blob: 09e0b282b068f31802b1f4a7b6f073c523ebabf0 [file] [log] [blame]
/*
* Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_binaryTreeDictionary.cpp.incl"
////////////////////////////////////////////////////////////////////////////////
// A binary tree based search structure for free blocks.
// This is currently used in the Concurrent Mark&Sweep implementation.
////////////////////////////////////////////////////////////////////////////////
TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
// Do some assertion checking here.
return (TreeChunk*) fc;
}
void TreeChunk::verifyTreeChunkList() const {
TreeChunk* nextTC = (TreeChunk*)next();
if (prev() != NULL) { // interior list node shouldn'r have tree fields
guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
embedded_list()->right() == NULL, "should be clear");
}
if (nextTC != NULL) {
guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
guarantee(nextTC->size() == size(), "wrong size");
nextTC->verifyTreeChunkList();
}
}
TreeList* TreeList::as_TreeList(TreeChunk* tc) {
// This first free chunk in the list will be the tree list.
assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
TreeList* tl = tc->embedded_list();
tc->set_list(tl);
#ifdef ASSERT
tl->set_protecting_lock(NULL);
#endif
tl->set_hint(0);
tl->set_size(tc->size());
tl->link_head(tc);
tl->link_tail(tc);
tl->set_count(1);
tl->init_statistics();
tl->setParent(NULL);
tl->setLeft(NULL);
tl->setRight(NULL);
return tl;
}
TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
TreeChunk* tc = (TreeChunk*) addr;
assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
assert(tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL,
"Space should be clear");
tc->setSize(size);
tc->linkPrev(NULL);
tc->linkNext(NULL);
TreeList* tl = TreeList::as_TreeList(tc);
return tl;
}
TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
TreeList* retTL = this;
FreeChunk* list = head();
assert(!list || list != list->next(), "Chunk on list twice");
assert(tc != NULL, "Chunk being removed is NULL");
assert(parent() == NULL || this == parent()->left() ||
this == parent()->right(), "list is inconsistent");
assert(tc->isFree(), "Header is not marked correctly");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
FreeChunk* prevFC = tc->prev();
TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
assert(list != NULL, "should have at least the target chunk");
// Is this the first item on the list?
if (tc == list) {
// The "getChunk..." functions for a TreeList will not return the
// first chunk in the list unless it is the last chunk in the list
// because the first chunk is also acting as the tree node.
// When coalescing happens, however, the first chunk in the a tree
// list can be the start of a free range. Free ranges are removed
// from the free lists so that they are not available to be
// allocated when the sweeper yields (giving up the free list lock)
// to allow mutator activity. If this chunk is the first in the
// list and is not the last in the list, do the work to copy the
// TreeList from the first chunk to the next chunk and update all
// the TreeList pointers in the chunks in the list.
if (nextTC == NULL) {
assert(prevFC == NULL, "Not last chunk in the list")
set_tail(NULL);
set_head(NULL);
} else {
// copy embedded list.
nextTC->set_embedded_list(tc->embedded_list());
retTL = nextTC->embedded_list();
// Fix the pointer to the list in each chunk in the list.
// This can be slow for a long list. Consider having
// an option that does not allow the first chunk on the
// list to be coalesced.
for (TreeChunk* curTC = nextTC; curTC != NULL;
curTC = TreeChunk::as_TreeChunk(curTC->next())) {
curTC->set_list(retTL);
}
// Fix the parent to point to the new TreeList.
if (retTL->parent() != NULL) {
if (this == retTL->parent()->left()) {
retTL->parent()->setLeft(retTL);
} else {
assert(this == retTL->parent()->right(), "Parent is incorrect");
retTL->parent()->setRight(retTL);
}
}
// Fix the children's parent pointers to point to the
// new list.
assert(right() == retTL->right(), "Should have been copied");
if (retTL->right() != NULL) {
retTL->right()->setParent(retTL);
}
assert(left() == retTL->left(), "Should have been copied");
if (retTL->left() != NULL) {
retTL->left()->setParent(retTL);
}
retTL->link_head(nextTC);
assert(nextTC->isFree(), "Should be a free chunk");
}
} else {
if (nextTC == NULL) {
// Removing chunk at tail of list
link_tail(prevFC);
}
// Chunk is interior to the list
prevFC->linkAfter(nextTC);
}
// Below this point the embeded TreeList being used for the
// tree node may have changed. Don't use "this"
// TreeList*.
// chunk should still be a free chunk (bit set in _prev)
assert(!retTL->head() || retTL->size() == retTL->head()->size(),
"Wrong sized chunk in list");
debug_only(
tc->linkPrev(NULL);
tc->linkNext(NULL);
tc->set_list(NULL);
bool prev_found = false;
bool next_found = false;
for (FreeChunk* curFC = retTL->head();
curFC != NULL; curFC = curFC->next()) {
assert(curFC != tc, "Chunk is still in list");
if (curFC == prevFC) {
prev_found = true;
}
if (curFC == nextTC) {
next_found = true;
}
}
assert(prevFC == NULL || prev_found, "Chunk was lost from list");
assert(nextTC == NULL || next_found, "Chunk was lost from list");
assert(retTL->parent() == NULL ||
retTL == retTL->parent()->left() ||
retTL == retTL->parent()->right(),
"list is inconsistent");
)
retTL->decrement_count();
assert(tc->isFree(), "Should still be a free chunk");
assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
"list invariant");
assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
"list invariant");
return retTL;
}
void TreeList::returnChunkAtTail(TreeChunk* chunk) {
assert(chunk != NULL, "returning NULL chunk");
assert(chunk->list() == this, "list should be set for chunk");
assert(tail() != NULL, "The tree list is embedded in the first chunk");
// which means that the list can never be empty.
assert(!verifyChunkInFreeLists(chunk), "Double entry");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
FreeChunk* fc = tail();
fc->linkAfter(chunk);
link_tail(chunk);
assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
increment_count();
debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}
// Add this chunk at the head of the list. "At the head of the list"
// is defined to be after the chunk pointer to by head(). This is
// because the TreeList is embedded in the first TreeChunk in the
// list. See the definition of TreeChunk.
void TreeList::returnChunkAtHead(TreeChunk* chunk) {
assert(chunk->list() == this, "list should be set for chunk");
assert(head() != NULL, "The tree list is embedded in the first chunk");
assert(chunk != NULL, "returning NULL chunk");
assert(!verifyChunkInFreeLists(chunk), "Double entry");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
FreeChunk* fc = head()->next();
if (fc != NULL) {
chunk->linkAfter(fc);
} else {
assert(tail() == NULL, "List is inconsistent");
link_tail(chunk);
}
head()->linkAfter(chunk);
assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
increment_count();
debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}
TreeChunk* TreeList::head_as_TreeChunk() {
assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
"Wrong type of chunk?");
return TreeChunk::as_TreeChunk(head());
}
TreeChunk* TreeList::first_available() {
guarantee(head() != NULL, "The head of the list cannot be NULL");
FreeChunk* fc = head()->next();
TreeChunk* retTC;
if (fc == NULL) {
retTC = head_as_TreeChunk();
} else {
retTC = TreeChunk::as_TreeChunk(fc);
}
assert(retTC->list() == this, "Wrong type of chunk.");
return retTC;
}
BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
_splay(splay)
{
assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
reset(mr);
assert(root()->left() == NULL, "reset check failed");
assert(root()->right() == NULL, "reset check failed");
assert(root()->head()->next() == NULL, "reset check failed");
assert(root()->head()->prev() == NULL, "reset check failed");
assert(totalSize() == root()->size(), "reset check failed");
assert(totalFreeBlocks() == 1, "reset check failed");
}
void BinaryTreeDictionary::inc_totalSize(size_t inc) {
_totalSize = _totalSize + inc;
}
void BinaryTreeDictionary::dec_totalSize(size_t dec) {
_totalSize = _totalSize - dec;
}
void BinaryTreeDictionary::reset(MemRegion mr) {
assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
set_totalSize(mr.word_size());
set_totalFreeBlocks(1);
}
void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
MemRegion mr(addr, heap_word_size(byte_size));
reset(mr);
}
void BinaryTreeDictionary::reset() {
set_root(NULL);
set_totalSize(0);
set_totalFreeBlocks(0);
}
// Get a free block of size at least size from tree, or NULL.
// If a splay step is requested, the removal algorithm (only) incorporates
// a splay step as follows:
// . the search proceeds down the tree looking for a possible
// match. At the (closest) matching location, an appropriate splay step is applied
// (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
// if available, and if it's the last chunk, the node is deleted. A deteleted
// node is replaced in place by its tree successor.
TreeChunk*
BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
{
TreeList *curTL, *prevTL;
TreeChunk* retTC = NULL;
assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
if (FLSVerifyDictionary) {
verifyTree();
}
// starting at the root, work downwards trying to find match.
// Remember the last node of size too great or too small.
for (prevTL = curTL = root(); curTL != NULL;) {
if (curTL->size() == size) { // exact match
break;
}
prevTL = curTL;
if (curTL->size() < size) { // proceed to right sub-tree
curTL = curTL->right();
} else { // proceed to left sub-tree
assert(curTL->size() > size, "size inconsistency");
curTL = curTL->left();
}
}
if (curTL == NULL) { // couldn't find exact match
// try and find the next larger size by walking back up the search path
for (curTL = prevTL; curTL != NULL;) {
if (curTL->size() >= size) break;
else curTL = curTL->parent();
}
assert(curTL == NULL || curTL->count() > 0,
"An empty list should not be in the tree");
}
if (curTL != NULL) {
assert(curTL->size() >= size, "size inconsistency");
if (UseCMSAdaptiveFreeLists) {
// A candidate chunk has been found. If it is already under
// populated, get a chunk associated with the hint for this
// chunk.
if (curTL->surplus() <= 0) {
/* Use the hint to find a size with a surplus, and reset the hint. */
TreeList* hintTL = curTL;
while (hintTL->hint() != 0) {
assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
"hint points in the wrong direction");
hintTL = findList(hintTL->hint());
assert(curTL != hintTL, "Infinite loop");
if (hintTL == NULL ||
hintTL == curTL /* Should not happen but protect against it */ ) {
// No useful hint. Set the hint to NULL and go on.
curTL->set_hint(0);
break;
}
assert(hintTL->size() > size, "hint is inconsistent");
if (hintTL->surplus() > 0) {
// The hint led to a list that has a surplus. Use it.
// Set the hint for the candidate to an overpopulated
// size.
curTL->set_hint(hintTL->size());
// Change the candidate.
curTL = hintTL;
break;
}
// The evm code reset the hint of the candidate as
// at an interrim point. Why? Seems like this leaves
// the hint pointing to a list that didn't work.
// curTL->set_hint(hintTL->size());
}
}
}
// don't waste time splaying if chunk's singleton
if (splay && curTL->head()->next() != NULL) {
semiSplayStep(curTL);
}
retTC = curTL->first_available();
assert((retTC != NULL) && (curTL->count() > 0),
"A list in the binary tree should not be NULL");
assert(retTC->size() >= size,
"A chunk of the wrong size was found");
removeChunkFromTree(retTC);
assert(retTC->isFree(), "Header is not marked correctly");
}
if (FLSVerifyDictionary) {
verify();
}
return retTC;
}
TreeList* BinaryTreeDictionary::findList(size_t size) const {
TreeList* curTL;
for (curTL = root(); curTL != NULL;) {
if (curTL->size() == size) { // exact match
break;
}
if (curTL->size() < size) { // proceed to right sub-tree
curTL = curTL->right();
} else { // proceed to left sub-tree
assert(curTL->size() > size, "size inconsistency");
curTL = curTL->left();
}
}
return curTL;
}
bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
size_t size = tc->size();
TreeList* tl = findList(size);
if (tl == NULL) {
return false;
} else {
return tl->verifyChunkInFreeLists(tc);
}
}
FreeChunk* BinaryTreeDictionary::findLargestDict() const {
TreeList *curTL = root();
if (curTL != NULL) {
while(curTL->right() != NULL) curTL = curTL->right();
return curTL->first_available();
} else {
return NULL;
}
}
// Remove the current chunk from the tree. If it is not the last
// chunk in a list on a tree node, just unlink it.
// If it is the last chunk in the list (the next link is NULL),
// remove the node and repair the tree.
TreeChunk*
BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
assert(tc != NULL, "Should not call with a NULL chunk");
assert(tc->isFree(), "Header is not marked correctly");
TreeList *newTL, *parentTL;
TreeChunk* retTC;
TreeList* tl = tc->list();
debug_only(
bool removing_only_chunk = false;
if (tl == _root) {
if ((_root->left() == NULL) && (_root->right() == NULL)) {
if (_root->count() == 1) {
assert(_root->head() == tc, "Should only be this one chunk");
removing_only_chunk = true;
}
}
}
)
assert(tl != NULL, "List should be set");
assert(tl->parent() == NULL || tl == tl->parent()->left() ||
tl == tl->parent()->right(), "list is inconsistent");
bool complicatedSplice = false;
retTC = tc;
// Removing this chunk can have the side effect of changing the node
// (TreeList*) in the tree. If the node is the root, update it.
TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
assert(tc->isFree(), "Chunk should still be free");
assert(replacementTL->parent() == NULL ||
replacementTL == replacementTL->parent()->left() ||
replacementTL == replacementTL->parent()->right(),
"list is inconsistent");
if (tl == root()) {
assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
set_root(replacementTL);
}
debug_only(
if (tl != replacementTL) {
assert(replacementTL->head() != NULL,
"If the tree list was replaced, it should not be a NULL list");
TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
assert(rhl == replacementTL, "Broken head");
assert(rtl == replacementTL, "Broken tail");
assert(replacementTL->size() == tc->size(), "Broken size");
}
)
// Does the tree need to be repaired?
if (replacementTL->count() == 0) {
assert(replacementTL->head() == NULL &&
replacementTL->tail() == NULL, "list count is incorrect");
// Find the replacement node for the (soon to be empty) node being removed.
// if we have a single (or no) child, splice child in our stead
if (replacementTL->left() == NULL) {
// left is NULL so pick right. right may also be NULL.
newTL = replacementTL->right();
debug_only(replacementTL->clearRight();)
} else if (replacementTL->right() == NULL) {
// right is NULL
newTL = replacementTL->left();
debug_only(replacementTL->clearLeft();)
} else { // we have both children, so, by patriarchal convention,
// my replacement is least node in right sub-tree
complicatedSplice = true;
newTL = removeTreeMinimum(replacementTL->right());
assert(newTL != NULL && newTL->left() == NULL &&
newTL->right() == NULL, "sub-tree minimum exists");
}
// newTL is the replacement for the (soon to be empty) node.
// newTL may be NULL.
// should verify; we just cleanly excised our replacement
if (FLSVerifyDictionary) {
verifyTree();
}
// first make newTL my parent's child
if ((parentTL = replacementTL->parent()) == NULL) {
// newTL should be root
assert(tl == root(), "Incorrectly replacing root");
set_root(newTL);
if (newTL != NULL) {
newTL->clearParent();
}
} else if (parentTL->right() == replacementTL) {
// replacementTL is a right child
parentTL->setRight(newTL);
} else { // replacementTL is a left child
assert(parentTL->left() == replacementTL, "should be left child");
parentTL->setLeft(newTL);
}
debug_only(replacementTL->clearParent();)
if (complicatedSplice) { // we need newTL to get replacementTL's
// two children
assert(newTL != NULL &&
newTL->left() == NULL && newTL->right() == NULL,
"newTL should not have encumbrances from the past");
// we'd like to assert as below:
// assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
// "else !complicatedSplice");
// ... however, the above assertion is too strong because we aren't
// guaranteed that replacementTL->right() is still NULL.
// Recall that we removed
// the right sub-tree minimum from replacementTL.
// That may well have been its right
// child! So we'll just assert half of the above:
assert(replacementTL->left() != NULL, "else !complicatedSplice");
newTL->setLeft(replacementTL->left());
newTL->setRight(replacementTL->right());
debug_only(
replacementTL->clearRight();
replacementTL->clearLeft();
)
}
assert(replacementTL->right() == NULL &&
replacementTL->left() == NULL &&
replacementTL->parent() == NULL,
"delete without encumbrances");
}
assert(totalSize() >= retTC->size(), "Incorrect total size");
dec_totalSize(retTC->size()); // size book-keeping
assert(totalFreeBlocks() > 0, "Incorrect total count");
set_totalFreeBlocks(totalFreeBlocks() - 1);
assert(retTC != NULL, "null chunk?");
assert(retTC->prev() == NULL && retTC->next() == NULL,
"should return without encumbrances");
if (FLSVerifyDictionary) {
verifyTree();
}
assert(!removing_only_chunk || _root == NULL, "root should be NULL");
return TreeChunk::as_TreeChunk(retTC);
}
// Remove the leftmost node (lm) in the tree and return it.
// If lm has a right child, link it to the left node of
// the parent of lm.
TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
// locate the subtree minimum by walking down left branches
TreeList* curTL = tl;
for (; curTL->left() != NULL; curTL = curTL->left());
// obviously curTL now has at most one child, a right child
if (curTL != root()) { // Should this test just be removed?
TreeList* parentTL = curTL->parent();
if (parentTL->left() == curTL) { // curTL is a left child
parentTL->setLeft(curTL->right());
} else {
// If the list tl has no left child, then curTL may be
// the right child of parentTL.
assert(parentTL->right() == curTL, "should be a right child");
parentTL->setRight(curTL->right());
}
} else {
// The only use of this method would not pass the root of the
// tree (as indicated by the assertion above that the tree list
// has a parent) but the specification does not explicitly exclude the
// passing of the root so accomodate it.
set_root(NULL);
}
debug_only(
curTL->clearParent(); // Test if this needs to be cleared
curTL->clearRight(); // recall, above, left child is already null
)
// we just excised a (non-root) node, we should still verify all tree invariants
if (FLSVerifyDictionary) {
verifyTree();
}
return curTL;
}
// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
// The simplifications are the following:
// . we splay only when we delete (not when we insert)
// . we apply a single spay step per deletion/access
// By doing such partial splaying, we reduce the amount of restructuring,
// while getting a reasonably efficient search tree (we think).
// [Measurements will be needed to (in)validate this expectation.]
void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
// apply a semi-splay step at the given node:
// . if root, norting needs to be done
// . if child of root, splay once
// . else zig-zig or sig-zag depending on path from grandparent
if (root() == tc) return;
warning("*** Splaying not yet implemented; "
"tree operations may be inefficient ***");
}
void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
TreeList *curTL, *prevTL;
size_t size = fc->size();
assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
if (FLSVerifyDictionary) {
verifyTree();
}
// XXX: do i need to clear the FreeChunk fields, let me do it just in case
// Revisit this later
fc->clearNext();
fc->linkPrev(NULL);
// work down from the _root, looking for insertion point
for (prevTL = curTL = root(); curTL != NULL;) {
if (curTL->size() == size) // exact match
break;
prevTL = curTL;
if (curTL->size() > size) { // follow left branch
curTL = curTL->left();
} else { // follow right branch
assert(curTL->size() < size, "size inconsistency");
curTL = curTL->right();
}
}
TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
// This chunk is being returned to the binary try. It's embedded
// TreeList should be unused at this point.
tc->initialize();
if (curTL != NULL) { // exact match
tc->set_list(curTL);
curTL->returnChunkAtTail(tc);
} else { // need a new node in tree
tc->clearNext();
tc->linkPrev(NULL);
TreeList* newTL = TreeList::as_TreeList(tc);
assert(((TreeChunk*)tc)->list() == newTL,
"List was not initialized correctly");
if (prevTL == NULL) { // we are the only tree node
assert(root() == NULL, "control point invariant");
set_root(newTL);
} else { // insert under prevTL ...
if (prevTL->size() < size) { // am right child
assert(prevTL->right() == NULL, "control point invariant");
prevTL->setRight(newTL);
} else { // am left child
assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
prevTL->setLeft(newTL);
}
}
}
assert(tc->list() != NULL, "Tree list should be set");
inc_totalSize(size);
// Method 'totalSizeInTree' walks through the every block in the
// tree, so it can cause significant performance loss if there are
// many blocks in the tree
assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
set_totalFreeBlocks(totalFreeBlocks() + 1);
if (FLSVerifyDictionary) {
verifyTree();
}
}
size_t BinaryTreeDictionary::maxChunkSize() const {
verify_par_locked();
TreeList* tc = root();
if (tc == NULL) return 0;
for (; tc->right() != NULL; tc = tc->right());
return tc->size();
}
size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
size_t res;
res = tl->count();
#ifdef ASSERT
size_t cnt;
FreeChunk* tc = tl->head();
for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
assert(res == cnt, "The count is not being maintained correctly");
#endif
return res;
}
size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
if (tl == NULL)
return 0;
return (tl->size() * totalListLength(tl)) +
totalSizeInTree(tl->left()) +
totalSizeInTree(tl->right());
}
double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
if (tl == NULL) {
return 0.0;
}
double size = (double)(tl->size());
double curr = size * size * totalListLength(tl);
curr += sum_of_squared_block_sizes(tl->left());
curr += sum_of_squared_block_sizes(tl->right());
return curr;
}
size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
if (tl == NULL)
return 0;
return totalListLength(tl) +
totalFreeBlocksInTree(tl->left()) +
totalFreeBlocksInTree(tl->right());
}
size_t BinaryTreeDictionary::numFreeBlocks() const {
assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
"_totalFreeBlocks inconsistency");
return totalFreeBlocks();
}
size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
if (tl == NULL)
return 0;
return 1 + MAX2(treeHeightHelper(tl->left()),
treeHeightHelper(tl->right()));
}
size_t BinaryTreeDictionary::treeHeight() const {
return treeHeightHelper(root());
}
size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
if (tl == NULL) {
return 0;
}
return 1 + totalNodesHelper(tl->left()) +
totalNodesHelper(tl->right());
}
size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
return totalNodesHelper(root());
}
void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
TreeList* nd = findList(size);
if (nd) {
if (split) {
if (birth) {
nd->increment_splitBirths();
nd->increment_surplus();
} else {
nd->increment_splitDeaths();
nd->decrement_surplus();
}
} else {
if (birth) {
nd->increment_coalBirths();
nd->increment_surplus();
} else {
nd->increment_coalDeaths();
nd->decrement_surplus();
}
}
}
// A list for this size may not be found (nd == 0) if
// This is a death where the appropriate list is now
// empty and has been removed from the list.
// This is a birth associated with a LinAB. The chunk
// for the LinAB is not in the dictionary.
}
bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
TreeList* list_of_size = findList(size);
// None of requested size implies overpopulated.
return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
list_of_size->count() > list_of_size->coalDesired();
}
// Closures for walking the binary tree.
// do_list() walks the free list in a node applying the closure
// to each free chunk in the list
// do_tree() walks the nodes in the binary tree applying do_list()
// to each list at each node.
class TreeCensusClosure : public StackObj {
protected:
virtual void do_list(FreeList* fl) = 0;
public:
virtual void do_tree(TreeList* tl) = 0;
};
class AscendTreeCensusClosure : public TreeCensusClosure {
public:
void do_tree(TreeList* tl) {
if (tl != NULL) {
do_tree(tl->left());
do_list(tl);
do_tree(tl->right());
}
}
};
class DescendTreeCensusClosure : public TreeCensusClosure {
public:
void do_tree(TreeList* tl) {
if (tl != NULL) {
do_tree(tl->right());
do_list(tl);
do_tree(tl->left());
}
}
};
// For each list in the tree, calculate the desired, desired
// coalesce, count before sweep, and surplus before sweep.
class BeginSweepClosure : public AscendTreeCensusClosure {
double _percentage;
float _inter_sweep_current;
float _inter_sweep_estimate;
public:
BeginSweepClosure(double p, float inter_sweep_current,
float inter_sweep_estimate) :
_percentage(p),
_inter_sweep_current(inter_sweep_current),
_inter_sweep_estimate(inter_sweep_estimate) { }
void do_list(FreeList* fl) {
double coalSurplusPercent = _percentage;
fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate);
fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
fl->set_beforeSweep(fl->count());
fl->set_bfrSurp(fl->surplus());
}
};
// Used to search the tree until a condition is met.
// Similar to TreeCensusClosure but searches the
// tree and returns promptly when found.
class TreeSearchClosure : public StackObj {
protected:
virtual bool do_list(FreeList* fl) = 0;
public:
virtual bool do_tree(TreeList* tl) = 0;
};
#if 0 // Don't need this yet but here for symmetry.
class AscendTreeSearchClosure : public TreeSearchClosure {
public:
bool do_tree(TreeList* tl) {
if (tl != NULL) {
if (do_tree(tl->left())) return true;
if (do_list(tl)) return true;
if (do_tree(tl->right())) return true;
}
return false;
}
};
#endif
class DescendTreeSearchClosure : public TreeSearchClosure {
public:
bool do_tree(TreeList* tl) {
if (tl != NULL) {
if (do_tree(tl->right())) return true;
if (do_list(tl)) return true;
if (do_tree(tl->left())) return true;
}
return false;
}
};
// Searches the tree for a chunk that ends at the
// specified address.
class EndTreeSearchClosure : public DescendTreeSearchClosure {
HeapWord* _target;
FreeChunk* _found;
public:
EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
bool do_list(FreeList* fl) {
FreeChunk* item = fl->head();
while (item != NULL) {
if (item->end() == _target) {
_found = item;
return true;
}
item = item->next();
}
return false;
}
FreeChunk* found() { return _found; }
};
FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
EndTreeSearchClosure etsc(target);
bool found_target = etsc.do_tree(root());
assert(found_target || etsc.found() == NULL, "Consistency check");
assert(!found_target || etsc.found() != NULL, "Consistency check");
return etsc.found();
}
void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
float inter_sweep_current, float inter_sweep_estimate) {
BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
inter_sweep_estimate);
bsc.do_tree(root());
}
// Closures and methods for calculating total bytes returned to the
// free lists in the tree.
NOT_PRODUCT(
class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
public:
void do_list(FreeList* fl) {
fl->set_returnedBytes(0);
}
};
void BinaryTreeDictionary::initializeDictReturnedBytes() {
InitializeDictReturnedBytesClosure idrb;
idrb.do_tree(root());
}
class ReturnedBytesClosure : public AscendTreeCensusClosure {
size_t _dictReturnedBytes;
public:
ReturnedBytesClosure() { _dictReturnedBytes = 0; }
void do_list(FreeList* fl) {
_dictReturnedBytes += fl->returnedBytes();
}
size_t dictReturnedBytes() { return _dictReturnedBytes; }
};
size_t BinaryTreeDictionary::sumDictReturnedBytes() {
ReturnedBytesClosure rbc;
rbc.do_tree(root());
return rbc.dictReturnedBytes();
}
// Count the number of entries in the tree.
class treeCountClosure : public DescendTreeCensusClosure {
public:
uint count;
treeCountClosure(uint c) { count = c; }
void do_list(FreeList* fl) {
count++;
}
};
size_t BinaryTreeDictionary::totalCount() {
treeCountClosure ctc(0);
ctc.do_tree(root());
return ctc.count;
}
)
// Calculate surpluses for the lists in the tree.
class setTreeSurplusClosure : public AscendTreeCensusClosure {
double percentage;
public:
setTreeSurplusClosure(double v) { percentage = v; }
void do_list(FreeList* fl) {
double splitSurplusPercent = percentage;
fl->set_surplus(fl->count() -
(ssize_t)((double)fl->desired() * splitSurplusPercent));
}
};
void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
setTreeSurplusClosure sts(splitSurplusPercent);
sts.do_tree(root());
}
// Set hints for the lists in the tree.
class setTreeHintsClosure : public DescendTreeCensusClosure {
size_t hint;
public:
setTreeHintsClosure(size_t v) { hint = v; }
void do_list(FreeList* fl) {
fl->set_hint(hint);
assert(fl->hint() == 0 || fl->hint() > fl->size(),
"Current hint is inconsistent");
if (fl->surplus() > 0) {
hint = fl->size();
}
}
};
void BinaryTreeDictionary::setTreeHints(void) {
setTreeHintsClosure sth(0);
sth.do_tree(root());
}
// Save count before previous sweep and splits and coalesces.
class clearTreeCensusClosure : public AscendTreeCensusClosure {
void do_list(FreeList* fl) {
fl->set_prevSweep(fl->count());
fl->set_coalBirths(0);
fl->set_coalDeaths(0);
fl->set_splitBirths(0);
fl->set_splitDeaths(0);
}
};
void BinaryTreeDictionary::clearTreeCensus(void) {
clearTreeCensusClosure ctc;
ctc.do_tree(root());
}
// Do reporting and post sweep clean up.
void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
// Does walking the tree 3 times hurt?
setTreeSurplus(splitSurplusPercent);
setTreeHints();
if (PrintGC && Verbose) {
reportStatistics();
}
clearTreeCensus();
}
// Print summary statistics
void BinaryTreeDictionary::reportStatistics() const {
verify_par_locked();
gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
"------------------------------------\n");
size_t totalSize = totalChunkSize(debug_only(NULL));
size_t freeBlocks = numFreeBlocks();
gclog_or_tty->print("Total Free Space: %d\n", totalSize);
gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSize());
gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
if (freeBlocks > 0) {
gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
}
gclog_or_tty->print("Tree Height: %d\n", treeHeight());
}
// Print census information - counts, births, deaths, etc.
// for each list in the tree. Also print some summary
// information.
class printTreeCensusClosure : public AscendTreeCensusClosure {
size_t _totalFree;
AllocationStats _totals;
size_t _count;
public:
printTreeCensusClosure() {
_totalFree = 0;
_count = 0;
_totals.initialize();
}
AllocationStats* totals() { return &_totals; }
size_t count() { return _count; }
void increment_count_by(size_t v) { _count += v; }
size_t totalFree() { return _totalFree; }
void increment_totalFree_by(size_t v) { _totalFree += v; }
void do_list(FreeList* fl) {
bool nl = false; // "maybe this is not needed" isNearLargestChunk(fl->head());
gclog_or_tty->print("%c %4d\t\t" "%7d\t" "%7d\t"
"%7d\t" "%7d\t" "%7d\t" "%7d\t"
"%7d\t" "%7d\t" "%7d\t"
"%7d\t" "\n",
" n"[nl], fl->size(), fl->bfrSurp(), fl->surplus(),
fl->desired(), fl->prevSweep(), fl->beforeSweep(), fl->count(),
fl->coalBirths(), fl->coalDeaths(), fl->splitBirths(),
fl->splitDeaths());
increment_totalFree_by(fl->count() * fl->size());
increment_count_by(fl->count());
totals()->set_bfrSurp(totals()->bfrSurp() + fl->bfrSurp());
totals()->set_surplus(totals()->splitDeaths() + fl->surplus());
totals()->set_prevSweep(totals()->prevSweep() + fl->prevSweep());
totals()->set_beforeSweep(totals()->beforeSweep() + fl->beforeSweep());
totals()->set_coalBirths(totals()->coalBirths() + fl->coalBirths());
totals()->set_coalDeaths(totals()->coalDeaths() + fl->coalDeaths());
totals()->set_splitBirths(totals()->splitBirths() + fl->splitBirths());
totals()->set_splitDeaths(totals()->splitDeaths() + fl->splitDeaths());
}
};
void BinaryTreeDictionary::printDictCensus(void) const {
gclog_or_tty->print("\nBinaryTree\n");
gclog_or_tty->print(
"%4s\t\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t"
"%7s\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t" "\n",
"size", "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
"count", "cBirths", "cDeaths", "sBirths", "sDeaths");
printTreeCensusClosure ptc;
ptc.do_tree(root());
gclog_or_tty->print(
"\t\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t"
"%7s\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t" "\n",
"bfrsurp", "surplus", "prvSwep", "bfrSwep",
"count", "cBirths", "cDeaths", "sBirths", "sDeaths");
gclog_or_tty->print(
"%s\t\t" "%7d\t" "%7d\t" "%7d\t" "%7d\t"
"%7d\t" "%7d\t" "%7d\t" "%7d\t" "%7d\t" "\n",
"totl",
ptc.totals()->bfrSurp(),
ptc.totals()->surplus(),
ptc.totals()->prevSweep(),
ptc.totals()->beforeSweep(),
ptc.count(),
ptc.totals()->coalBirths(),
ptc.totals()->coalDeaths(),
ptc.totals()->splitBirths(),
ptc.totals()->splitDeaths());
gclog_or_tty->print("totalFree(words): %7d growth: %8.5f deficit: %8.5f\n",
ptc.totalFree(),
(double)(ptc.totals()->splitBirths()+ptc.totals()->coalBirths()
-ptc.totals()->splitDeaths()-ptc.totals()->coalDeaths())
/(ptc.totals()->prevSweep() != 0 ?
(double)ptc.totals()->prevSweep() : 1.0),
(double)(ptc.totals()->desired() - ptc.count())
/(ptc.totals()->desired() != 0 ?
(double)ptc.totals()->desired() : 1.0));
}
// Verify the following tree invariants:
// . _root has no parent
// . parent and child point to each other
// . each node's key correctly related to that of its child(ren)
void BinaryTreeDictionary::verifyTree() const {
guarantee(root() == NULL || totalFreeBlocks() == 0 ||
totalSize() != 0, "_totalSize should't be 0?");
guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
verifyTreeHelper(root());
}
size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
size_t ct = 0;
for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
ct++;
assert(curFC->prev() == NULL || curFC->prev()->isFree(),
"Chunk should be free");
}
return ct;
}
// Note: this helper is recursive rather than iterative, so use with
// caution on very deep trees; and watch out for stack overflow errors;
// In general, to be used only for debugging.
void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
if (tl == NULL)
return;
guarantee(tl->size() != 0, "A list must has a size");
guarantee(tl->left() == NULL || tl->left()->parent() == tl,
"parent<-/->left");
guarantee(tl->right() == NULL || tl->right()->parent() == tl,
"parent<-/->right");;
guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
"parent !> left");
guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
"parent !< left");
guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
"list inconsistency");
guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
"list count is inconsistent");
guarantee(tl->count() > 1 || tl->head() == tl->tail(),
"list is incorrectly constructed");
size_t count = verifyPrevFreePtrs(tl);
guarantee(count == (size_t)tl->count(), "Node count is incorrect");
if (tl->head() != NULL) {
tl->head_as_TreeChunk()->verifyTreeChunkList();
}
verifyTreeHelper(tl->left());
verifyTreeHelper(tl->right());
}
void BinaryTreeDictionary::verify() const {
verifyTree();
guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
}