blob: faedf5f7fdf03a7a0bad9980c2b293ead2e62d69 [file] [log] [blame]
/*
* Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
/*
* A binary tree based search structure for free blocks.
* This is currently used in the Concurrent Mark&Sweep implementation.
*/
// A TreeList is a FreeList which can be used to maintain a
// binary tree of free lists.
class TreeChunk;
class BinaryTreeDictionary;
class AscendTreeCensusClosure;
class DescendTreeCensusClosure;
class DescendTreeSearchClosure;
class TreeList: public FreeList {
friend class TreeChunk;
friend class BinaryTreeDictionary;
friend class AscendTreeCensusClosure;
friend class DescendTreeCensusClosure;
friend class DescendTreeSearchClosure;
TreeList* _parent;
TreeList* _left;
TreeList* _right;
protected:
TreeList* parent() const { return _parent; }
TreeList* left() const { return _left; }
TreeList* right() const { return _right; }
// Accessors for links in tree.
void setLeft(TreeList* tl) {
_left = tl;
if (tl != NULL)
tl->setParent(this);
}
void setRight(TreeList* tl) {
_right = tl;
if (tl != NULL)
tl->setParent(this);
}
void setParent(TreeList* tl) { _parent = tl; }
void clearLeft() { _left = NULL; }
void clearRight() { _right = NULL; }
void clearParent() { _parent = NULL; }
void initialize() { clearLeft(); clearRight(), clearParent(); }
// For constructing a TreeList from a Tree chunk or
// address and size.
static TreeList* as_TreeList(TreeChunk* tc);
static TreeList* as_TreeList(HeapWord* addr, size_t size);
// Returns the head of the free list as a pointer to a TreeChunk.
TreeChunk* head_as_TreeChunk();
// Returns the first available chunk in the free list as a pointer
// to a TreeChunk.
TreeChunk* first_available();
// removeChunkReplaceIfNeeded() removes the given "tc" from the TreeList.
// If "tc" is the first chunk in the list, it is also the
// TreeList that is the node in the tree. removeChunkReplaceIfNeeded()
// returns the possibly replaced TreeList* for the node in
// the tree. It also updates the parent of the original
// node to point to the new node.
TreeList* removeChunkReplaceIfNeeded(TreeChunk* tc);
// See FreeList.
void returnChunkAtHead(TreeChunk* tc);
void returnChunkAtTail(TreeChunk* tc);
};
// A TreeChunk is a subclass of a FreeChunk that additionally
// maintains a pointer to the free list on which it is currently
// linked.
// A TreeChunk is also used as a node in the binary tree. This
// allows the binary tree to be maintained without any additional
// storage (the free chunks are used). In a binary tree the first
// chunk in the free list is also the tree node. Note that the
// TreeChunk has an embedded TreeList for this purpose. Because
// the first chunk in the list is distinguished in this fashion
// (also is the node in the tree), it is the last chunk to be found
// on the free list for a node in the tree and is only removed if
// it is the last chunk on the free list.
class TreeChunk : public FreeChunk {
friend class TreeList;
TreeList* _list;
TreeList _embedded_list; // if non-null, this chunk is on _list
protected:
TreeList* embedded_list() const { return (TreeList*) &_embedded_list; }
void set_embedded_list(TreeList* v) { _embedded_list = *v; }
public:
TreeList* list() { return _list; }
void set_list(TreeList* v) { _list = v; }
static TreeChunk* as_TreeChunk(FreeChunk* fc);
// Initialize fields in a TreeChunk that should be
// initialized when the TreeChunk is being added to
// a free list in the tree.
void initialize() { embedded_list()->initialize(); }
// debugging
void verifyTreeChunkList() const;
};
const size_t MIN_TREE_CHUNK_SIZE = sizeof(TreeChunk)/HeapWordSize;
class BinaryTreeDictionary: public FreeBlockDictionary {
bool _splay;
size_t _totalSize;
size_t _totalFreeBlocks;
TreeList* _root;
// private accessors
bool splay() const { return _splay; }
void set_splay(bool v) { _splay = v; }
size_t totalSize() const { return _totalSize; }
void set_totalSize(size_t v) { _totalSize = v; }
virtual void inc_totalSize(size_t v);
virtual void dec_totalSize(size_t v);
size_t totalFreeBlocks() const { return _totalFreeBlocks; }
void set_totalFreeBlocks(size_t v) { _totalFreeBlocks = v; }
TreeList* root() const { return _root; }
void set_root(TreeList* v) { _root = v; }
// Remove a chunk of size "size" or larger from the tree and
// return it. If the chunk
// is the last chunk of that size, remove the node for that size
// from the tree.
TreeChunk* getChunkFromTree(size_t size, Dither dither, bool splay);
// Return a list of the specified size or NULL from the tree.
// The list is not removed from the tree.
TreeList* findList (size_t size) const;
// Remove this chunk from the tree. If the removal results
// in an empty list in the tree, remove the empty list.
TreeChunk* removeChunkFromTree(TreeChunk* tc);
// Remove the node in the trees starting at tl that has the
// minimum value and return it. Repair the tree as needed.
TreeList* removeTreeMinimum(TreeList* tl);
void semiSplayStep(TreeList* tl);
// Add this free chunk to the tree.
void insertChunkInTree(FreeChunk* freeChunk);
public:
void verifyTree() const;
// verify that the given chunk is in the tree.
bool verifyChunkInFreeLists(FreeChunk* tc) const;
private:
void verifyTreeHelper(TreeList* tl) const;
static size_t verifyPrevFreePtrs(TreeList* tl);
// Returns the total number of chunks in the list.
size_t totalListLength(TreeList* tl) const;
// Returns the total number of words in the chunks in the tree
// starting at "tl".
size_t totalSizeInTree(TreeList* tl) const;
// Returns the sum of the square of the size of each block
// in the tree starting at "tl".
double sum_of_squared_block_sizes(TreeList* const tl) const;
// Returns the total number of free blocks in the tree starting
// at "tl".
size_t totalFreeBlocksInTree(TreeList* tl) const;
size_t numFreeBlocks() const;
size_t treeHeight() const;
size_t treeHeightHelper(TreeList* tl) const;
size_t totalNodesInTree(TreeList* tl) const;
size_t totalNodesHelper(TreeList* tl) const;
public:
// Constructor
BinaryTreeDictionary(MemRegion mr, bool splay = false);
// Reset the dictionary to the initial conditions with
// a single free chunk.
void reset(MemRegion mr);
void reset(HeapWord* addr, size_t size);
// Reset the dictionary to be empty.
void reset();
// Return a chunk of size "size" or greater from
// the tree.
// want a better dynamic splay strategy for the future.
FreeChunk* getChunk(size_t size, Dither dither) {
verify_par_locked();
FreeChunk* res = getChunkFromTree(size, dither, splay());
assert(res == NULL || res->isFree(),
"Should be returning a free chunk");
return res;
}
void returnChunk(FreeChunk* chunk) {
verify_par_locked();
insertChunkInTree(chunk);
}
void removeChunk(FreeChunk* chunk) {
verify_par_locked();
removeChunkFromTree((TreeChunk*)chunk);
assert(chunk->isFree(), "Should still be a free chunk");
}
size_t maxChunkSize() const;
size_t totalChunkSize(debug_only(const Mutex* lock)) const {
debug_only(
if (lock != NULL && lock->owned_by_self()) {
assert(totalSizeInTree(root()) == totalSize(),
"_totalSize inconsistency");
}
)
return totalSize();
}
size_t minSize() const {
return MIN_TREE_CHUNK_SIZE;
}
double sum_of_squared_block_sizes() const {
return sum_of_squared_block_sizes(root());
}
FreeChunk* find_chunk_ends_at(HeapWord* target) const;
// Find the list with size "size" in the binary tree and update
// the statistics in the list according to "split" (chunk was
// split or coalesce) and "birth" (chunk was added or removed).
void dictCensusUpdate(size_t size, bool split, bool birth);
// Return true if the dictionary is overpopulated (more chunks of
// this size than desired) for size "size".
bool coalDictOverPopulated(size_t size);
// Methods called at the beginning of a sweep to prepare the
// statistics for the sweep.
void beginSweepDictCensus(double coalSurplusPercent,
float sweep_current,
float sweep_estimate);
// Methods called after the end of a sweep to modify the
// statistics for the sweep.
void endSweepDictCensus(double splitSurplusPercent);
// Return the largest free chunk in the tree.
FreeChunk* findLargestDict() const;
// Accessors for statistics
void setTreeSurplus(double splitSurplusPercent);
void setTreeHints(void);
// Reset statistics for all the lists in the tree.
void clearTreeCensus(void);
// Print the statistcis for all the lists in the tree. Also may
// print out summaries.
void printDictCensus(void) const;
// For debugging. Returns the sum of the _returnedBytes for
// all lists in the tree.
size_t sumDictReturnedBytes() PRODUCT_RETURN0;
// Sets the _returnedBytes for all the lists in the tree to zero.
void initializeDictReturnedBytes() PRODUCT_RETURN;
// For debugging. Return the total number of chunks in the dictionary.
size_t totalCount() PRODUCT_RETURN0;
void reportStatistics() const;
void verify() const;
};