blob: 5ff60d69bff627a75f08ac05deff33b8b2eb8c7e [file] [log] [blame]
/*
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_TASKQUEUE_HPP
#define SHARE_VM_GC_SHARED_TASKQUEUE_HPP
#include "memory/allocation.hpp"
#include "memory/padded.hpp"
#include "oops/oopsHierarchy.hpp"
#include "utilities/ostream.hpp"
#include "utilities/stack.hpp"
// Simple TaskQueue stats that are collected by default in debug builds.
#if !defined(TASKQUEUE_STATS) && defined(ASSERT)
#define TASKQUEUE_STATS 1
#elif !defined(TASKQUEUE_STATS)
#define TASKQUEUE_STATS 0
#endif
#if TASKQUEUE_STATS
#define TASKQUEUE_STATS_ONLY(code) code
#else
#define TASKQUEUE_STATS_ONLY(code)
#endif // TASKQUEUE_STATS
#if TASKQUEUE_STATS
class TaskQueueStats {
public:
enum StatId {
push, // number of taskqueue pushes
pop, // number of taskqueue pops
pop_slow, // subset of taskqueue pops that were done slow-path
steal_attempt, // number of taskqueue steal attempts
steal, // number of taskqueue steals
overflow, // number of overflow pushes
overflow_max_len, // max length of overflow stack
last_stat_id
};
public:
inline TaskQueueStats() { reset(); }
inline void record_push() { ++_stats[push]; }
inline void record_pop() { ++_stats[pop]; }
inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
inline void record_steal(bool success);
inline void record_overflow(size_t new_length);
TaskQueueStats & operator +=(const TaskQueueStats & addend);
inline size_t get(StatId id) const { return _stats[id]; }
inline const size_t* get() const { return _stats; }
inline void reset();
// Print the specified line of the header (does not include a line separator).
static void print_header(unsigned int line, outputStream* const stream = tty,
unsigned int width = 10);
// Print the statistics (does not include a line separator).
void print(outputStream* const stream = tty, unsigned int width = 10) const;
DEBUG_ONLY(void verify() const;)
private:
size_t _stats[last_stat_id];
static const char * const _names[last_stat_id];
};
void TaskQueueStats::record_steal(bool success) {
++_stats[steal_attempt];
if (success) ++_stats[steal];
}
void TaskQueueStats::record_overflow(size_t new_len) {
++_stats[overflow];
if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
}
void TaskQueueStats::reset() {
memset(_stats, 0, sizeof(_stats));
}
#endif // TASKQUEUE_STATS
// TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
template <unsigned int N, MEMFLAGS F>
class TaskQueueSuper: public CHeapObj<F> {
protected:
// Internal type for indexing the queue; also used for the tag.
typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
enum { MOD_N_MASK = N - 1 };
class Age {
public:
Age(size_t data = 0) { _data = data; }
Age(const Age& age) { _data = age._data; }
Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
Age get() const volatile { return _data; }
void set(Age age) volatile { _data = age._data; }
idx_t top() const volatile { return _fields._top; }
idx_t tag() const volatile { return _fields._tag; }
// Increment top; if it wraps, increment tag also.
void increment() {
_fields._top = increment_index(_fields._top);
if (_fields._top == 0) ++_fields._tag;
}
Age cmpxchg(const Age new_age, const Age old_age) volatile;
bool operator ==(const Age& other) const { return _data == other._data; }
private:
struct fields {
idx_t _top;
idx_t _tag;
};
union {
size_t _data;
fields _fields;
};
};
// The first free element after the last one pushed (mod N).
volatile uint _bottom;
// Add paddings to reduce false-sharing cache contention between _bottom and _age
DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(uint));
volatile Age _age;
// These both operate mod N.
static uint increment_index(uint ind) {
return (ind + 1) & MOD_N_MASK;
}
static uint decrement_index(uint ind) {
return (ind - 1) & MOD_N_MASK;
}
// Returns a number in the range [0..N). If the result is "N-1", it should be
// interpreted as 0.
uint dirty_size(uint bot, uint top) const {
return (bot - top) & MOD_N_MASK;
}
// Returns the size corresponding to the given "bot" and "top".
uint size(uint bot, uint top) const {
uint sz = dirty_size(bot, top);
// Has the queue "wrapped", so that bottom is less than top? There's a
// complicated special case here. A pair of threads could perform pop_local
// and pop_global operations concurrently, starting from a state in which
// _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
// and the pop_global in incrementing _top (in which case the pop_global
// will be awarded the contested queue element.) The resulting state must
// be interpreted as an empty queue. (We only need to worry about one such
// event: only the queue owner performs pop_local's, and several concurrent
// threads attempting to perform the pop_global will all perform the same
// CAS, and only one can succeed.) Any stealing thread that reads after
// either the increment or decrement will see an empty queue, and will not
// join the competitors. The "sz == -1 || sz == N-1" state will not be
// modified by concurrent queues, so the owner thread can reset the state to
// _bottom == top so subsequent pushes will be performed normally.
return (sz == N - 1) ? 0 : sz;
}
public:
TaskQueueSuper() : _bottom(0), _age() {}
// Return true if the TaskQueue contains/does not contain any tasks.
bool peek() const { return _bottom != _age.top(); }
bool is_empty() const { return size() == 0; }
// Return an estimate of the number of elements in the queue.
// The "careful" version admits the possibility of pop_local/pop_global
// races.
uint size() const {
return size(_bottom, _age.top());
}
uint dirty_size() const {
return dirty_size(_bottom, _age.top());
}
void set_empty() {
_bottom = 0;
_age.set(0);
}
// Maximum number of elements allowed in the queue. This is two less
// than the actual queue size, for somewhat complicated reasons.
uint max_elems() const { return N - 2; }
// Total size of queue.
static const uint total_size() { return N; }
TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
};
//
// GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
// ended-queue (deque), intended for use in work stealing. Queue operations
// are non-blocking.
//
// A queue owner thread performs push() and pop_local() operations on one end
// of the queue, while other threads may steal work using the pop_global()
// method.
//
// The main difference to the original algorithm is that this
// implementation allows wrap-around at the end of its allocated
// storage, which is an array.
//
// The original paper is:
//
// Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
// Thread scheduling for multiprogrammed multiprocessors.
// Theory of Computing Systems 34, 2 (2001), 115-144.
//
// The following paper provides an correctness proof and an
// implementation for weakly ordered memory models including (pseudo-)
// code containing memory barriers for a Chase-Lev deque. Chase-Lev is
// similar to ABP, with the main difference that it allows resizing of the
// underlying storage:
//
// Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
// Correct and efficient work-stealing for weak memory models
// Proceedings of the 18th ACM SIGPLAN symposium on Principles and
// practice of parallel programming (PPoPP 2013), 69-80
//
template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
class GenericTaskQueue: public TaskQueueSuper<N, F> {
protected:
typedef typename TaskQueueSuper<N, F>::Age Age;
typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
using TaskQueueSuper<N, F>::_bottom;
using TaskQueueSuper<N, F>::_age;
using TaskQueueSuper<N, F>::increment_index;
using TaskQueueSuper<N, F>::decrement_index;
using TaskQueueSuper<N, F>::dirty_size;
public:
using TaskQueueSuper<N, F>::max_elems;
using TaskQueueSuper<N, F>::size;
#if TASKQUEUE_STATS
using TaskQueueSuper<N, F>::stats;
#endif
private:
// Slow paths for push, pop_local. (pop_global has no fast path.)
bool push_slow(E t, uint dirty_n_elems);
bool pop_local_slow(uint localBot, Age oldAge);
public:
typedef E element_type;
// Initializes the queue to empty.
GenericTaskQueue();
void initialize();
// Push the task "t" on the queue. Returns "false" iff the queue is full.
inline bool push(E t);
// Attempts to claim a task from the "local" end of the queue (the most
// recently pushed) as long as the number of entries exceeds the threshold.
// If successful, returns true and sets t to the task; otherwise, returns false
// (the queue is empty or the number of elements below the threshold).
inline bool pop_local(volatile E& t, uint threshold = 0);
// Like pop_local(), but uses the "global" end of the queue (the least
// recently pushed).
bool pop_global(volatile E& t);
// Delete any resource associated with the queue.
~GenericTaskQueue();
// Apply fn to each element in the task queue. The queue must not
// be modified while iterating.
template<typename Fn> void iterate(Fn fn);
private:
// Element array.
volatile E* _elems;
};
template<class E, MEMFLAGS F, unsigned int N>
GenericTaskQueue<E, F, N>::GenericTaskQueue() {
assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
}
// OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
// elements that do not fit in the TaskQueue.
//
// This class hides two methods from super classes:
//
// push() - push onto the task queue or, if that fails, onto the overflow stack
// is_empty() - return true if both the TaskQueue and overflow stack are empty
//
// Note that size() is not hidden--it returns the number of elements in the
// TaskQueue, and does not include the size of the overflow stack. This
// simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
{
public:
typedef Stack<E, F> overflow_t;
typedef GenericTaskQueue<E, F, N> taskqueue_t;
TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
// Push task t onto the queue or onto the overflow stack. Return true.
inline bool push(E t);
// Try to push task t onto the queue only. Returns true if successful, false otherwise.
inline bool try_push_to_taskqueue(E t);
// Attempt to pop from the overflow stack; return true if anything was popped.
inline bool pop_overflow(E& t);
inline overflow_t* overflow_stack() { return &_overflow_stack; }
inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
inline bool overflow_empty() const { return _overflow_stack.is_empty(); }
inline bool is_empty() const {
return taskqueue_empty() && overflow_empty();
}
private:
overflow_t _overflow_stack;
};
class TaskQueueSetSuper {
protected:
static int randomParkAndMiller(int* seed0);
public:
// Returns "true" if some TaskQueue in the set contains a task.
virtual bool peek() = 0;
};
template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
};
template<class T, MEMFLAGS F>
class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
private:
uint _n;
T** _queues;
public:
typedef typename T::element_type E;
GenericTaskQueueSet(int n);
~GenericTaskQueueSet();
bool steal_best_of_2(uint queue_num, int* seed, E& t);
void register_queue(uint i, T* q);
T* queue(uint n);
// The thread with queue number "queue_num" (and whose random number seed is
// at "seed") is trying to steal a task from some other queue. (It may try
// several queues, according to some configuration parameter.) If some steal
// succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
// false.
bool steal(uint queue_num, int* seed, E& t);
bool peek();
uint size() const { return _n; }
};
template<class T, MEMFLAGS F> void
GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
assert(i < _n, "index out of range.");
_queues[i] = q;
}
template<class T, MEMFLAGS F> T*
GenericTaskQueueSet<T, F>::queue(uint i) {
return _queues[i];
}
template<class T, MEMFLAGS F>
bool GenericTaskQueueSet<T, F>::peek() {
// Try all the queues.
for (uint j = 0; j < _n; j++) {
if (_queues[j]->peek())
return true;
}
return false;
}
// When to terminate from the termination protocol.
class TerminatorTerminator: public CHeapObj<mtInternal> {
public:
virtual bool should_exit_termination() = 0;
};
// A class to aid in the termination of a set of parallel tasks using
// TaskQueueSet's for work stealing.
#undef TRACESPINNING
class ParallelTaskTerminator: public StackObj {
private:
uint _n_threads;
TaskQueueSetSuper* _queue_set;
DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, 0);
volatile uint _offered_termination;
DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile uint));
#ifdef TRACESPINNING
static uint _total_yields;
static uint _total_spins;
static uint _total_peeks;
#endif
bool peek_in_queue_set();
protected:
virtual void yield();
void sleep(uint millis);
public:
// "n_threads" is the number of threads to be terminated. "queue_set" is a
// queue sets of work queues of other threads.
ParallelTaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set);
// The current thread has no work, and is ready to terminate if everyone
// else is. If returns "true", all threads are terminated. If returns
// "false", available work has been observed in one of the task queues,
// so the global task is not complete.
bool offer_termination() {
return offer_termination(NULL);
}
// As above, but it also terminates if the should_exit_termination()
// method of the terminator parameter returns true. If terminator is
// NULL, then it is ignored.
bool offer_termination(TerminatorTerminator* terminator);
// Reset the terminator, so that it may be reused again.
// The caller is responsible for ensuring that this is done
// in an MT-safe manner, once the previous round of use of
// the terminator is finished.
void reset_for_reuse();
// Same as above but the number of parallel threads is set to the
// given number.
void reset_for_reuse(uint n_threads);
#ifdef TRACESPINNING
static uint total_yields() { return _total_yields; }
static uint total_spins() { return _total_spins; }
static uint total_peeks() { return _total_peeks; }
static void print_termination_counts();
#endif
};
typedef GenericTaskQueue<oop, mtGC> OopTaskQueue;
typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
#ifdef _MSC_VER
#pragma warning(push)
// warning C4522: multiple assignment operators specified
#pragma warning(disable:4522)
#endif
// This is a container class for either an oop* or a narrowOop*.
// Both are pushed onto a task queue and the consumer will test is_narrow()
// to determine which should be processed.
class StarTask {
void* _holder; // either union oop* or narrowOop*
enum { COMPRESSED_OOP_MASK = 1 };
public:
StarTask(narrowOop* p) {
assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
_holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
}
StarTask(oop* p) {
assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
_holder = (void*)p;
}
StarTask() { _holder = NULL; }
operator oop*() { return (oop*)_holder; }
operator narrowOop*() {
return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
}
StarTask& operator=(const StarTask& t) {
_holder = t._holder;
return *this;
}
volatile StarTask& operator=(const volatile StarTask& t) volatile {
_holder = t._holder;
return *this;
}
bool is_narrow() const {
return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
}
};
class ObjArrayTask
{
public:
ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
assert(idx <= size_t(max_jint), "too big");
}
ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
ObjArrayTask& operator =(const ObjArrayTask& t) {
_obj = t._obj;
_index = t._index;
return *this;
}
volatile ObjArrayTask&
operator =(const volatile ObjArrayTask& t) volatile {
(void)const_cast<oop&>(_obj = t._obj);
_index = t._index;
return *this;
}
inline oop obj() const { return _obj; }
inline int index() const { return _index; }
DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
private:
oop _obj;
int _index;
};
#ifdef _MSC_VER
#pragma warning(pop)
#endif
typedef OverflowTaskQueue<StarTask, mtGC> OopStarTaskQueue;
typedef GenericTaskQueueSet<OopStarTaskQueue, mtGC> OopStarTaskQueueSet;
typedef OverflowTaskQueue<size_t, mtGC> RegionTaskQueue;
typedef GenericTaskQueueSet<RegionTaskQueue, mtGC> RegionTaskQueueSet;
#endif // SHARE_VM_GC_SHARED_TASKQUEUE_HPP