blob: 603d6493fef7384ec7b69ade0a99c2791ef1f36f [file] [log] [blame]
/*
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_parNewGeneration.cpp.incl"
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ParScanThreadState::ParScanThreadState(Space* to_space_,
ParNewGeneration* gen_,
Generation* old_gen_,
int thread_num_,
ObjToScanQueueSet* work_queue_set_,
size_t desired_plab_sz_,
ParallelTaskTerminator& term_) :
_to_space(to_space_), _old_gen(old_gen_), _thread_num(thread_num_),
_work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
_ageTable(false), // false ==> not the global age table, no perf data.
_to_space_alloc_buffer(desired_plab_sz_),
_to_space_closure(gen_, this), _old_gen_closure(gen_, this),
_to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
_older_gen_closure(gen_, this),
_evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
&_to_space_root_closure, gen_, &_old_gen_root_closure,
work_queue_set_, &term_),
_is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
_keep_alive_closure(&_scan_weak_ref_closure),
_pushes(0), _pops(0), _steals(0), _steal_attempts(0), _term_attempts(0),
_strong_roots_time(0.0), _term_time(0.0)
{
_survivor_chunk_array =
(ChunkArray*) old_gen()->get_data_recorder(thread_num());
_hash_seed = 17; // Might want to take time-based random value.
_start = os::elapsedTime();
_old_gen_closure.set_generation(old_gen_);
_old_gen_root_closure.set_generation(old_gen_);
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif
void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
size_t plab_word_size) {
ChunkArray* sca = survivor_chunk_array();
if (sca != NULL) {
// A non-null SCA implies that we want the PLAB data recorded.
sca->record_sample(plab_start, plab_word_size);
}
}
bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
return new_obj->is_objArray() &&
arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
new_obj != old_obj;
}
void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
assert(old->is_objArray(), "must be obj array");
assert(old->is_forwarded(), "must be forwarded");
assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
assert(!_old_gen->is_in(old), "must be in young generation.");
objArrayOop obj = objArrayOop(old->forwardee());
// Process ParGCArrayScanChunk elements now
// and push the remainder back onto queue
int start = arrayOop(old)->length();
int end = obj->length();
int remainder = end - start;
assert(start <= end, "just checking");
if (remainder > 2 * ParGCArrayScanChunk) {
// Test above combines last partial chunk with a full chunk
end = start + ParGCArrayScanChunk;
arrayOop(old)->set_length(end);
// Push remainder.
bool ok = work_queue()->push(old);
assert(ok, "just popped, push must be okay");
note_push();
} else {
// Restore length so that it can be used if there
// is a promotion failure and forwarding pointers
// must be removed.
arrayOop(old)->set_length(end);
}
// process our set of indices (include header in first chunk)
oop* start_addr = start == 0 ? (oop*)obj : obj->obj_at_addr(start);
oop* end_addr = obj->base() + end; // obj_at_addr(end) asserts end < length
MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
if ((HeapWord *)obj < young_old_boundary()) {
// object is in to_space
obj->oop_iterate(&_to_space_closure, mr);
} else {
// object is in old generation
obj->oop_iterate(&_old_gen_closure, mr);
}
}
void ParScanThreadState::trim_queues(int max_size) {
ObjToScanQueue* queue = work_queue();
while (queue->size() > (juint)max_size) {
oop obj_to_scan;
if (queue->pop_local(obj_to_scan)) {
note_pop();
if ((HeapWord *)obj_to_scan < young_old_boundary()) {
if (obj_to_scan->is_objArray() &&
obj_to_scan->is_forwarded() &&
obj_to_scan->forwardee() != obj_to_scan) {
scan_partial_array_and_push_remainder(obj_to_scan);
} else {
// object is in to_space
obj_to_scan->oop_iterate(&_to_space_closure);
}
} else {
// object is in old generation
obj_to_scan->oop_iterate(&_old_gen_closure);
}
}
}
}
HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
// Otherwise, if the object is small enough, try to reallocate the
// buffer.
HeapWord* obj = NULL;
if (!_to_space_full) {
ParGCAllocBuffer* const plab = to_space_alloc_buffer();
Space* const sp = to_space();
if (word_sz * 100 <
ParallelGCBufferWastePct * plab->word_sz()) {
// Is small enough; abandon this buffer and start a new one.
plab->retire(false, false);
size_t buf_size = plab->word_sz();
HeapWord* buf_space = sp->par_allocate(buf_size);
if (buf_space == NULL) {
const size_t min_bytes =
ParGCAllocBuffer::min_size() << LogHeapWordSize;
size_t free_bytes = sp->free();
while(buf_space == NULL && free_bytes >= min_bytes) {
buf_size = free_bytes >> LogHeapWordSize;
assert(buf_size == (size_t)align_object_size(buf_size),
"Invariant");
buf_space = sp->par_allocate(buf_size);
free_bytes = sp->free();
}
}
if (buf_space != NULL) {
plab->set_word_size(buf_size);
plab->set_buf(buf_space);
record_survivor_plab(buf_space, buf_size);
obj = plab->allocate(word_sz);
// Note that we cannot compare buf_size < word_sz below
// because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
assert(obj != NULL || plab->words_remaining() < word_sz,
"Else should have been able to allocate");
// It's conceivable that we may be able to use the
// buffer we just grabbed for subsequent small requests
// even if not for this one.
} else {
// We're used up.
_to_space_full = true;
}
} else {
// Too large; allocate the object individually.
obj = sp->par_allocate(word_sz);
}
}
return obj;
}
void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
size_t word_sz) {
// Is the alloc in the current alloc buffer?
if (to_space_alloc_buffer()->contains(obj)) {
assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
"Should contain whole object.");
to_space_alloc_buffer()->undo_allocation(obj, word_sz);
} else {
SharedHeap::fill_region_with_object(MemRegion(obj, word_sz));
}
}
class ParScanThreadStateSet: private ResourceArray {
public:
// Initializes states for the specified number of threads;
ParScanThreadStateSet(int num_threads,
Space& to_space,
ParNewGeneration& gen,
Generation& old_gen,
ObjToScanQueueSet& queue_set,
size_t desired_plab_sz,
ParallelTaskTerminator& term);
inline ParScanThreadState& thread_sate(int i);
int pushes() { return _pushes; }
int pops() { return _pops; }
int steals() { return _steals; }
void reset();
void flush();
private:
ParallelTaskTerminator& _term;
ParNewGeneration& _gen;
Generation& _next_gen;
// staticstics
int _pushes;
int _pops;
int _steals;
};
ParScanThreadStateSet::ParScanThreadStateSet(
int num_threads, Space& to_space, ParNewGeneration& gen,
Generation& old_gen, ObjToScanQueueSet& queue_set,
size_t desired_plab_sz, ParallelTaskTerminator& term)
: ResourceArray(sizeof(ParScanThreadState), num_threads),
_gen(gen), _next_gen(old_gen), _term(term),
_pushes(0), _pops(0), _steals(0)
{
assert(num_threads > 0, "sanity check!");
// Initialize states.
for (int i = 0; i < num_threads; ++i) {
new ((ParScanThreadState*)_data + i)
ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
desired_plab_sz, term);
}
}
inline ParScanThreadState& ParScanThreadStateSet::thread_sate(int i)
{
assert(i >= 0 && i < length(), "sanity check!");
return ((ParScanThreadState*)_data)[i];
}
void ParScanThreadStateSet::reset()
{
_term.reset_for_reuse();
}
void ParScanThreadStateSet::flush()
{
for (int i = 0; i < length(); ++i) {
ParScanThreadState& par_scan_state = thread_sate(i);
// Flush stats related to To-space PLAB activity and
// retire the last buffer.
par_scan_state.to_space_alloc_buffer()->
flush_stats_and_retire(_gen.plab_stats(),
false /* !retain */);
// Every thread has its own age table. We need to merge
// them all into one.
ageTable *local_table = par_scan_state.age_table();
_gen.age_table()->merge(local_table);
// Inform old gen that we're done.
_next_gen.par_promote_alloc_done(i);
_next_gen.par_oop_since_save_marks_iterate_done(i);
// Flush stats related to work queue activity (push/pop/steal)
// This could conceivably become a bottleneck; if so, we'll put the
// stat's gathering under the flag.
if (PAR_STATS_ENABLED) {
_pushes += par_scan_state.pushes();
_pops += par_scan_state.pops();
_steals += par_scan_state.steals();
if (ParallelGCVerbose) {
gclog_or_tty->print("Thread %d complete:\n"
" Pushes: %7d Pops: %7d Steals %7d (in %d attempts)\n",
i, par_scan_state.pushes(), par_scan_state.pops(),
par_scan_state.steals(), par_scan_state.steal_attempts());
if (par_scan_state.overflow_pushes() > 0 ||
par_scan_state.overflow_refills() > 0) {
gclog_or_tty->print(" Overflow pushes: %7d "
"Overflow refills: %7d for %d objs.\n",
par_scan_state.overflow_pushes(),
par_scan_state.overflow_refills(),
par_scan_state.overflow_refill_objs());
}
double elapsed = par_scan_state.elapsed();
double strong_roots = par_scan_state.strong_roots_time();
double term = par_scan_state.term_time();
gclog_or_tty->print(
" Elapsed: %7.2f ms.\n"
" Strong roots: %7.2f ms (%6.2f%%)\n"
" Termination: %7.2f ms (%6.2f%%) (in %d entries)\n",
elapsed * 1000.0,
strong_roots * 1000.0, (strong_roots*100.0/elapsed),
term * 1000.0, (term*100.0/elapsed),
par_scan_state.term_attempts());
}
}
}
}
ParScanClosure::ParScanClosure(ParNewGeneration* g,
ParScanThreadState* par_scan_state) :
OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
{
assert(_g->level() == 0, "Optimized for youngest generation");
_boundary = _g->reserved().end();
}
ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
ParScanThreadState* par_scan_state)
: ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
{
}
#ifdef WIN32
#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
#endif
ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
ParScanThreadState* par_scan_state_,
ParScanWithoutBarrierClosure* to_space_closure_,
ParScanWithBarrierClosure* old_gen_closure_,
ParRootScanWithoutBarrierClosure* to_space_root_closure_,
ParNewGeneration* par_gen_,
ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
ObjToScanQueueSet* task_queues_,
ParallelTaskTerminator* terminator_) :
_par_scan_state(par_scan_state_),
_to_space_closure(to_space_closure_),
_old_gen_closure(old_gen_closure_),
_to_space_root_closure(to_space_root_closure_),
_old_gen_root_closure(old_gen_root_closure_),
_par_gen(par_gen_),
_task_queues(task_queues_),
_terminator(terminator_)
{}
void ParEvacuateFollowersClosure::do_void() {
ObjToScanQueue* work_q = par_scan_state()->work_queue();
while (true) {
// Scan to-space and old-gen objs until we run out of both.
oop obj_to_scan;
par_scan_state()->trim_queues(0);
// We have no local work, attempt to steal from other threads.
// attempt to steal work from promoted.
par_scan_state()->note_steal_attempt();
if (task_queues()->steal(par_scan_state()->thread_num(),
par_scan_state()->hash_seed(),
obj_to_scan)) {
par_scan_state()->note_steal();
bool res = work_q->push(obj_to_scan);
assert(res, "Empty queue should have room for a push.");
par_scan_state()->note_push();
// if successful, goto Start.
continue;
// try global overflow list.
} else if (par_gen()->take_from_overflow_list(par_scan_state())) {
continue;
}
// Otherwise, offer termination.
par_scan_state()->start_term_time();
if (terminator()->offer_termination()) break;
par_scan_state()->end_term_time();
}
// Finish the last termination pause.
par_scan_state()->end_term_time();
}
ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
AbstractGangTask("ParNewGeneration collection"),
_gen(gen), _next_gen(next_gen),
_young_old_boundary(young_old_boundary),
_state_set(state_set)
{}
void ParNewGenTask::work(int i) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Since this is being done in a separate thread, need new resource
// and handle marks.
ResourceMark rm;
HandleMark hm;
// We would need multiple old-gen queues otherwise.
guarantee(gch->n_gens() == 2,
"Par young collection currently only works with one older gen.");
Generation* old_gen = gch->next_gen(_gen);
ParScanThreadState& par_scan_state = _state_set->thread_sate(i);
par_scan_state.set_young_old_boundary(_young_old_boundary);
par_scan_state.start_strong_roots();
gch->gen_process_strong_roots(_gen->level(),
true, // Process younger gens, if any,
// as strong roots.
false,// not collecting perm generation.
SharedHeap::SO_AllClasses,
&par_scan_state.older_gen_closure(),
&par_scan_state.to_space_root_closure());
par_scan_state.end_strong_roots();
// "evacuate followers".
par_scan_state.evacuate_followers_closure().do_void();
}
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ParNewGeneration::
ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
: DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
_overflow_list(NULL),
_is_alive_closure(this),
_plab_stats(YoungPLABSize, PLABWeight)
{
_task_queues = new ObjToScanQueueSet(ParallelGCThreads);
guarantee(_task_queues != NULL, "task_queues allocation failure.");
for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
ObjToScanQueuePadded *q_padded = new ObjToScanQueuePadded();
guarantee(q_padded != NULL, "work_queue Allocation failure.");
_task_queues->register_queue(i1, &q_padded->work_queue);
}
for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
_task_queues->queue(i2)->initialize();
if (UsePerfData) {
EXCEPTION_MARK;
ResourceMark rm;
const char* cname =
PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
ParallelGCThreads, CHECK);
}
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif
// ParNewGeneration::
ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
void
// ParNewGeneration::
ParKeepAliveClosure::do_oop(oop* p) {
// We never expect to see a null reference being processed
// as a weak reference.
assert (*p != NULL, "expected non-null ref");
assert ((*p)->is_oop(), "expected an oop while scanning weak refs");
_par_cl->do_oop_nv(p);
if (Universe::heap()->is_in_reserved(p)) {
_rs->write_ref_field_gc_par(p, *p);
}
}
// ParNewGeneration::
KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
DefNewGeneration::KeepAliveClosure(cl) {}
void
// ParNewGeneration::
KeepAliveClosure::do_oop(oop* p) {
// We never expect to see a null reference being processed
// as a weak reference.
assert (*p != NULL, "expected non-null ref");
assert ((*p)->is_oop(), "expected an oop while scanning weak refs");
_cl->do_oop_nv(p);
if (Universe::heap()->is_in_reserved(p)) {
_rs->write_ref_field_gc_par(p, *p);
}
}
void ScanClosureWithParBarrier::do_oop(oop* p) {
oop obj = *p;
// Should we copy the obj?
if (obj != NULL) {
if ((HeapWord*)obj < _boundary) {
assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
if (obj->is_forwarded()) {
*p = obj->forwardee();
} else {
*p = _g->DefNewGeneration::copy_to_survivor_space(obj, p);
}
}
if (_gc_barrier) {
// If p points to a younger generation, mark the card.
if ((HeapWord*)obj < _gen_boundary) {
_rs->write_ref_field_gc_par(p, obj);
}
}
}
}
class ParNewRefProcTaskProxy: public AbstractGangTask {
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
public:
ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
Generation& next_gen,
HeapWord* young_old_boundary,
ParScanThreadStateSet& state_set);
private:
virtual void work(int i);
private:
ParNewGeneration& _gen;
ProcessTask& _task;
Generation& _next_gen;
HeapWord* _young_old_boundary;
ParScanThreadStateSet& _state_set;
};
ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
ProcessTask& task, ParNewGeneration& gen,
Generation& next_gen,
HeapWord* young_old_boundary,
ParScanThreadStateSet& state_set)
: AbstractGangTask("ParNewGeneration parallel reference processing"),
_gen(gen),
_task(task),
_next_gen(next_gen),
_young_old_boundary(young_old_boundary),
_state_set(state_set)
{
}
void ParNewRefProcTaskProxy::work(int i)
{
ResourceMark rm;
HandleMark hm;
ParScanThreadState& par_scan_state = _state_set.thread_sate(i);
par_scan_state.set_young_old_boundary(_young_old_boundary);
_task.work(i, par_scan_state.is_alive_closure(),
par_scan_state.keep_alive_closure(),
par_scan_state.evacuate_followers_closure());
}
class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
EnqueueTask& _task;
public:
ParNewRefEnqueueTaskProxy(EnqueueTask& task)
: AbstractGangTask("ParNewGeneration parallel reference enqueue"),
_task(task)
{ }
virtual void work(int i)
{
_task.work(i);
}
};
void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
{
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a generational heap");
WorkGang* workers = gch->workers();
assert(workers != NULL, "Need parallel worker threads.");
ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
_generation.reserved().end(), _state_set);
workers->run_task(&rp_task);
_state_set.reset();
}
void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
{
GenCollectedHeap* gch = GenCollectedHeap::heap();
WorkGang* workers = gch->workers();
assert(workers != NULL, "Need parallel worker threads.");
ParNewRefEnqueueTaskProxy enq_task(task);
workers->run_task(&enq_task);
}
void ParNewRefProcTaskExecutor::set_single_threaded_mode()
{
_state_set.flush();
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->set_par_threads(0); // 0 ==> non-parallel.
gch->save_marks();
}
ScanClosureWithParBarrier::
ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
ScanClosure(g, gc_barrier) {}
EvacuateFollowersClosureGeneral::
EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
OopsInGenClosure* cur,
OopsInGenClosure* older) :
_gch(gch), _level(level),
_scan_cur_or_nonheap(cur), _scan_older(older)
{}
void EvacuateFollowersClosureGeneral::do_void() {
do {
// Beware: this call will lead to closure applications via virtual
// calls.
_gch->oop_since_save_marks_iterate(_level,
_scan_cur_or_nonheap,
_scan_older);
} while (!_gch->no_allocs_since_save_marks(_level));
}
bool ParNewGeneration::_avoid_promotion_undo = false;
void ParNewGeneration::adjust_desired_tenuring_threshold() {
// Set the desired survivor size to half the real survivor space
_tenuring_threshold =
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
}
// A Generation that does parallel young-gen collection.
void ParNewGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab) {
assert(full || size > 0, "otherwise we don't want to collect");
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a CMS generational heap");
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
WorkGang* workers = gch->workers();
_next_gen = gch->next_gen(this);
assert(_next_gen != NULL,
"This must be the youngest gen, and not the only gen");
assert(gch->n_gens() == 2,
"Par collection currently only works with single older gen.");
// Do we have to avoid promotion_undo?
if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
set_avoid_promotion_undo(true);
}
// If the next generation is too full to accomodate worst-case promotion
// from this generation, pass on collection; let the next generation
// do it.
if (!collection_attempt_is_safe()) {
gch->set_incremental_collection_will_fail();
return;
}
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
init_assuming_no_promotion_failure();
if (UseAdaptiveSizePolicy) {
set_survivor_overflow(false);
size_policy->minor_collection_begin();
}
TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
// Capture heap used before collection (for printing).
size_t gch_prev_used = gch->used();
SpecializationStats::clear();
age_table()->clear();
to()->clear();
gch->save_marks();
assert(workers != NULL, "Need parallel worker threads.");
ParallelTaskTerminator _term(workers->total_workers(), task_queues());
ParScanThreadStateSet thread_state_set(workers->total_workers(),
*to(), *this, *_next_gen, *task_queues(),
desired_plab_sz(), _term);
ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
int n_workers = workers->total_workers();
gch->set_par_threads(n_workers);
gch->change_strong_roots_parity();
gch->rem_set()->prepare_for_younger_refs_iterate(true);
// It turns out that even when we're using 1 thread, doing the work in a
// separate thread causes wide variance in run times. We can't help this
// in the multi-threaded case, but we special-case n=1 here to get
// repeatable measurements of the 1-thread overhead of the parallel code.
if (n_workers > 1) {
workers->run_task(&tsk);
} else {
tsk.work(0);
}
thread_state_set.reset();
if (PAR_STATS_ENABLED && ParallelGCVerbose) {
gclog_or_tty->print("Thread totals:\n"
" Pushes: %7d Pops: %7d Steals %7d (sum = %7d).\n",
thread_state_set.pushes(), thread_state_set.pops(),
thread_state_set.steals(),
thread_state_set.pops()+thread_state_set.steals());
}
assert(thread_state_set.pushes() == thread_state_set.pops() + thread_state_set.steals(),
"Or else the queues are leaky.");
// For now, process discovered weak refs sequentially.
#ifdef COMPILER2
ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy();
#else
ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy();
#endif // COMPILER2
// Process (weak) reference objects found during scavenge.
IsAliveClosure is_alive(this);
ScanWeakRefClosure scan_weak_ref(this);
KeepAliveClosure keep_alive(&scan_weak_ref);
ScanClosure scan_without_gc_barrier(this, false);
ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
&scan_without_gc_barrier, &scan_with_gc_barrier);
if (ref_processor()->processing_is_mt()) {
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ref_processor()->process_discovered_references(
soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers,
&task_executor);
} else {
thread_state_set.flush();
gch->set_par_threads(0); // 0 ==> non-parallel.
gch->save_marks();
ref_processor()->process_discovered_references(
soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers,
NULL);
}
if (!promotion_failed()) {
// Swap the survivor spaces.
eden()->clear();
from()->clear();
swap_spaces();
assert(to()->is_empty(), "to space should be empty now");
} else {
assert(HandlePromotionFailure,
"Should only be here if promotion failure handling is on");
if (_promo_failure_scan_stack != NULL) {
// Can be non-null because of reference processing.
// Free stack with its elements.
delete _promo_failure_scan_stack;
_promo_failure_scan_stack = NULL;
}
remove_forwarding_pointers();
if (PrintGCDetails) {
gclog_or_tty->print(" (promotion failed)");
}
// All the spaces are in play for mark-sweep.
swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
from()->set_next_compaction_space(to());
gch->set_incremental_collection_will_fail();
}
// set new iteration safe limit for the survivor spaces
from()->set_concurrent_iteration_safe_limit(from()->top());
to()->set_concurrent_iteration_safe_limit(to()->top());
adjust_desired_tenuring_threshold();
if (ResizePLAB) {
plab_stats()->adjust_desired_plab_sz();
}
if (PrintGC && !PrintGCDetails) {
gch->print_heap_change(gch_prev_used);
}
if (UseAdaptiveSizePolicy) {
size_policy->minor_collection_end(gch->gc_cause());
size_policy->avg_survived()->sample(from()->used());
}
update_time_of_last_gc(os::javaTimeMillis());
SpecializationStats::print();
ref_processor()->set_enqueuing_is_done(true);
if (ref_processor()->processing_is_mt()) {
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ref_processor()->enqueue_discovered_references(&task_executor);
} else {
ref_processor()->enqueue_discovered_references(NULL);
}
ref_processor()->verify_no_references_recorded();
}
static int sum;
void ParNewGeneration::waste_some_time() {
for (int i = 0; i < 100; i++) {
sum += i;
}
}
static const oop ClaimedForwardPtr = oop(0x4);
// Because of concurrency, there are times where an object for which
// "is_forwarded()" is true contains an "interim" forwarding pointer
// value. Such a value will soon be overwritten with a real value.
// This method requires "obj" to have a forwarding pointer, and waits, if
// necessary for a real one to be inserted, and returns it.
oop ParNewGeneration::real_forwardee(oop obj) {
oop forward_ptr = obj->forwardee();
if (forward_ptr != ClaimedForwardPtr) {
return forward_ptr;
} else {
return real_forwardee_slow(obj);
}
}
oop ParNewGeneration::real_forwardee_slow(oop obj) {
// Spin-read if it is claimed but not yet written by another thread.
oop forward_ptr = obj->forwardee();
while (forward_ptr == ClaimedForwardPtr) {
waste_some_time();
assert(obj->is_forwarded(), "precondition");
forward_ptr = obj->forwardee();
}
return forward_ptr;
}
#ifdef ASSERT
bool ParNewGeneration::is_legal_forward_ptr(oop p) {
return
(_avoid_promotion_undo && p == ClaimedForwardPtr)
|| Universe::heap()->is_in_reserved(p);
}
#endif
void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
if ((m != markOopDesc::prototype()) &&
(!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
MutexLocker ml(ParGCRareEvent_lock);
DefNewGeneration::preserve_mark_if_necessary(obj, m);
}
}
// Multiple GC threads may try to promote an object. If the object
// is successfully promoted, a forwarding pointer will be installed in
// the object in the young generation. This method claims the right
// to install the forwarding pointer before it copies the object,
// thus avoiding the need to undo the copy as in
// copy_to_survivor_space_avoiding_with_undo.
oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
// In the sequential version, this assert also says that the object is
// not forwarded. That might not be the case here. It is the case that
// the caller observed it to be not forwarded at some time in the past.
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
// The sequential code read "old->age()" below. That doesn't work here,
// since the age is in the mark word, and that might be overwritten with
// a forwarding pointer by a parallel thread. So we must save the mark
// word in a local and then analyze it.
oopDesc dummyOld;
dummyOld.set_mark(m);
assert(!dummyOld.is_forwarded(),
"should not be called with forwarding pointer mark word.");
oop new_obj = NULL;
oop forward_ptr;
// Try allocating obj in to-space (unless too old)
if (dummyOld.age() < tenuring_threshold()) {
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
if (new_obj == NULL) {
set_survivor_overflow(true);
}
}
if (new_obj == NULL) {
// Either to-space is full or we decided to promote
// try allocating obj tenured
// Attempt to install a null forwarding pointer (atomically),
// to claim the right to install the real forwarding pointer.
forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
if (forward_ptr != NULL) {
// someone else beat us to it.
return real_forwardee(old);
}
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
old, m, sz);
if (new_obj == NULL) {
if (!HandlePromotionFailure) {
// A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
// is incorrectly set. In any case, its seriously wrong to be here!
vm_exit_out_of_memory(sz*wordSize, "promotion");
}
// promotion failed, forward to self
_promotion_failed = true;
new_obj = old;
preserve_mark_if_necessary(old, m);
}
old->forward_to(new_obj);
forward_ptr = NULL;
} else {
// Is in to-space; do copying ourselves.
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
forward_ptr = old->forward_to_atomic(new_obj);
// Restore the mark word copied above.
new_obj->set_mark(m);
// Increment age if obj still in new generation
new_obj->incr_age();
par_scan_state->age_table()->add(new_obj, sz);
}
assert(new_obj != NULL, "just checking");
if (forward_ptr == NULL) {
oop obj_to_push = new_obj;
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
// Length field used as index of next element to be scanned.
// Real length can be obtained from real_forwardee()
arrayOop(old)->set_length(0);
obj_to_push = old;
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
"push forwarded object");
}
// Push it on one of the queues of to-be-scanned objects.
if (!par_scan_state->work_queue()->push(obj_to_push)) {
// Add stats for overflow pushes.
if (Verbose && PrintGCDetails) {
gclog_or_tty->print("queue overflow!\n");
}
push_on_overflow_list(old);
par_scan_state->note_overflow_push();
}
par_scan_state->note_push();
return new_obj;
}
// Oops. Someone beat us to it. Undo the allocation. Where did we
// allocate it?
if (is_in_reserved(new_obj)) {
// Must be in to_space.
assert(to()->is_in_reserved(new_obj), "Checking");
if (forward_ptr == ClaimedForwardPtr) {
// Wait to get the real forwarding pointer value.
forward_ptr = real_forwardee(old);
}
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
}
return forward_ptr;
}
// Multiple GC threads may try to promote the same object. If two
// or more GC threads copy the object, only one wins the race to install
// the forwarding pointer. The other threads have to undo their copy.
oop ParNewGeneration::copy_to_survivor_space_with_undo(
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
// In the sequential version, this assert also says that the object is
// not forwarded. That might not be the case here. It is the case that
// the caller observed it to be not forwarded at some time in the past.
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
// The sequential code read "old->age()" below. That doesn't work here,
// since the age is in the mark word, and that might be overwritten with
// a forwarding pointer by a parallel thread. So we must save the mark
// word here, install it in a local oopDesc, and then analyze it.
oopDesc dummyOld;
dummyOld.set_mark(m);
assert(!dummyOld.is_forwarded(),
"should not be called with forwarding pointer mark word.");
bool failed_to_promote = false;
oop new_obj = NULL;
oop forward_ptr;
// Try allocating obj in to-space (unless too old)
if (dummyOld.age() < tenuring_threshold()) {
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
if (new_obj == NULL) {
set_survivor_overflow(true);
}
}
if (new_obj == NULL) {
// Either to-space is full or we decided to promote
// try allocating obj tenured
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
old, m, sz);
if (new_obj == NULL) {
if (!HandlePromotionFailure) {
// A failed promotion likely means the MaxLiveObjectEvacuationRatio
// flag is incorrectly set. In any case, its seriously wrong to be
// here!
vm_exit_out_of_memory(sz*wordSize, "promotion");
}
// promotion failed, forward to self
forward_ptr = old->forward_to_atomic(old);
new_obj = old;
if (forward_ptr != NULL) {
return forward_ptr; // someone else succeeded
}
_promotion_failed = true;
failed_to_promote = true;
preserve_mark_if_necessary(old, m);
}
} else {
// Is in to-space; do copying ourselves.
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
// Restore the mark word copied above.
new_obj->set_mark(m);
// Increment age if new_obj still in new generation
new_obj->incr_age();
par_scan_state->age_table()->add(new_obj, sz);
}
assert(new_obj != NULL, "just checking");
// Now attempt to install the forwarding pointer (atomically).
// We have to copy the mark word before overwriting with forwarding
// ptr, so we can restore it below in the copy.
if (!failed_to_promote) {
forward_ptr = old->forward_to_atomic(new_obj);
}
if (forward_ptr == NULL) {
oop obj_to_push = new_obj;
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
// Length field used as index of next element to be scanned.
// Real length can be obtained from real_forwardee()
arrayOop(old)->set_length(0);
obj_to_push = old;
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
"push forwarded object");
}
// Push it on one of the queues of to-be-scanned objects.
if (!par_scan_state->work_queue()->push(obj_to_push)) {
// Add stats for overflow pushes.
push_on_overflow_list(old);
par_scan_state->note_overflow_push();
}
par_scan_state->note_push();
return new_obj;
}
// Oops. Someone beat us to it. Undo the allocation. Where did we
// allocate it?
if (is_in_reserved(new_obj)) {
// Must be in to_space.
assert(to()->is_in_reserved(new_obj), "Checking");
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
} else {
assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
_next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
(HeapWord*)new_obj, sz);
}
return forward_ptr;
}
void ParNewGeneration::push_on_overflow_list(oop from_space_obj) {
oop cur_overflow_list = _overflow_list;
// if the object has been forwarded to itself, then we cannot
// use the klass pointer for the linked list. Instead we have
// to allocate an oopDesc in the C-Heap and use that for the linked list.
if (from_space_obj->forwardee() == from_space_obj) {
oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
listhead->forward_to(from_space_obj);
from_space_obj = listhead;
}
while (true) {
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
oop observed_overflow_list =
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
if (observed_overflow_list == cur_overflow_list) break;
// Otherwise...
cur_overflow_list = observed_overflow_list;
}
}
bool
ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
ObjToScanQueue* work_q = par_scan_state->work_queue();
// How many to take?
int objsFromOverflow = MIN2(work_q->max_elems()/4,
(juint)ParGCDesiredObjsFromOverflowList);
if (_overflow_list == NULL) return false;
// Otherwise, there was something there; try claiming the list.
oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
if (prefix == NULL) {
return false;
}
// Trim off a prefix of at most objsFromOverflow items
int i = 1;
oop cur = prefix;
while (i < objsFromOverflow && cur->klass() != NULL) {
i++; cur = oop(cur->klass());
}
// Reattach remaining (suffix) to overflow list
if (cur->klass() != NULL) {
oop suffix = oop(cur->klass());
cur->set_klass_to_list_ptr(NULL);
// Find last item of suffix list
oop last = suffix;
while (last->klass() != NULL) {
last = oop(last->klass());
}
// Atomically prepend suffix to current overflow list
oop cur_overflow_list = _overflow_list;
while (true) {
last->set_klass_to_list_ptr(cur_overflow_list);
oop observed_overflow_list =
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
if (observed_overflow_list == cur_overflow_list) break;
// Otherwise...
cur_overflow_list = observed_overflow_list;
}
}
// Push objects on prefix list onto this thread's work queue
assert(cur != NULL, "program logic");
cur = prefix;
int n = 0;
while (cur != NULL) {
oop obj_to_push = cur->forwardee();
oop next = oop(cur->klass());
cur->set_klass(obj_to_push->klass());
if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
obj_to_push = cur;
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
}
work_q->push(obj_to_push);
cur = next;
n++;
}
par_scan_state->note_overflow_refill(n);
return true;
}
void ParNewGeneration::ref_processor_init()
{
if (_ref_processor == NULL) {
// Allocate and initialize a reference processor
_ref_processor = ReferenceProcessor::create_ref_processor(
_reserved, // span
refs_discovery_is_atomic(), // atomic_discovery
refs_discovery_is_mt(), // mt_discovery
NULL, // is_alive_non_header
ParallelGCThreads,
ParallelRefProcEnabled);
}
}
const char* ParNewGeneration::name() const {
return "par new generation";
}