blob: 0e9336b1487b1d1647f8ce0541194c4aeec86625 [file] [log] [blame]
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class BiasedLockingCounters;
// Contains all the definitions needed for x86 assembly code generation.
// Calling convention
class Argument VALUE_OBJ_CLASS_SPEC {
public:
enum {
#ifdef _LP64
#ifdef _WIN64
n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
#else
n_register_parameters = 0 // 0 registers used to pass arguments
#endif // _LP64
};
};
#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...
#ifdef _WIN64
REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);
REGISTER_DECLARATION(FloatRegister, c_farg0, xmm0);
REGISTER_DECLARATION(FloatRegister, c_farg1, xmm1);
REGISTER_DECLARATION(FloatRegister, c_farg2, xmm2);
REGISTER_DECLARATION(FloatRegister, c_farg3, xmm3);
#else
REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);
REGISTER_DECLARATION(FloatRegister, c_farg0, xmm0);
REGISTER_DECLARATION(FloatRegister, c_farg1, xmm1);
REGISTER_DECLARATION(FloatRegister, c_farg2, xmm2);
REGISTER_DECLARATION(FloatRegister, c_farg3, xmm3);
REGISTER_DECLARATION(FloatRegister, c_farg4, xmm4);
REGISTER_DECLARATION(FloatRegister, c_farg5, xmm5);
REGISTER_DECLARATION(FloatRegister, c_farg6, xmm6);
REGISTER_DECLARATION(FloatRegister, c_farg7, xmm7);
#endif // _WIN64
// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
// |-------------------------------------------------------|
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
// |-------------------------------------------------------|
// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
// | rdi rsi rdx rcx r8 r9 | solaris/linux
// |-------------------------------------------------------|
// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
// |-------------------------------------------------------|
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
REGISTER_DECLARATION(FloatRegister, j_farg0, xmm0);
REGISTER_DECLARATION(FloatRegister, j_farg1, xmm1);
REGISTER_DECLARATION(FloatRegister, j_farg2, xmm2);
REGISTER_DECLARATION(FloatRegister, j_farg3, xmm3);
REGISTER_DECLARATION(FloatRegister, j_farg4, xmm4);
REGISTER_DECLARATION(FloatRegister, j_farg5, xmm5);
REGISTER_DECLARATION(FloatRegister, j_farg6, xmm6);
REGISTER_DECLARATION(FloatRegister, j_farg7, xmm7);
REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
#endif // _LP64
// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
// via an address for efficiency & simplicity reasons.
class ArrayAddress;
class Address VALUE_OBJ_CLASS_SPEC {
public:
enum ScaleFactor {
no_scale = -1,
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3
};
private:
Register _base;
Register _index;
ScaleFactor _scale;
int _disp;
RelocationHolder _rspec;
// Easily misused constructor make them private
#ifndef _LP64
Address(address loc, RelocationHolder spec);
#endif // _LP64
public:
// creation
Address()
: _base(noreg),
_index(noreg),
_scale(no_scale),
_disp(0) {
}
// No default displacement otherwise Register can be implicitly
// converted to 0(Register) which is quite a different animal.
Address(Register base, int disp)
: _base(base),
_index(noreg),
_scale(no_scale),
_disp(disp) {
}
Address(Register base, Register index, ScaleFactor scale, int disp = 0)
: _base (base),
_index(index),
_scale(scale),
_disp (disp) {
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
// The following two overloads are used in connection with the
// ByteSize type (see sizes.hpp). They simplify the use of
// ByteSize'd arguments in assembly code. Note that their equivalent
// for the optimized build are the member functions with int disp
// argument since ByteSize is mapped to an int type in that case.
//
// Note: DO NOT introduce similar overloaded functions for WordSize
// arguments as in the optimized mode, both ByteSize and WordSize
// are mapped to the same type and thus the compiler cannot make a
// distinction anymore (=> compiler errors).
#ifdef ASSERT
Address(Register base, ByteSize disp)
: _base(base),
_index(noreg),
_scale(no_scale),
_disp(in_bytes(disp)) {
}
Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
: _base(base),
_index(index),
_scale(scale),
_disp(in_bytes(disp)) {
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
#endif // ASSERT
// accessors
bool uses(Register reg) const {
return _base == reg || _index == reg;
}
// Convert the raw encoding form into the form expected by the constructor for
// Address. An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
static Address make_raw(int base, int index, int scale, int disp);
static Address make_array(ArrayAddress);
private:
bool base_needs_rex() const {
return _base != noreg && _base->encoding() >= 8;
}
bool index_needs_rex() const {
return _index != noreg &&_index->encoding() >= 8;
}
relocInfo::relocType reloc() const { return _rspec.type(); }
friend class Assembler;
friend class MacroAssembler;
friend class LIR_Assembler; // base/index/scale/disp
};
//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
friend class ArrayAddress;
RelocationHolder _rspec;
// Typically we use AddressLiterals we want to use their rval
// However in some situations we want the lval (effect address) of the item.
// We provide a special factory for making those lvals.
bool _is_lval;
// If the target is far we'll need to load the ea of this to
// a register to reach it. Otherwise if near we can do rip
// relative addressing.
address _target;
protected:
// creation
AddressLiteral()
: _is_lval(false),
_target(NULL)
{}
public:
AddressLiteral(address target, relocInfo::relocType rtype);
AddressLiteral(address target, RelocationHolder const& rspec)
: _rspec(rspec),
_is_lval(false),
_target(target)
{}
AddressLiteral addr() {
AddressLiteral ret = *this;
ret._is_lval = true;
return ret;
}
private:
address target() { return _target; }
bool is_lval() { return _is_lval; }
relocInfo::relocType reloc() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
friend class Assembler;
friend class MacroAssembler;
friend class Address;
friend class LIR_Assembler;
};
// Convience classes
class RuntimeAddress: public AddressLiteral {
public:
RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
};
class OopAddress: public AddressLiteral {
public:
OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
};
class ExternalAddress: public AddressLiteral {
public:
ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
};
class InternalAddress: public AddressLiteral {
public:
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
};
// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result
class ArrayAddress VALUE_OBJ_CLASS_SPEC {
private:
AddressLiteral _base;
Address _index;
public:
ArrayAddress() {};
ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
AddressLiteral base() { return _base; }
Address index() { return _index; }
};
#ifndef _LP64
const int FPUStateSizeInWords = 27;
#else
const int FPUStateSizeInWords = 512 / wordSize;
#endif // _LP64
// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.
class Assembler : public AbstractAssembler {
friend class AbstractAssembler; // for the non-virtual hack
friend class LIR_Assembler; // as_Address()
protected:
#ifdef ASSERT
void check_relocation(RelocationHolder const& rspec, int format);
#endif
inline void emit_long64(jlong x);
void emit_data(jint data, relocInfo::relocType rtype, int format /* = 0 */);
void emit_data(jint data, RelocationHolder const& rspec, int format /* = 0 */);
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
// Helper functions for groups of instructions
void emit_arith_b(int op1, int op2, Register dst, int imm8);
void emit_arith(int op1, int op2, Register dst, int imm32);
// only x86??
void emit_arith(int op1, int op2, Register dst, jobject obj);
void emit_arith(int op1, int op2, Register dst, Register src);
void emit_operand(Register reg,
Register base, Register index, Address::ScaleFactor scale,
int disp,
RelocationHolder const& rspec);
void emit_operand(Register reg, Address adr);
// Immediate-to-memory forms
void emit_arith_operand(int op1, Register rm, Address adr, int imm32);
void emit_farith(int b1, int b2, int i);
// macroassembler?? QQQ
bool reachable(AddressLiteral adr) { return true; }
// These are all easily abused and hence protected
// Make these disappear in 64bit mode since they would never be correct
#ifndef _LP64
void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);
void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);
void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);
void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);
void push_literal32(int32_t imm32, RelocationHolder const& rspec);
#endif // _LP64
// These are unique in that we are ensured by the caller that the 32bit
// relative in these instructions will always be able to reach the potentially
// 64bit address described by entry. Since they can take a 64bit address they
// don't have the 32 suffix like the other instructions in this class.
void call_literal(address entry, RelocationHolder const& rspec);
void jmp_literal(address entry, RelocationHolder const& rspec);
public:
enum Condition { // The x86 condition codes used for conditional jumps/moves.
zero = 0x4,
notZero = 0x5,
equal = 0x4,
notEqual = 0x5,
less = 0xc,
lessEqual = 0xe,
greater = 0xf,
greaterEqual = 0xd,
below = 0x2,
belowEqual = 0x6,
above = 0x7,
aboveEqual = 0x3,
overflow = 0x0,
noOverflow = 0x1,
carrySet = 0x2,
carryClear = 0x3,
negative = 0x8,
positive = 0x9,
parity = 0xa,
noParity = 0xb
};
enum Prefix {
// segment overrides
CS_segment = 0x2e,
SS_segment = 0x36,
DS_segment = 0x3e,
ES_segment = 0x26,
FS_segment = 0x64,
GS_segment = 0x65,
REX = 0x40,
REX_B = 0x41,
REX_X = 0x42,
REX_XB = 0x43,
REX_R = 0x44,
REX_RB = 0x45,
REX_RX = 0x46,
REX_RXB = 0x47,
REX_W = 0x48,
REX_WB = 0x49,
REX_WX = 0x4A,
REX_WXB = 0x4B,
REX_WR = 0x4C,
REX_WRB = 0x4D,
REX_WRX = 0x4E,
REX_WRXB = 0x4F
};
enum WhichOperand {
// input to locate_operand, and format code for relocations
imm32_operand = 0, // embedded 32-bit immediate operand
disp32_operand = 1, // embedded 32-bit displacement or address
call32_operand = 2, // embedded 32-bit self-relative displacement
_WhichOperand_limit = 3
};
public:
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
// Decoding
static address locate_operand(address inst, WhichOperand which);
static address locate_next_instruction(address inst);
// Stack
void pushad();
void popad();
void pushfd();
void popfd();
void pushl(int imm32);
void pushoop(jobject obj);
void pushl(Register src);
void pushl(Address src);
// void pushl(Label& L, relocInfo::relocType rtype); ? needed?
// dummy to prevent NULL being converted to Register
void pushl(void* dummy);
void popl(Register dst);
void popl(Address dst);
// Instruction prefixes
void prefix(Prefix p);
// Moves
void movb(Register dst, Address src);
void movb(Address dst, int imm8);
void movb(Address dst, Register src);
void movw(Address dst, int imm16);
void movw(Register dst, Address src);
void movw(Address dst, Register src);
// these are dummies used to catch attempting to convert NULL to Register
void movl(Register dst, void* junk);
void movl(Address dst, void* junk);
void movl(Register dst, int imm32);
void movl(Address dst, int imm32);
void movl(Register dst, Register src);
void movl(Register dst, Address src);
void movl(Address dst, Register src);
void movsxb(Register dst, Address src);
void movsxb(Register dst, Register src);
void movsxw(Register dst, Address src);
void movsxw(Register dst, Register src);
void movzxb(Register dst, Address src);
void movzxb(Register dst, Register src);
void movzxw(Register dst, Address src);
void movzxw(Register dst, Register src);
// Conditional moves (P6 only)
void cmovl(Condition cc, Register dst, Register src);
void cmovl(Condition cc, Register dst, Address src);
// Prefetches (SSE, SSE2, 3DNOW only)
void prefetcht0(Address src);
void prefetcht1(Address src);
void prefetcht2(Address src);
void prefetchnta(Address src);
void prefetchw(Address src);
void prefetchr(Address src);
// Arithmetics
void adcl(Register dst, int imm32);
void adcl(Register dst, Address src);
void adcl(Register dst, Register src);
void addl(Address dst, int imm32);
void addl(Address dst, Register src);
void addl(Register dst, int imm32);
void addl(Register dst, Address src);
void addl(Register dst, Register src);
void andl(Register dst, int imm32);
void andl(Register dst, Address src);
void andl(Register dst, Register src);
void cmpb(Address dst, int imm8);
void cmpw(Address dst, int imm16);
void cmpl(Address dst, int imm32);
void cmpl(Register dst, int imm32);
void cmpl(Register dst, Register src);
void cmpl(Register dst, Address src);
// this is a dummy used to catch attempting to convert NULL to Register
void cmpl(Register dst, void* junk);
protected:
// Don't use next inc() and dec() methods directly. INC & DEC instructions
// could cause a partial flag stall since they don't set CF flag.
// Use MacroAssembler::decrement() & MacroAssembler::increment() methods
// which call inc() & dec() or add() & sub() in accordance with
// the product flag UseIncDec value.
void decl(Register dst);
void decl(Address dst);
void incl(Register dst);
void incl(Address dst);
public:
void idivl(Register src);
void cdql();
void imull(Register dst, Register src);
void imull(Register dst, Register src, int value);
void leal(Register dst, Address src);
void mull(Address src);
void mull(Register src);
void negl(Register dst);
void notl(Register dst);
void orl(Address dst, int imm32);
void orl(Register dst, int imm32);
void orl(Register dst, Address src);
void orl(Register dst, Register src);
void rcll(Register dst, int imm8);
void sarl(Register dst, int imm8);
void sarl(Register dst);
void sbbl(Address dst, int imm32);
void sbbl(Register dst, int imm32);
void sbbl(Register dst, Address src);
void sbbl(Register dst, Register src);
void shldl(Register dst, Register src);
void shll(Register dst, int imm8);
void shll(Register dst);
void shrdl(Register dst, Register src);
void shrl(Register dst, int imm8);
void shrl(Register dst);
void subl(Address dst, int imm32);
void subl(Address dst, Register src);
void subl(Register dst, int imm32);
void subl(Register dst, Address src);
void subl(Register dst, Register src);
void testb(Register dst, int imm8);
void testl(Register dst, int imm32);
void testl(Register dst, Address src);
void testl(Register dst, Register src);
void xaddl(Address dst, Register src);
void xorl(Register dst, int imm32);
void xorl(Register dst, Address src);
void xorl(Register dst, Register src);
// Miscellaneous
void bswap(Register reg);
void lock();
void xchg (Register reg, Address adr);
void xchgl(Register dst, Register src);
void cmpxchg (Register reg, Address adr);
void cmpxchg8 (Address adr);
void nop(int i = 1);
void addr_nop_4();
void addr_nop_5();
void addr_nop_7();
void addr_nop_8();
void hlt();
void ret(int imm16);
void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
void smovl();
void rep_movl();
void rep_set();
void repne_scan();
void setb(Condition cc, Register dst);
void membar(); // Serializing memory-fence
void cpuid();
void cld();
void std();
void emit_raw (unsigned char);
// Calls
void call(Label& L, relocInfo::relocType rtype);
void call(Register reg); // push pc; pc <- reg
void call(Address adr); // push pc; pc <- adr
// Jumps
void jmp(Address entry); // pc <- entry
void jmp(Register entry); // pc <- entry
// Label operations & relative jumps (PPUM Appendix D)
void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
// Force an 8-bit jump offset
// void jmpb(address entry);
// Unconditional 8-bit offset jump to L.
// WARNING: be very careful using this for forward jumps. If the label is
// not bound within an 8-bit offset of this instruction, a run-time error
// will occur.
void jmpb(Label& L);
// jcc is the generic conditional branch generator to run-
// time routines, jcc is used for branches to labels. jcc
// takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// jcc(cc, L); // forward branch to unbound label
// bind(L); // bind label to the current pc
// jcc(cc, L); // backward branch to bound label
// bind(L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void jcc(Condition cc, Label& L,
relocInfo::relocType rtype = relocInfo::none);
// Conditional jump to a 8-bit offset to L.
// WARNING: be very careful using this for forward jumps. If the label is
// not bound within an 8-bit offset of this instruction, a run-time error
// will occur.
void jccb(Condition cc, Label& L);
// Floating-point operations
void fld1();
void fldz();
void fld_s(Address adr);
void fld_s(int index);
void fld_d(Address adr);
void fld_x(Address adr); // extended-precision (80-bit) format
void fst_s(Address adr);
void fst_d(Address adr);
void fstp_s(Address adr);
void fstp_d(Address adr);
void fstp_d(int index);
void fstp_x(Address adr); // extended-precision (80-bit) format
void fild_s(Address adr);
void fild_d(Address adr);
void fist_s (Address adr);
void fistp_s(Address adr);
void fistp_d(Address adr);
void fabs();
void fchs();
void flog();
void flog10();
void fldln2();
void fyl2x();
void fldlg2();
void fcos();
void fsin();
void ftan();
void fsqrt();
// "Alternate" versions of instructions place result down in FPU
// stack instead of on TOS
void fadd_s(Address src);
void fadd_d(Address src);
void fadd(int i);
void fadda(int i); // "alternate" fadd
void fsub_s(Address src);
void fsub_d(Address src);
void fsubr_s(Address src);
void fsubr_d(Address src);
void fmul_s(Address src);
void fmul_d(Address src);
void fmul(int i);
void fmula(int i); // "alternate" fmul
void fdiv_s(Address src);
void fdiv_d(Address src);
void fdivr_s(Address src);
void fdivr_d(Address src);
void fsub(int i);
void fsuba(int i); // "alternate" fsub
void fsubr(int i);
void fsubra(int i); // "alternate" reversed fsub
void fdiv(int i);
void fdiva(int i); // "alternate" fdiv
void fdivr(int i);
void fdivra(int i); // "alternate" reversed fdiv
void faddp(int i = 1);
void fsubp(int i = 1);
void fsubrp(int i = 1);
void fmulp(int i = 1);
void fdivp(int i = 1);
void fdivrp(int i = 1);
void fprem();
void fprem1();
void fxch(int i = 1);
void fincstp();
void fdecstp();
void ffree(int i = 0);
void fcomp_s(Address src);
void fcomp_d(Address src);
void fcom(int i);
void fcomp(int i = 1);
void fcompp();
void fucomi(int i = 1);
void fucomip(int i = 1);
void ftst();
void fnstsw_ax();
void fwait();
void finit();
void fldcw(Address src);
void fnstcw(Address src);
void fnsave(Address dst);
void frstor(Address src);
void fldenv(Address src);
void sahf();
protected:
void emit_sse_operand(XMMRegister reg, Address adr);
void emit_sse_operand(Register reg, Address adr);
void emit_sse_operand(XMMRegister dst, XMMRegister src);
void emit_sse_operand(XMMRegister dst, Register src);
void emit_sse_operand(Register dst, XMMRegister src);
void emit_operand(MMXRegister reg, Address adr);
public:
// mmx operations
void movq( MMXRegister dst, Address src );
void movq( Address dst, MMXRegister src );
void emms();
// xmm operations
void addss(XMMRegister dst, Address src); // Add Scalar Single-Precision Floating-Point Values
void addss(XMMRegister dst, XMMRegister src);
void addsd(XMMRegister dst, Address src); // Add Scalar Double-Precision Floating-Point Values
void addsd(XMMRegister dst, XMMRegister src);
void subss(XMMRegister dst, Address src); // Subtract Scalar Single-Precision Floating-Point Values
void subss(XMMRegister dst, XMMRegister src);
void subsd(XMMRegister dst, Address src); // Subtract Scalar Double-Precision Floating-Point Values
void subsd(XMMRegister dst, XMMRegister src);
void mulss(XMMRegister dst, Address src); // Multiply Scalar Single-Precision Floating-Point Values
void mulss(XMMRegister dst, XMMRegister src);
void mulsd(XMMRegister dst, Address src); // Multiply Scalar Double-Precision Floating-Point Values
void mulsd(XMMRegister dst, XMMRegister src);
void divss(XMMRegister dst, Address src); // Divide Scalar Single-Precision Floating-Point Values
void divss(XMMRegister dst, XMMRegister src);
void divsd(XMMRegister dst, Address src); // Divide Scalar Double-Precision Floating-Point Values
void divsd(XMMRegister dst, XMMRegister src);
void sqrtss(XMMRegister dst, Address src); // Compute Square Root of Scalar Single-Precision Floating-Point Value
void sqrtss(XMMRegister dst, XMMRegister src);
void sqrtsd(XMMRegister dst, Address src); // Compute Square Root of Scalar Double-Precision Floating-Point Value
void sqrtsd(XMMRegister dst, XMMRegister src);
void pxor(XMMRegister dst, Address src); // Xor Packed Byte Integer Values
void pxor(XMMRegister dst, XMMRegister src); // Xor Packed Byte Integer Values
void comiss(XMMRegister dst, Address src); // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
void comiss(XMMRegister dst, XMMRegister src);
void comisd(XMMRegister dst, Address src); // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
void comisd(XMMRegister dst, XMMRegister src);
void ucomiss(XMMRegister dst, Address src); // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
void ucomiss(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, Address src); // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
void ucomisd(XMMRegister dst, XMMRegister src);
void cvtss2sd(XMMRegister dst, Address src); // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtsd2ss(XMMRegister dst, Address src); // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
void cvtsd2ss(XMMRegister dst, XMMRegister src);
void cvtsi2ss(XMMRegister dst, Address src); // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
void cvtsi2ss(XMMRegister dst, Register src);
void cvtsi2sd(XMMRegister dst, Address src); // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
void cvtsi2sd(XMMRegister dst, Register src);
void cvtss2si(Register dst, Address src); // Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
void cvtss2si(Register dst, XMMRegister src);
void cvtsd2si(Register dst, Address src); // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
void cvtsd2si(Register dst, XMMRegister src);
void cvttss2si(Register dst, Address src); // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
void cvttss2si(Register dst, XMMRegister src);
void cvttsd2si(Register dst, Address src); // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
void cvttsd2si(Register dst, XMMRegister src);
protected: // Avoid using the next instructions directly.
// New cpus require use of movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void movss(XMMRegister dst, Address src); // Move Scalar Single-Precision Floating-Point Values
void movss(XMMRegister dst, XMMRegister src);
void movss(Address dst, XMMRegister src);
void movsd(XMMRegister dst, Address src); // Move Scalar Double-Precision Floating-Point Values
void movsd(XMMRegister dst, XMMRegister src);
void movsd(Address dst, XMMRegister src);
void movlpd(XMMRegister dst, Address src);
// New cpus require use of movaps and movapd to avoid partial register stall
// when moving between registers.
void movaps(XMMRegister dst, XMMRegister src);
void movapd(XMMRegister dst, XMMRegister src);
public:
void andps(XMMRegister dst, Address src); // Bitwise Logical AND of Packed Single-Precision Floating-Point Values
void andps(XMMRegister dst, XMMRegister src);
void andpd(XMMRegister dst, Address src); // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
void andpd(XMMRegister dst, XMMRegister src);
void andnps(XMMRegister dst, Address src); // Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
void andnps(XMMRegister dst, XMMRegister src);
void andnpd(XMMRegister dst, Address src); // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
void andnpd(XMMRegister dst, XMMRegister src);
void orps(XMMRegister dst, Address src); // Bitwise Logical OR of Packed Single-Precision Floating-Point Values
void orps(XMMRegister dst, XMMRegister src);
void orpd(XMMRegister dst, Address src); // Bitwise Logical OR of Packed Double-Precision Floating-Point Values
void orpd(XMMRegister dst, XMMRegister src);
void xorps(XMMRegister dst, Address src); // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
void xorps(XMMRegister dst, XMMRegister src);
void xorpd(XMMRegister dst, Address src); // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src);
void movq(XMMRegister dst, Address src); // Move Quadword
void movq(XMMRegister dst, XMMRegister src);
void movq(Address dst, XMMRegister src);
void movd(XMMRegister dst, Address src); // Move Doubleword
void movd(XMMRegister dst, Register src);
void movd(Register dst, XMMRegister src);
void movd(Address dst, XMMRegister src);
void movdqa(XMMRegister dst, Address src); // Move Aligned Double Quadword
void movdqa(XMMRegister dst, XMMRegister src);
void movdqa(Address dst, XMMRegister src);
void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords
void pshufd(XMMRegister dst, Address src, int mode);
void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words
void pshuflw(XMMRegister dst, Address src, int mode);
void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate
void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes
void punpcklbw(XMMRegister dst, Address src);
void ldmxcsr( Address src );
void stmxcsr( Address dst );
};
// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
class MacroAssembler: public Assembler {
friend class LIR_Assembler;
protected:
Address as_Address(AddressLiteral adr);
Address as_Address(ArrayAddress adr);
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
#ifdef CC_INTERP
// c++ interpreter never wants to use interp_masm version of call_VM
#define VIRTUAL
#else
#define VIRTUAL virtual
#endif
VIRTUAL void call_VM_leaf_base(
address entry_point, // the entry point
int number_of_arguments // the number of arguments to pop after the call
);
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
// returns the register which contains the thread upon return. If a thread register has been
// specified, the return value will correspond to that register. If no last_java_sp is specified
// (noreg) than rsp will be used instead.
VIRTUAL void call_VM_base( // returns the register containing the thread upon return
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
bool check_exceptions // whether to check for pending exceptions after return
);
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
// helpers for FPU flag access
// tmp is a temporary register, if none is available use noreg
void save_rax (Register tmp);
void restore_rax(Register tmp);
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(int offset);
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
static void pd_print_patched_instruction(address branch);
#endif
// The following 4 methods return the offset of the appropriate move instruction
// Support for fast byte/word loading with zero extension (depending on particular CPU)
int load_unsigned_byte(Register dst, Address src);
int load_unsigned_word(Register dst, Address src);
// Support for fast byte/word loading with sign extension (depending on particular CPU)
int load_signed_byte(Register dst, Address src);
int load_signed_word(Register dst, Address src);
// Support for sign-extension (hi:lo = extend_sign(lo))
void extend_sign(Register hi, Register lo);
// Support for inc/dec with optimal instruction selection depending on value
void increment(Register reg, int value = 1);
void decrement(Register reg, int value = 1);
void increment(Address dst, int value = 1);
void decrement(Address dst, int value = 1);
// Support optimal SSE move instructions.
void movflt(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
else { movss (dst, src); return; }
}
void movflt(XMMRegister dst, Address src) { movss(dst, src); }
void movflt(XMMRegister dst, AddressLiteral src);
void movflt(Address dst, XMMRegister src) { movss(dst, src); }
void movdbl(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
else { movsd (dst, src); return; }
}
void movdbl(XMMRegister dst, AddressLiteral src);
void movdbl(XMMRegister dst, Address src) {
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
else { movlpd(dst, src); return; }
}
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
void increment(AddressLiteral dst);
void increment(ArrayAddress dst);
// Alignment
void align(int modulus);
// Misc
void fat_nop(); // 5 byte nop
// Stack frame creation/removal
void enter();
void leave();
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
// The pointer will be loaded into the thread register.
void get_thread(Register thread);
// Support for VM calls
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void call_VM_leaf(address entry_point, int number_of_arguments = 0);
void call_VM_leaf(address entry_point, Register arg_1);
void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
// last Java Frame (fills frame anchor)
void set_last_Java_frame(Register thread, Register last_java_sp, Register last_java_fp, address last_java_pc);
void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
// Stores
void store_check(Register obj); // store check for obj - register is destroyed afterwards
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
// split store_check(Register obj) to enhance instruction interleaving
void store_check_part_1(Register obj);
void store_check_part_2(Register obj);
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
void c2bool(Register x);
// C++ bool manipulation
void movbool(Register dst, Address src);
void movbool(Address dst, bool boolconst);
void movbool(Address dst, Register src);
void testbool(Register dst);
// Int division/reminder for Java
// (as idivl, but checks for special case as described in JVM spec.)
// returns idivl instruction offset for implicit exception handling
int corrected_idivl(Register reg);
void int3();
// Long negation for Java
void lneg(Register hi, Register lo);
// Long multiplication for Java
// (destroys contents of rax, rbx, rcx and rdx)
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
// Long shifts for Java
// (semantics as described in JVM spec.)
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
// Long compare for Java
// (semantics as described in JVM spec.)
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
//
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
void fcmp(Register tmp);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
// Floating-point comparison for Java
// Compares the top-most stack entries on the FPU stack and stores the result in dst.
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// (semantics as described in JVM spec.)
void fcmp2int(Register dst, bool unordered_is_less);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
// tmp is a temporary register, if none is available use noreg
void fremr(Register tmp);
// same as fcmp2int, but using SSE2
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
// Inlined sin/cos generator for Java; must not use CPU instruction
// directly on Intel as it does not have high enough precision
// outside of the range [-pi/4, pi/4]. Extra argument indicate the
// number of FPU stack slots in use; all but the topmost will
// require saving if a slow case is necessary. Assumes argument is
// on FP TOS; result is on FP TOS. No cpu registers are changed by
// this code.
void trigfunc(char trig, int num_fpu_regs_in_use = 1);
// branch to L if FPU flag C2 is set/not set
// tmp is a temporary register, if none is available use noreg
void jC2 (Register tmp, Label& L);
void jnC2(Register tmp, Label& L);
// Pop ST (ffree & fincstp combined)
void fpop();
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void push_fTOS();
// pops double TOS element from CPU stack and pushes on FPU stack
void pop_fTOS();
void empty_FPU_stack();
void push_IU_state();
void pop_IU_state();
void push_FPU_state();
void pop_FPU_state();
void push_CPU_state();
void pop_CPU_state();
// Sign extension
void sign_extend_short(Register reg);
void sign_extend_byte(Register reg);
// Division by power of 2, rounding towards 0
void division_with_shift(Register reg, int shift_value);
// Round up to a power of two
void round_to(Register reg, int modulus);
// Callee saved registers handling
void push_callee_saved_registers();
void pop_callee_saved_registers();
// allocation
void eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
//----
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
// Debugging
void verify_oop(Register reg, const char* s = "broken oop"); // only if +VerifyOops
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); // only if +VerifyFPU
void stop(const char* msg); // prints msg, dumps registers and stops execution
void warn(const char* msg); // prints msg and continues
static void debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
void os_breakpoint();
void untested() { stop("untested"); }
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
void should_not_reach_here() { stop("should not reach here"); }
void print_CPU_state();
// Stack overflow checking
void bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
movl(Address(rsp, (-offset)), rax);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. Also, clobbers tmp
void bang_stack_size(Register size, Register tmp);
// Support for serializing memory accesses between threads
void serialize_memory(Register thread, Register tmp);
void verify_tlab();
// Biased locking support
// lock_reg and obj_reg must be loaded up with the appropriate values.
// swap_reg must be rax, and is killed.
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will
// be killed; if not supplied, push/pop will be used internally to
// allocate a temporary (inefficient, avoid if possible).
// Optional slow case is for implementations (interpreter and C1) which branch to
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
// Returns offset of first potentially-faulting instruction for null
// check info (currently consumed only by C1). If
// swap_reg_contains_mark is true then returns -1 as it is assumed
// the calling code has already passed any potential faults.
int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
bool swap_reg_contains_mark,
Label& done, Label* slow_case = NULL,
BiasedLockingCounters* counters = NULL);
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
Condition negate_condition(Condition cond);
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
// operands. In general the names are modified to avoid hiding the instruction in Assembler
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers
// here in MacroAssembler. The major exception to this rule is call
// Arithmetics
void cmp8(AddressLiteral src1, int8_t imm);
// QQQ renamed to drag out the casting of address to int32_t/intptr_t
void cmp32(Register src1, int32_t imm);
void cmp32(AddressLiteral src1, int32_t imm);
// compare reg - mem, or reg - &mem
void cmp32(Register src1, AddressLiteral src2);
void cmp32(Register src1, Address src2);
// NOTE src2 must be the lval. This is NOT an mem-mem compare
void cmpptr(Address src1, AddressLiteral src2);
void cmpptr(Register src1, AddressLiteral src2);
void cmpoop(Address dst, jobject obj);
void cmpoop(Register dst, jobject obj);
void cmpxchgptr(Register reg, AddressLiteral adr);
// Helper functions for statistics gathering.
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
void cond_inc32(Condition cond, AddressLiteral counter_addr);
// Unconditional atomic increment.
void atomic_incl(AddressLiteral counter_addr);
void lea(Register dst, AddressLiteral adr);
void lea(Address dst, AddressLiteral adr);
void test32(Register dst, AddressLiteral src);
// Calls
void call(Label& L, relocInfo::relocType rtype);
void call(Register entry);
// NOTE: this call tranfers to the effective address of entry NOT
// the address contained by entry. This is because this is more natural
// for jumps/calls.
void call(AddressLiteral entry);
// Jumps
// NOTE: these jumps tranfer to the effective address of dst NOT
// the address contained by dst. This is because this is more natural
// for jumps/calls.
void jump(AddressLiteral dst);
void jump_cc(Condition cc, AddressLiteral dst);
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class. This jump will tranfers to the address
// contained in the location described by entry (not the address of entry)
void jump(ArrayAddress entry);
// Floating
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
void andpd(XMMRegister dst, AddressLiteral src);
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, AddressLiteral src);
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, AddressLiteral src);
void fldcw(Address src) { Assembler::fldcw(src); }
void fldcw(AddressLiteral src);
void fld_s(int index) { Assembler::fld_s(index); }
void fld_s(Address src) { Assembler::fld_s(src); }
void fld_s(AddressLiteral src);
void fld_d(Address src) { Assembler::fld_d(src); }
void fld_d(AddressLiteral src);
void fld_x(Address src) { Assembler::fld_x(src); }
void fld_x(AddressLiteral src);
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
void ldmxcsr(AddressLiteral src);
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, AddressLiteral src);
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, AddressLiteral src);
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, AddressLiteral src);
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, AddressLiteral src);
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, AddressLiteral src);
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, AddressLiteral src);
// Data
void movoop(Register dst, jobject obj);
void movoop(Address dst, jobject obj);
void movptr(ArrayAddress dst, Register src);
// can this do an lea?
void movptr(Register dst, ArrayAddress src);
void movptr(Register dst, AddressLiteral src);
// to avoid hiding movl
void mov32(AddressLiteral dst, Register src);
void mov32(Register dst, AddressLiteral src);
// to avoid hiding movb
void movbyte(ArrayAddress dst, int src);
// Can push value or effective address
void pushptr(AddressLiteral src);
#undef VIRTUAL
};
/**
* class SkipIfEqual:
*
* Instantiating this class will result in assembly code being output that will
* jump around any code emitted between the creation of the instance and it's
* automatic destruction at the end of a scope block, depending on the value of
* the flag passed to the constructor, which will be checked at run-time.
*/
class SkipIfEqual {
private:
MacroAssembler* _masm;
Label _label;
public:
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
~SkipIfEqual();
};
#ifdef ASSERT
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif