure.is_full()) {
decrement_destination_counts(cm, src_chunk_idx, closure.source());
chunk_ptr->set_deferred_obj_addr(NULL);
chunk_ptr->set_completed();
return;
}
HeapWord* const end_addr = sd.chunk_align_down(closure.source());
if (sd.chunk_align_down(old_src_addr) != end_addr) {
// The partial object was copied from more than one source chunk.
decrement_destination_counts(cm, src_chunk_idx, end_addr);
// Move to the next source chunk, possibly switching spaces as well. All
// args except end_addr may be modified.
src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
end_addr);
}
}
do {
HeapWord* const cur_addr = closure.source();
HeapWord* const end_addr = MIN2(sd.chunk_align_up(cur_addr + 1),
src_space_top);
IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
if (status == ParMarkBitMap::incomplete) {
// The last obj that starts in the source chunk does not end in the chunk.
assert(closure.source() < end_addr, "sanity")
HeapWord* const obj_beg = closure.source();
HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
src_space_top);
HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
if (obj_end < range_end) {
// The end was found; the entire object will fit.
status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
assert(status != ParMarkBitMap::would_overflow, "sanity");
} else {
// The end was not found; the object will not fit.
assert(range_end < src_space_top, "obj cannot cross space boundary");
status = ParMarkBitMap::would_overflow;
}
}
if (status == ParMarkBitMap::would_overflow) {
// The last object did not fit. Note that interior oop updates were
// deferred, then copy enough of the object to fill the chunk.
chunk_ptr->set_deferred_obj_addr(closure.destination());
status = closure.copy_until_full(); // copies from closure.source()
decrement_destination_counts(cm, src_chunk_idx, closure.source());
chunk_ptr->set_completed();
return;
}
if (status == ParMarkBitMap::full) {
decrement_destination_counts(cm, src_chunk_idx, closure.source());
chunk_ptr->set_deferred_obj_addr(NULL);
chunk_ptr->set_completed();
return;
}
decrement_destination_counts(cm, src_chunk_idx, end_addr);
// Move to the next source chunk, possibly switching spaces as well. All
// args except end_addr may be modified.
src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
end_addr);
} while (true);
}
void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
const MutableSpace* sp = space(space_id);
if (sp->is_empty()) {
return;
}
ParallelCompactData& sd = PSParallelCompact::summary_data();
ParMarkBitMap* const bitmap = mark_bitmap();
HeapWord* const dp_addr = dense_prefix(space_id);
HeapWord* beg_addr = sp->bottom();
HeapWord* end_addr = sp->top();
#ifdef ASSERT
assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
if (cm->should_verify_only()) {
VerifyUpdateClosure verify_update(cm, sp);
bitmap->iterate(&verify_update, beg_addr, end_addr);
return;
}
if (cm->should_reset_only()) {
ResetObjectsClosure reset_objects(cm);
bitmap->iterate(&reset_objects, beg_addr, end_addr);
return;
}
#endif
const size_t beg_chunk = sd.addr_to_chunk_idx(beg_addr);
const size_t dp_chunk = sd.addr_to_chunk_idx(dp_addr);
if (beg_chunk < dp_chunk) {
update_and_deadwood_in_dense_prefix(cm, space_id, beg_chunk, dp_chunk);
}
// The destination of the first live object that starts in the chunk is one
// past the end of the partial object entering the chunk (if any).
HeapWord* const dest_addr = sd.partial_obj_end(dp_chunk);
HeapWord* const new_top = _space_info[space_id].new_top();
assert(new_top >= dest_addr, "bad new_top value");
const size_t words = pointer_delta(new_top, dest_addr);
if (words > 0) {
ObjectStartArray* start_array = _space_info[space_id].start_array();
MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
ParMarkBitMap::IterationStatus status;
status = bitmap->iterate(&closure, dest_addr, end_addr);
assert(status == ParMarkBitMap::full, "iteration not complete");
assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
"live objects skipped because closure is full");
}
}
jlong PSParallelCompact::millis_since_last_gc() {
jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
// XXX See note in genCollectedHeap::millis_since_last_gc().
if (ret_val < 0) {
NOT_PRODUCT(warning("time warp: %d", ret_val);)
return 0;
}
return ret_val;
}
void PSParallelCompact::reset_millis_since_last_gc() {
_time_of_last_gc = os::javaTimeMillis();
}
ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
if (source() != destination()) {
assert(source() > destination(), "must copy to the left");
Copy::aligned_conjoint_words(source(), destination(), words_remaining());
}
update_state(words_remaining());
assert(is_full(), "sanity");
return ParMarkBitMap::full;
}
void MoveAndUpdateClosure::copy_partial_obj()
{
size_t words = words_remaining();
HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
if (end_addr < range_end) {
words = bitmap()->obj_size(source(), end_addr);
}
// This test is necessary; if omitted, the pointer updates to a partial object
// that crosses the dense prefix boundary could be overwritten.
if (source() != destination()) {
assert(source() > destination(), "must copy to the left");
Copy::aligned_conjoint_words(source(), destination(), words);
}
update_state(words);
}
ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
assert(destination() != NULL, "sanity");
assert(bitmap()->obj_size(addr) == words, "bad size");
_source = addr;
assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
destination(), "wrong destination");
if (words > words_remaining()) {
return ParMarkBitMap::would_overflow;
}
// The start_array must be updated even if the object is not moving.
if (_start_array != NULL) {
_start_array->allocate_block(destination());
}
if (destination() != source()) {
assert(destination() < source(), "must copy to the left");
Copy::aligned_conjoint_words(source(), destination(), words);
}
oop moved_oop = (oop) destination();
moved_oop->update_contents(compaction_manager());
assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
update_state(words);
assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}
UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
ParCompactionManager* cm,
PSParallelCompact::SpaceId space_id) :
ParMarkBitMapClosure(mbm, cm),
_space_id(space_id),
_start_array(PSParallelCompact::start_array(space_id))
{
}
// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
do_addr(addr);
return ParMarkBitMap::incomplete;
}
BitBlockUpdateClosure::BitBlockUpdateClosure(ParMarkBitMap* mbm,
ParCompactionManager* cm,
size_t chunk_index) :
ParMarkBitMapClosure(mbm, cm),
_live_data_left(0),
_cur_block(0) {
_chunk_start =
PSParallelCompact::summary_data().chunk_to_addr(chunk_index);
_chunk_end =
PSParallelCompact::summary_data().chunk_to_addr(chunk_index) +
ParallelCompactData::ChunkSize;
_chunk_index = chunk_index;
_cur_block =
PSParallelCompact::summary_data().addr_to_block_idx(_chunk_start);
}
bool BitBlockUpdateClosure::chunk_contains_cur_block() {
return ParallelCompactData::chunk_contains_block(_chunk_index, _cur_block);
}
void BitBlockUpdateClosure::reset_chunk(size_t chunk_index) {
DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(7);)
ParallelCompactData& sd = PSParallelCompact::summary_data();
_chunk_index = chunk_index;
_live_data_left = 0;
_chunk_start = sd.chunk_to_addr(chunk_index);
_chunk_end = sd.chunk_to_addr(chunk_index) + ParallelCompactData::ChunkSize;
// The first block in this chunk
size_t first_block = sd.addr_to_block_idx(_chunk_start);
size_t partial_live_size = sd.chunk(chunk_index)->partial_obj_size();
// Set the offset to 0. By definition it should have that value
// but it may have been written while processing an earlier chunk.
if (partial_live_size == 0) {
// No live object extends onto the chunk. The first bit
// in the bit map for the first chunk must be a start bit.
// Although there may not be any marked bits, it is safe
// to set it as a start bit.
sd.block(first_block)->set_start_bit_offset(0);
sd.block(first_block)->set_first_is_start_bit(true);
} else if (sd.partial_obj_ends_in_block(first_block)) {
sd.block(first_block)->set_end_bit_offset(0);
sd.block(first_block)->set_first_is_start_bit(false);
} else {
// The partial object extends beyond the first block.
// There is no object starting in the first block
// so the offset and bit parity are not needed.
// Set the the bit parity to start bit so assertions
// work when not bit is found.
sd.block(first_block)->set_end_bit_offset(0);
sd.block(first_block)->set_first_is_start_bit(false);
}
_cur_block = first_block;
#ifdef ASSERT
if (sd.block(first_block)->first_is_start_bit()) {
assert(!sd.partial_obj_ends_in_block(first_block),
"Partial object cannot end in first block");
}
if (PrintGCDetails && Verbose) {
if (partial_live_size == 1) {
gclog_or_tty->print_cr("first_block " PTR_FORMAT
" _offset " PTR_FORMAT
" _first_is_start_bit %d",
first_block,
sd.block(first_block)->raw_offset(),
sd.block(first_block)->first_is_start_bit());
}
}
#endif
DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(17);)
}
// This method is called when a object has been found (both beginning
// and end of the object) in the range of iteration. This method is
// calculating the words of live data to the left of a block. That live
// data includes any object starting to the left of the block (i.e.,
// the live-data-to-the-left of block AAA will include the full size
// of any object entering AAA).
ParMarkBitMapClosure::IterationStatus
BitBlockUpdateClosure::do_addr(HeapWord* addr, size_t words) {
// add the size to the block data.
HeapWord* obj = addr;
ParallelCompactData& sd = PSParallelCompact::summary_data();
assert(bitmap()->obj_size(obj) == words, "bad size");
assert(_chunk_start <= obj, "object is not in chunk");
assert(obj + words <= _chunk_end, "object is not in chunk");
// Update the live data to the left
size_t prev_live_data_left = _live_data_left;
_live_data_left = _live_data_left + words;
// Is this object in the current block.
size_t block_of_obj = sd.addr_to_block_idx(obj);
size_t block_of_obj_last = sd.addr_to_block_idx(obj + words - 1);
HeapWord* block_of_obj_last_addr = sd.block_to_addr(block_of_obj_last);
if (_cur_block < block_of_obj) {
//
// No object crossed the block boundary and this object was found
// on the other side of the block boundary. Update the offset for
// the new block with the data size that does not include this object.
//
// The first bit in block_of_obj is a start bit except in the
// case where the partial object for the chunk extends into
// this block.
if (sd.partial_obj_ends_in_block(block_of_obj)) {
sd.block(block_of_obj)->set_end_bit_offset(prev_live_data_left);
} else {
sd.block(block_of_obj)->set_start_bit_offset(prev_live_data_left);
}
// Does this object pass beyond the its block?
if (block_of_obj < block_of_obj_last) {
// Object crosses block boundary. Two blocks need to be udpated:
// the current block where the object started
// the block where the object ends
//
// The offset for blocks with no objects starting in them
// (e.g., blocks between _cur_block and block_of_obj_last)
// should not be needed.
// Note that block_of_obj_last may be in another chunk. If so,
// it should be overwritten later. This is a problem (writting
// into a block in a later chunk) for parallel execution.
assert(obj < block_of_obj_last_addr,
"Object should start in previous block");
// obj is crossing into block_of_obj_last so the first bit
// is and end bit.
sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
_cur_block = block_of_obj_last;
} else {
// _first_is_start_bit has already been set correctly
// in the if-then-else above so don't reset it here.
_cur_block = block_of_obj;
}
} else {
// The current block only changes if the object extends beyound
// the block it starts in.
//
// The object starts in the current block.
// Does this object pass beyond the end of it?
if (block_of_obj < block_of_obj_last) {
// Object crosses block boundary.
// See note above on possible blocks between block_of_obj and
// block_of_obj_last
assert(obj < block_of_obj_last_addr,
"Object should start in previous block");
sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
_cur_block = block_of_obj_last;
}
}
// Return incomplete if there are more blocks to be done.
if (chunk_contains_cur_block()) {
return ParMarkBitMap::incomplete;
}
return ParMarkBitMap::complete;
}
// Verify the new location using the forwarding pointer
// from MarkSweep::mark_sweep_phase2(). Set the mark_word
// to the initial value.
ParMarkBitMapClosure::IterationStatus
PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
// The second arg (words) is not used.
oop obj = (oop) addr;
HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
if (forwarding_ptr == NULL) {
// The object is dead or not moving.
assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
"Object liveness is wrong.");
return ParMarkBitMap::incomplete;
}
assert(UseParallelOldGCDensePrefix ||
(HeapMaximumCompactionInterval > 1) ||
(MarkSweepAlwaysCompactCount > 1) ||
(forwarding_ptr == new_pointer),
"Calculation of new location is incorrect");
return ParMarkBitMap::incomplete;
}
// Reset objects modified for debug checking.
ParMarkBitMapClosure::IterationStatus
PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
// The second arg (words) is not used.
oop obj = (oop) addr;
obj->init_mark();
return ParMarkBitMap::incomplete;
}
// Prepare for compaction. This method is executed once
// (i.e., by a single thread) before compaction.
// Save the updated location of the intArrayKlassObj for
// filling holes in the dense prefix.
void PSParallelCompact::compact_prologue() {
_updated_int_array_klass_obj = (klassOop)
summary_data().calc_new_pointer(Universe::intArrayKlassObj());
}
// The initial implementation of this method created a field
// _next_compaction_space_id in SpaceInfo and initialized
// that field in SpaceInfo::initialize_space_info(). That
// required that _next_compaction_space_id be declared a
// SpaceId in SpaceInfo and that would have required that
// either SpaceId be declared in a separate class or that
// it be declared in SpaceInfo. It didn't seem consistent
// to declare it in SpaceInfo (didn't really fit logically).
// Alternatively, defining a separate class to define SpaceId
// seem excessive. This implementation is simple and localizes
// the knowledge.
PSParallelCompact::SpaceId
PSParallelCompact::next_compaction_space_id(SpaceId id) {
assert(id < last_space_id, "id out of range");
switch (id) {
case perm_space_id :
return last_space_id;
case old_space_id :
return eden_space_id;
case eden_space_id :
return from_space_id;
case from_space_id :
return to_space_id;
case to_space_id :
return last_space_id;
default:
assert(false, "Bad space id");
return last_space_id;
}
}
// Here temporarily for debugging
#ifdef ASSERT
size_t ParallelCompactData::block_idx(BlockData* block) {
size_t index = pointer_delta(block,
PSParallelCompact::summary_data()._block_data, sizeof(BlockData));
return index;
}
#endif