blob: 14fc859048b0953ca875b7b58390ee43ac612da8 [file] [log] [blame]
/*
* Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.sjavac;
import java.io.File;
import java.io.IOException;
import java.io.Writer;
import java.net.URI;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import com.sun.tools.sjavac.comp.CompilationService;
import com.sun.tools.sjavac.options.Options;
import com.sun.tools.sjavac.pubapi.PubApi;
import com.sun.tools.sjavac.server.CompilationSubResult;
import com.sun.tools.sjavac.server.SysInfo;
/**
* This transform compiles a set of packages containing Java sources.
* The compile request is divided into separate sets of source files.
* For each set a separate request thread is dispatched to a javac server
* and the meta data is accumulated. The number of sets correspond more or
* less to the number of cores. Less so now, than it will in the future.
*
* <p><b>This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own
* risk. This code and its internal interfaces are subject to change
* or deletion without notice.</b></p>
*/
public class CompileJavaPackages implements Transformer {
// The current limited sharing of data between concurrent JavaCompilers
// in the server will not give speedups above 3 cores. Thus this limit.
// We hope to improve this in the future.
final static int limitOnConcurrency = 3;
Options args;
public void setExtra(String e) {
}
public void setExtra(Options a) {
args = a;
}
public boolean transform(final CompilationService sjavac,
Map<String,Set<URI>> pkgSrcs,
final Set<URI> visibleSources,
Map<String,Set<String>> oldPackageDependents,
URI destRoot,
final Map<String,Set<URI>> packageArtifacts,
final Map<String,Map<String, Set<String>>> packageDependencies,
final Map<String,Map<String, Set<String>>> packageCpDependencies,
final Map<String, PubApi> packagePubapis,
final Map<String, PubApi> dependencyPubapis,
int debugLevel,
boolean incremental,
int numCores,
final Writer out,
final Writer err) {
Log.debug("Performing CompileJavaPackages transform...");
boolean rc = true;
boolean concurrentCompiles = true;
// Fetch the id.
final String id = String.valueOf(new Random().nextInt());
// Only keep portfile and sjavac settings..
//String psServerSettings = Util.cleanSubOptions(Util.set("portfile","sjavac","background","keepalive"), sjavac.serverSettings());
SysInfo sysinfo = sjavac.getSysInfo();
int numMBytes = (int)(sysinfo.maxMemory / ((long)(1024*1024)));
Log.debug("Server reports "+numMBytes+"MiB of memory and "+sysinfo.numCores+" cores");
if (numCores <= 0) {
// Set the requested number of cores to the number of cores on the server.
numCores = sysinfo.numCores;
Log.debug("Number of jobs not explicitly set, defaulting to "+sysinfo.numCores);
} else if (sysinfo.numCores < numCores) {
// Set the requested number of cores to the number of cores on the server.
Log.debug("Limiting jobs from explicitly set "+numCores+" to cores available on server: "+sysinfo.numCores);
numCores = sysinfo.numCores;
} else {
Log.debug("Number of jobs explicitly set to "+numCores);
}
// More than three concurrent cores does not currently give a speedup, at least for compiling the jdk
// in the OpenJDK. This will change in the future.
int numCompiles = numCores;
if (numCores > limitOnConcurrency) numCompiles = limitOnConcurrency;
// Split the work up in chunks to compiled.
int numSources = 0;
for (String s : pkgSrcs.keySet()) {
Set<URI> ss = pkgSrcs.get(s);
numSources += ss.size();
}
int sourcesPerCompile = numSources / numCompiles;
// For 64 bit Java, it seems we can compile the OpenJDK 8800 files with a 1500M of heap
// in a single chunk, with reasonable performance.
// For 32 bit java, it seems we need 1G of heap.
// Number experimentally determined when compiling the OpenJDK.
// Includes space for reasonably efficient garbage collection etc,
// Calculating backwards gives us a requirement of
// 1500M/8800 = 175 KiB for 64 bit platforms
// and 1G/8800 = 119 KiB for 32 bit platform
// for each compile.....
int kbPerFile = 175;
String osarch = System.getProperty("os.arch");
String dataModel = System.getProperty("sun.arch.data.model");
if ("32".equals(dataModel)) {
// For 32 bit platforms, assume it is slightly smaller
// because of smaller object headers and pointers.
kbPerFile = 119;
}
int numRequiredMBytes = (kbPerFile*numSources)/1024;
Log.debug("For os.arch "+osarch+" the empirically determined heap required per file is "+kbPerFile+"KiB");
Log.debug("Server has "+numMBytes+"MiB of heap.");
Log.debug("Heuristics say that we need "+numRequiredMBytes+"MiB of heap for all source files.");
// Perform heuristics to see how many cores we can use,
// or if we have to the work serially in smaller chunks.
if (numMBytes < numRequiredMBytes) {
// Ouch, cannot fit even a single compile into the heap.
// Split it up into several serial chunks.
concurrentCompiles = false;
// Limit the number of sources for each compile to 500.
if (numSources < 500) {
numCompiles = 1;
sourcesPerCompile = numSources;
Log.debug("Compiling as a single source code chunk to stay within heap size limitations!");
} else if (sourcesPerCompile > 500) {
// This number is very low, and tuned to dealing with the OpenJDK
// where the source is >very< circular! In normal application,
// with less circularity the number could perhaps be increased.
numCompiles = numSources / 500;
sourcesPerCompile = numSources/numCompiles;
Log.debug("Compiling source as "+numCompiles+" code chunks serially to stay within heap size limitations!");
}
} else {
if (numCompiles > 1) {
// Ok, we can fit at least one full compilation on the heap.
float usagePerCompile = (float)numRequiredMBytes / ((float)numCompiles * (float)0.7);
int usage = (int)(usagePerCompile * (float)numCompiles);
Log.debug("Heuristics say that for "+numCompiles+" concurrent compiles we need "+usage+"MiB");
if (usage > numMBytes) {
// Ouch it does not fit. Reduce to a single chunk.
numCompiles = 1;
sourcesPerCompile = numSources;
// What if the relationship betweem number of compile_chunks and num_required_mbytes
// is not linear? Then perhaps 2 chunks would fit where 3 does not. Well, this is
// something to experiment upon in the future.
Log.debug("Limiting compile to a single thread to stay within heap size limitations!");
}
}
}
Log.debug("Compiling sources in "+numCompiles+" chunk(s)");
// Create the chunks to be compiled.
final CompileChunk[] compileChunks = createCompileChunks(pkgSrcs, oldPackageDependents,
numCompiles, sourcesPerCompile);
if (Log.isDebugging()) {
int cn = 1;
for (CompileChunk cc : compileChunks) {
Log.debug("Chunk "+cn+" for "+id+" ---------------");
cn++;
for (URI u : cc.srcs) {
Log.debug(""+u);
}
}
}
long start = System.currentTimeMillis();
// Prepare compilation calls
List<Callable<CompilationSubResult>> compilationCalls = new ArrayList<>();
final Object lock = new Object();
for (int i = 0; i < numCompiles; i++) {
CompileChunk cc = compileChunks[i];
if (cc.srcs.isEmpty()) {
continue;
}
String chunkId = id + "-" + String.valueOf(i);
compilationCalls.add(() -> {
CompilationSubResult result = sjavac.compile("n/a",
chunkId,
args.prepJavacArgs(),
Collections.<File>emptyList(),
cc.srcs,
visibleSources);
synchronized (lock) {
safeWrite(result.stdout, out);
safeWrite(result.stderr, err);
}
return result;
});
}
// Perform compilations and collect results
List<CompilationSubResult> subResults = new ArrayList<>();
List<Future<CompilationSubResult>> futs = new ArrayList<>();
ExecutorService exec = Executors.newFixedThreadPool(concurrentCompiles ? compilationCalls.size() : 1);
for (Callable<CompilationSubResult> compilationCall : compilationCalls) {
futs.add(exec.submit(compilationCall));
}
for (Future<CompilationSubResult> fut : futs) {
try {
subResults.add(fut.get());
} catch (ExecutionException ee) {
Log.error("Compilation failed: " + ee.getMessage());
} catch (InterruptedException ee) {
Log.error("Compilation interrupted: " + ee.getMessage());
Thread.currentThread().interrupt();
}
}
exec.shutdownNow();
// Process each sub result
for (CompilationSubResult subResult : subResults) {
for (String pkg : subResult.packageArtifacts.keySet()) {
Set<URI> pkgArtifacts = subResult.packageArtifacts.get(pkg);
packageArtifacts.merge(pkg, pkgArtifacts, Util::union);
}
for (String pkg : subResult.packageDependencies.keySet()) {
packageDependencies.putIfAbsent(pkg, new HashMap<>());
packageDependencies.get(pkg).putAll(subResult.packageDependencies.get(pkg));
}
for (String pkg : subResult.packageCpDependencies.keySet()) {
packageCpDependencies.putIfAbsent(pkg, new HashMap<>());
packageCpDependencies.get(pkg).putAll(subResult.packageCpDependencies.get(pkg));
}
for (String pkg : subResult.packagePubapis.keySet()) {
packagePubapis.merge(pkg, subResult.packagePubapis.get(pkg), PubApi::mergeTypes);
}
for (String pkg : subResult.dependencyPubapis.keySet()) {
dependencyPubapis.merge(pkg, subResult.dependencyPubapis.get(pkg), PubApi::mergeTypes);
}
// Check the return values.
if (subResult.returnCode != 0) {
rc = false;
}
}
long duration = System.currentTimeMillis() - start;
long minutes = duration/60000;
long seconds = (duration-minutes*60000)/1000;
Log.debug("Compilation of "+numSources+" source files took "+minutes+"m "+seconds+"s");
return rc;
}
private void safeWrite(String str, Writer w) {
if (str.length() > 0) {
try {
w.write(str);
} catch (IOException e) {
Log.error("Could not print compilation output.");
}
}
}
/**
* Split up the sources into compile chunks. If old package dependents information
* is available, sort the order of the chunks into the most dependent first!
* (Typically that chunk contains the java.lang package.) In the future
* we could perhaps improve the heuristics to put the sources into even more sensible chunks.
* Now the package are simple sorted in alphabetical order and chunked, then the chunks
* are sorted on how dependent they are.
*
* @param pkgSrcs The sources to compile.
* @param oldPackageDependents Old package dependents, if non-empty, used to sort the chunks.
* @param numCompiles The number of chunks.
* @param sourcesPerCompile The number of sources per chunk.
* @return
*/
CompileChunk[] createCompileChunks(Map<String,Set<URI>> pkgSrcs,
Map<String,Set<String>> oldPackageDependents,
int numCompiles,
int sourcesPerCompile) {
CompileChunk[] compileChunks = new CompileChunk[numCompiles];
for (int i=0; i<compileChunks.length; ++i) {
compileChunks[i] = new CompileChunk();
}
// Now go through the packages and spread out the source on the different chunks.
int ci = 0;
// Sort the packages
String[] packageNames = pkgSrcs.keySet().toArray(new String[0]);
Arrays.sort(packageNames);
String from = null;
for (String pkgName : packageNames) {
CompileChunk cc = compileChunks[ci];
Set<URI> s = pkgSrcs.get(pkgName);
if (cc.srcs.size()+s.size() > sourcesPerCompile && ci < numCompiles-1) {
from = null;
ci++;
cc = compileChunks[ci];
}
cc.numPackages++;
cc.srcs.addAll(s);
// Calculate nice package names to use as information when compiling.
String justPkgName = Util.justPackageName(pkgName);
// Fetch how many packages depend on this package from the old build state.
Set<String> ss = oldPackageDependents.get(pkgName);
if (ss != null) {
// Accumulate this information onto this chunk.
cc.numDependents += ss.size();
}
if (from == null || from.trim().equals("")) from = justPkgName;
cc.pkgNames.append(justPkgName+"("+s.size()+") ");
cc.pkgFromTos = from+" to "+justPkgName;
}
// If we are compiling serially, sort the chunks, so that the chunk (with the most dependents) (usually the chunk
// containing java.lang.Object, is to be compiled first!
// For concurrent compilation, this does not matter.
Arrays.sort(compileChunks);
return compileChunks;
}
}