blob: ed8e2b5c63d39d610e3c3585b24c5cceaa23ab87 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.harmony.tests.java.lang;
public class MathTest extends junit.framework.TestCase {
double HYP = Math.sqrt(2.0);
double OPP = 1.0;
double ADJ = 1.0;
/* Required to make previous preprocessor flags work - do not remove */
int unused = 0;
/**
* java.lang.Math#abs(double)
*/
public void test_absD() {
// Test for method double java.lang.Math.abs(double)
assertTrue("Incorrect double abs value",
(Math.abs(-1908.8976) == 1908.8976));
assertTrue("Incorrect double abs value",
(Math.abs(1908.8976) == 1908.8976));
}
/**
* java.lang.Math#abs(float)
*/
public void test_absF() {
// Test for method float java.lang.Math.abs(float)
assertTrue("Incorrect float abs value",
(Math.abs(-1908.8976f) == 1908.8976f));
assertTrue("Incorrect float abs value",
(Math.abs(1908.8976f) == 1908.8976f));
}
/**
* java.lang.Math#abs(int)
*/
public void test_absI() {
// Test for method int java.lang.Math.abs(int)
assertTrue("Incorrect int abs value", (Math.abs(-1908897) == 1908897));
assertTrue("Incorrect int abs value", (Math.abs(1908897) == 1908897));
}
/**
* java.lang.Math#abs(long)
*/
public void test_absJ() {
// Test for method long java.lang.Math.abs(long)
assertTrue("Incorrect long abs value",
(Math.abs(-19088976000089L) == 19088976000089L));
assertTrue("Incorrect long abs value",
(Math.abs(19088976000089L) == 19088976000089L));
}
/**
* java.lang.Math#acos(double)
*/
public void test_acosD() {
// Test for method double java.lang.Math.acos(double)
double r = Math.cos(Math.acos(ADJ / HYP));
long lr = Double.doubleToLongBits(r);
long t = Double.doubleToLongBits(ADJ / HYP);
assertTrue("Returned incorrect arc cosine", lr == t || (lr + 1) == t
|| (lr - 1) == t);
}
/**
* java.lang.Math#asin(double)
*/
public void test_asinD() {
// Test for method double java.lang.Math.asin(double)
double r = Math.sin(Math.asin(OPP / HYP));
long lr = Double.doubleToLongBits(r);
long t = Double.doubleToLongBits(OPP / HYP);
assertTrue("Returned incorrect arc sine", lr == t || (lr + 1) == t
|| (lr - 1) == t);
}
/**
* java.lang.Math#atan(double)
*/
public void test_atanD() {
// Test for method double java.lang.Math.atan(double)
double answer = Math.tan(Math.atan(1.0));
assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
&& answer >= 9.9999999999999983E-1);
}
/**
* java.lang.Math#atan2(double, double)
*/
public void test_atan2DD() {
// Test for method double java.lang.Math.atan2(double, double)
double answer = Math.atan(Math.tan(1.0));
assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
&& answer >= 9.9999999999999983E-1);
}
/**
* java.lang.Math#cbrt(double)
*/
public void test_cbrt_D() {
//Test for special situations
assertTrue(Double.isNaN(Math.cbrt(Double.NaN)));
assertEquals(Double.POSITIVE_INFINITY, Math.cbrt(Double.POSITIVE_INFINITY), 0D);
assertEquals(Double.NEGATIVE_INFINITY, Math.cbrt(Double.NEGATIVE_INFINITY), 0D);
assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math.cbrt(0.0)));
assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math.cbrt(+0.0)));
assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math.cbrt(-0.0)));
assertEquals(3.0, Math.cbrt(27.0), 0D);
assertEquals(23.111993172558684, Math.cbrt(12345.6), Math.ulp(23.111993172558684));
assertEquals(5.643803094122362E102, Math.cbrt(Double.MAX_VALUE), 0D);
assertEquals(0.01, Math.cbrt(0.000001), 0D);
assertEquals(-3.0, Math.cbrt(-27.0), 0D);
assertEquals(-23.111993172558684, Math.cbrt(-12345.6), Math.ulp(-23.111993172558684));
assertEquals(1.7031839360032603E-108, Math.cbrt(Double.MIN_VALUE), 0D);
assertEquals(-0.01, Math.cbrt(-0.000001), 0D);
}
/**
* java.lang.Math#ceil(double)
*/
public void test_ceilD() {
// Test for method double java.lang.Math.ceil(double)
assertEquals("Incorrect ceiling for double",
79, Math.ceil(78.89), 0);
assertEquals("Incorrect ceiling for double",
-78, Math.ceil(-78.89), 0);
}
/**
* cases for test_copySign_DD in MathTest/StrictMathTest
*/
static final double[] COPYSIGN_DD_CASES = new double[] {
Double.POSITIVE_INFINITY, Double.MAX_VALUE, 3.4E302, 2.3,
Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
-Double.MIN_NORMAL, -4.5, -3.4E102, -Double.MAX_VALUE,
Double.NEGATIVE_INFINITY };
/**
* {@link java.lang.Math#copySign(double, double)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_copySign_DD() {
for (int i = 0; i < COPYSIGN_DD_CASES.length; i++) {
final double magnitude = COPYSIGN_DD_CASES[i];
final long absMagnitudeBits = Double.doubleToLongBits(Math
.abs(magnitude));
final long negMagnitudeBits = Double.doubleToLongBits(-Math
.abs(magnitude));
// cases for NaN
assertEquals("If the sign is NaN, the result should be positive.",
absMagnitudeBits, Double.doubleToLongBits(Math.copySign(
magnitude, Double.NaN)));
assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
Double.NaN, magnitude)));
for (int j = 0; j < COPYSIGN_DD_CASES.length; j++) {
final double sign = COPYSIGN_DD_CASES[j];
final long resultBits = Double.doubleToLongBits(Math.copySign(
magnitude, sign));
if (sign > 0 || Double.valueOf(+0.0).equals(sign)
|| Double.valueOf(0.0).equals(sign)) {
assertEquals(
"If the sign is positive, the result should be positive.",
absMagnitudeBits, resultBits);
}
if (sign < 0 || Double.valueOf(-0.0).equals(sign)) {
assertEquals(
"If the sign is negative, the result should be negative.",
negMagnitudeBits, resultBits);
}
}
}
assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
Double.NaN, Double.NaN)));
try {
Math.copySign((Double) null, 2.3);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.copySign(2.3, (Double) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.copySign((Double) null, (Double) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* cases for test_copySign_FF in MathTest/StrictMathTest
*/
static final float[] COPYSIGN_FF_CASES = new float[] {
Float.POSITIVE_INFINITY, Float.MAX_VALUE, 3.4E12f, 2.3f,
Float.MIN_NORMAL, Float.MIN_NORMAL / 2, Float.MIN_VALUE, +0.0f,
0.0f, -0.0f, -Float.MIN_VALUE, -Float.MIN_NORMAL / 2,
-Float.MIN_NORMAL, -4.5f, -5.6442E21f, -Float.MAX_VALUE,
Float.NEGATIVE_INFINITY };
/**
* {@link java.lang.Math#copySign(float, float)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_copySign_FF() {
for (int i = 0; i < COPYSIGN_FF_CASES.length; i++) {
final float magnitude = COPYSIGN_FF_CASES[i];
final int absMagnitudeBits = Float.floatToIntBits(Math
.abs(magnitude));
final int negMagnitudeBits = Float.floatToIntBits(-Math
.abs(magnitude));
// cases for NaN
assertEquals("If the sign is NaN, the result should be positive.",
absMagnitudeBits, Float.floatToIntBits(Math.copySign(
magnitude, Float.NaN)));
assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
Float.NaN, magnitude)));
for (int j = 0; j < COPYSIGN_FF_CASES.length; j++) {
final float sign = COPYSIGN_FF_CASES[j];
final int resultBits = Float.floatToIntBits(Math.copySign(
magnitude, sign));
if (sign > 0 || Float.valueOf(+0.0f).equals(sign)
|| Float.valueOf(0.0f).equals(sign)) {
assertEquals(
"If the sign is positive, the result should be positive.",
absMagnitudeBits, resultBits);
}
if (sign < 0 || Float.valueOf(-0.0f).equals(sign)) {
assertEquals(
"If the sign is negative, the result should be negative.",
negMagnitudeBits, resultBits);
}
}
}
assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
Float.NaN, Float.NaN)));
try {
Math.copySign((Float) null, 2.3f);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.copySign(2.3f, (Float) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.copySign((Float) null, (Float) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* java.lang.Math#cos(double)
*/
public void test_cosD() {
// Test for method double java.lang.Math.cos(double)
assertEquals("Incorrect answer", 1.0, Math.cos(0), 0D);
assertEquals("Incorrect answer", 0.5403023058681398, Math.cos(1), 0D);
}
/**
* java.lang.Math#cosh(double)
*/
public void test_cosh_D() {
// Test for special situations
assertTrue(Double.isNaN(Math.cosh(Double.NaN)));
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.cosh(Double.POSITIVE_INFINITY), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.cosh(Double.NEGATIVE_INFINITY), 0D);
assertEquals("Should return 1.0", 1.0, Math.cosh(+0.0), 0D);
assertEquals("Should return 1.0", 1.0, Math.cosh(-0.0), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.cosh(1234.56), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.cosh(-1234.56), 0D);
assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
.cosh(0.000001), 0D);
assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
.cosh(-0.000001), 0D);
assertEquals("Should return 5.212214351945598", 5.212214351945598, Math
.cosh(2.33482), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.cosh(Double.MAX_VALUE), 0D);
assertEquals("Should return 1.0", 1.0, Math.cosh(Double.MIN_VALUE), 0D);
}
/**
* java.lang.Math#exp(double)
*/
public void test_expD() {
// Test for method double java.lang.Math.exp(double)
assertTrue("Incorrect answer returned for simple power", Math.abs(Math
.exp(4D)
- Math.E * Math.E * Math.E * Math.E) < 0.1D);
assertTrue("Incorrect answer returned for larger power", Math.log(Math
.abs(Math.exp(5.5D)) - 5.5D) < 10.0D);
}
/**
* java.lang.Math#expm1(double)
*/
public void test_expm1_D() {
// Test for special cases
assertTrue("Should return NaN", Double.isNaN(Math.expm1(Double.NaN)));
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.expm1(Double.POSITIVE_INFINITY), 0D);
assertEquals("Should return -1.0", -1.0, Math
.expm1(Double.NEGATIVE_INFINITY), 0D);
assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
.expm1(0.0)));
assertEquals(Double.doubleToLongBits(+0.0), Double
.doubleToLongBits(Math.expm1(+0.0)));
assertEquals(Double.doubleToLongBits(-0.0), Double
.doubleToLongBits(Math.expm1(-0.0)));
assertEquals("Should return -9.999950000166666E-6",
-9.999950000166666E-6, Math.expm1(-0.00001), 0D);
assertEquals("Should return 1.0145103074469635E60",
1.0145103074469635E60, Math.expm1(138.16951162), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math
.expm1(123456789123456789123456789.4521584223), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.expm1(Double.MAX_VALUE), 0D);
assertEquals("Should return MIN_VALUE", Double.MIN_VALUE, Math
.expm1(Double.MIN_VALUE), 0D);
}
/**
* java.lang.Math#floor(double)
*/
public void test_floorD() {
assertEquals("Incorrect floor for int", 42, Math.floor(42), 0);
assertEquals("Incorrect floor for -int", -2, Math.floor(-2), 0);
assertEquals("Incorrect floor for zero", 0d, Math.floor(0d), 0);
assertEquals("Incorrect floor for +double", 78, Math.floor(78.89), 0);
assertEquals("Incorrect floor for -double", -79, Math.floor(-78.89), 0);
assertEquals("floor large +double", 3.7314645675925406E19, Math.floor(3.7314645675925406E19), 0);
assertEquals("floor large -double", -8.173521839218E12, Math.floor(-8.173521839218E12), 0);
assertEquals("floor small double", 0.0d, Math.floor(1.11895241315E-102), 0);
// Compare toString representations here since -0.0 = +0.0, and
// NaN != NaN and we need to distinguish
assertEquals("Floor failed for NaN",
Double.toString(Double.NaN), Double.toString(Math.floor(Double.NaN)));
assertEquals("Floor failed for +0.0",
Double.toString(+0.0d), Double.toString(Math.floor(+0.0d)));
assertEquals("Floor failed for -0.0",
Double.toString(-0.0d), Double.toString(Math.floor(-0.0d)));
assertEquals("Floor failed for +infinity",
Double.toString(Double.POSITIVE_INFINITY), Double.toString(Math.floor(Double.POSITIVE_INFINITY)));
assertEquals("Floor failed for -infinity",
Double.toString(Double.NEGATIVE_INFINITY), Double.toString(Math.floor(Double.NEGATIVE_INFINITY)));
}
/**
* cases for test_getExponent_D in MathTest/StrictMathTest
*/
static final double GETEXPONENT_D_CASES[] = new double[] {
Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY,
Double.MAX_VALUE, -Double.MAX_VALUE, 2.342E231, -2.342E231, 2800.0,
-2800.0, 5.323, -5.323, 1.323, -1.323, 0.623, -0.623, 0.323,
-0.323, Double.MIN_NORMAL * 24, -Double.MIN_NORMAL * 24,
Double.MIN_NORMAL, -Double.MIN_NORMAL, Double.MIN_NORMAL / 2,
-Double.MIN_NORMAL / 2, Double.MIN_VALUE, -Double.MIN_VALUE, +0.0,
0.0, -0.0, Double.NaN };
/**
* result for test_getExponent_D in MathTest/StrictMathTest
*/
static final int GETEXPONENT_D_RESULTS[] = new int[] {
Double.MAX_EXPONENT + 1, Double.MAX_EXPONENT + 1,
Double.MAX_EXPONENT, Double.MAX_EXPONENT, 768, 768, 11, 11, 2, 2,
0, 0, -1, -1, -2, -2, -1018, -1018, Double.MIN_EXPONENT,
Double.MIN_EXPONENT, Double.MIN_EXPONENT - 1,
Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
Double.MAX_EXPONENT + 1 };
/**
* {@link java.lang.Math#getExponent(double)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_getExponent_D() {
for (int i = 0; i < GETEXPONENT_D_CASES.length; i++) {
final double number = GETEXPONENT_D_CASES[i];
final int result = GETEXPONENT_D_RESULTS[i];
assertEquals("Wrong result of getExponent(double).", result, Math
.getExponent(number));
}
try {
Math.getExponent((Double) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* cases for test_getExponent_F in MathTest/StrictMathTest
*/
static final float GETEXPONENT_F_CASES[] = new float[] {
Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.MAX_VALUE,
-Float.MAX_VALUE, 3.4256E23f, -3.4256E23f, 2800.0f, -2800.0f,
5.323f, -5.323f, 1.323f, -1.323f, 0.623f, -0.623f, 0.323f, -0.323f,
Float.MIN_NORMAL * 24, -Float.MIN_NORMAL * 24, Float.MIN_NORMAL,
-Float.MIN_NORMAL, Float.MIN_NORMAL / 2, -Float.MIN_NORMAL / 2,
Float.MIN_VALUE, -Float.MIN_VALUE, +0.0f, 0.0f, -0.0f, Float.NaN, 1, Float.MIN_NORMAL * 1.5f };
/**
* result for test_getExponent_F in MathTest/StrictMathTest
*/
static final int GETEXPONENT_F_RESULTS[] = new int[] {
Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT,
Float.MAX_EXPONENT, 78, 78, 11, 11, 2, 2, 0, 0, -1, -1, -2, -2,
-122, -122, Float.MIN_EXPONENT, Float.MIN_EXPONENT,
Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
Float.MIN_EXPONENT - 1, Float.MAX_EXPONENT + 1, 0, Float.MIN_EXPONENT };
/**
* {@link java.lang.Math#getExponent(float)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_getExponent_F() {
for (int i = 0; i < GETEXPONENT_F_CASES.length; i++) {
final float number = GETEXPONENT_F_CASES[i];
final int result = GETEXPONENT_F_RESULTS[i];
assertEquals("Wrong result of getExponent(float).", result, Math
.getExponent(number));
}
try {
Math.getExponent((Float) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* java.lang.Math#hypot(double, double)
*/
public void test_hypot_DD() {
// Test for special cases
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
1.0), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
123.324), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.hypot(-758.2587,
Double.POSITIVE_INFINITY), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.hypot(5687.21,
Double.NEGATIVE_INFINITY), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY), 0D);
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY), 0D);
assertTrue("Should be NaN", Double.isNaN(Math.hypot(Double.NaN,
2342301.89843)));
assertTrue("Should be NaN", Double.isNaN(Math.hypot(-345.2680,
Double.NaN)));
assertEquals("Should return 2396424.905416697", 2396424.905416697, Math
.hypot(12322.12, -2396393.2258), 0D);
assertEquals("Should return 138.16958070558556", 138.16958070558556,
Math.hypot(-138.16951162, 0.13817035864), 0D);
assertEquals("Should return 1.7976931348623157E308",
1.7976931348623157E308, Math.hypot(Double.MAX_VALUE, 211370.35), 0D);
assertEquals("Should return 5413.7185", 5413.7185, Math.hypot(
-5413.7185, Double.MIN_VALUE), 0D);
}
/**
* java.lang.Math#IEEEremainder(double, double)
*/
public void test_IEEEremainderDD() {
// Test for method double java.lang.Math.IEEEremainder(double, double)
assertEquals("Incorrect remainder returned",
0.0, Math.IEEEremainder(1.0, 1.0), 0D);
assertTrue("Incorrect remainder returned", Math.IEEEremainder(1.32,
89.765) >= 1.4705063220631647E-2
|| Math.IEEEremainder(1.32, 89.765) >= 1.4705063220631649E-2);
}
/**
* java.lang.Math#log(double)
*/
public void test_logD() {
// Test for method double java.lang.Math.log(double)
for (double d = 10; d >= -10; d -= 0.5) {
double answer = Math.log(Math.exp(d));
assertTrue("Answer does not equal expected answer for d = " + d
+ " answer = " + answer, Math.abs(answer - d) <= Math
.abs(d * 0.00000001));
}
}
/**
* java.lang.Math#log10(double)
*/
@SuppressWarnings("boxing")
public void test_log10_D() {
// Test for special cases
assertTrue(Double.isNaN(Math.log10(Double.NaN)));
assertTrue(Double.isNaN(Math.log10(-2541.05745687234187532)));
assertTrue(Double.isNaN(Math.log10(-0.1)));
assertEquals(Double.POSITIVE_INFINITY, Math.log10(Double.POSITIVE_INFINITY));
assertEquals(Double.NEGATIVE_INFINITY, Math.log10(0.0));
assertEquals(Double.NEGATIVE_INFINITY, Math.log10(+0.0));
assertEquals(Double.NEGATIVE_INFINITY, Math.log10(-0.0));
assertEquals(3.0, Math.log10(1000.0));
assertEquals(14.0, Math.log10(Math.pow(10, 14)));
assertEquals(3.7389561269540406, Math.log10(5482.2158));
assertEquals(14.661551142893833, Math.log10(458723662312872.125782332587));
assertEquals(-0.9083828622192334, Math.log10(0.12348583358871));
assertEquals(308.25471555991675, Math.log10(Double.MAX_VALUE));
assertEquals(-323.3062153431158, Math.log10(Double.MIN_VALUE));
}
/**
* java.lang.Math#log1p(double)
*/
public void test_log1p_D() {
// Test for special cases
assertTrue("Should return NaN", Double.isNaN(Math.log1p(Double.NaN)));
assertTrue("Should return NaN", Double.isNaN(Math.log1p(-32.0482175)));
assertEquals("Should return POSITIVE_INFINITY",
Double.POSITIVE_INFINITY, Math.log1p(Double.POSITIVE_INFINITY), 0D);
assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
.log1p(0.0)));
assertEquals(Double.doubleToLongBits(+0.0), Double
.doubleToLongBits(Math.log1p(+0.0)));
assertEquals(Double.doubleToLongBits(-0.0), Double
.doubleToLongBits(Math.log1p(-0.0)));
assertEquals("Should return -0.2941782295312541", -0.2941782295312541,
Math.log1p(-0.254856327), 0D);
assertEquals("Should return 7.368050685564151", 7.368050685564151, Math
.log1p(1583.542), 0D);
assertEquals("Should return 0.4633708685409921", 0.4633708685409921,
Math.log1p(0.5894227), 0D);
assertEquals("Should return 709.782712893384", 709.782712893384, Math
.log1p(Double.MAX_VALUE), 0D);
assertEquals("Should return Double.MIN_VALUE", Double.MIN_VALUE, Math
.log1p(Double.MIN_VALUE), 0D);
}
/**
* java.lang.Math#max(double, double)
*/
public void test_maxDD() {
// Test for method double java.lang.Math.max(double, double)
assertEquals("Incorrect double max value", 1908897.6000089, Math.max(-1908897.6000089,
1908897.6000089), 0D);
assertEquals("Incorrect double max value",
1908897.6000089, Math.max(2.0, 1908897.6000089), 0D);
assertEquals("Incorrect double max value", -2.0, Math.max(-2.0,
-1908897.6000089), 0D);
// Compare toString representations here since -0.0 = +0.0, and
// NaN != NaN and we need to distinguish
assertEquals("Max failed for NaN",
Double.toString(Double.NaN), Double.toString(Math.max(Double.NaN, 42.0d)));
assertEquals("Max failed for NaN",
Double.toString(Double.NaN), Double.toString(Math.max(42.0d, Double.NaN)));
assertEquals("Max failed for 0.0",
Double.toString(+0.0d), Double.toString(Math.max(+0.0d, -0.0d)));
assertEquals("Max failed for 0.0",
Double.toString(+0.0d), Double.toString(Math.max(-0.0d, +0.0d)));
assertEquals("Max failed for -0.0d",
Double.toString(-0.0d), Double.toString(Math.max(-0.0d, -0.0d)));
assertEquals("Max failed for 0.0",
Double.toString(+0.0d), Double.toString(Math.max(+0.0d, +0.0d)));
}
/**
* java.lang.Math#max(float, float)
*/
public void test_maxFF() {
// Test for method float java.lang.Math.max(float, float)
assertTrue("Incorrect float max value", Math.max(-1908897.600f,
1908897.600f) == 1908897.600f);
assertTrue("Incorrect float max value",
Math.max(2.0f, 1908897.600f) == 1908897.600f);
assertTrue("Incorrect float max value",
Math.max(-2.0f, -1908897.600f) == -2.0f);
// Compare toString representations here since -0.0 = +0.0, and
// NaN != NaN and we need to distinguish
assertEquals("Max failed for NaN",
Float.toString(Float.NaN), Float.toString(Math.max(Float.NaN, 42.0f)));
assertEquals("Max failed for NaN",
Float.toString(Float.NaN), Float.toString(Math.max(42.0f, Float.NaN)));
assertEquals("Max failed for 0.0",
Float.toString(+0.0f), Float.toString(Math.max(+0.0f, -0.0f)));
assertEquals("Max failed for 0.0",
Float.toString(+0.0f), Float.toString(Math.max(-0.0f, +0.0f)));
assertEquals("Max failed for -0.0f",
Float.toString(-0.0f), Float.toString(Math.max(-0.0f, -0.0f)));
assertEquals("Max failed for 0.0",
Float.toString(+0.0f), Float.toString(Math.max(+0.0f, +0.0f)));
}
/**
* java.lang.Math#max(int, int)
*/
public void test_maxII() {
// Test for method int java.lang.Math.max(int, int)
assertEquals("Incorrect int max value",
19088976, Math.max(-19088976, 19088976));
assertEquals("Incorrect int max value",
19088976, Math.max(20, 19088976));
assertEquals("Incorrect int max value", -20, Math.max(-20, -19088976));
}
/**
* java.lang.Math#max(long, long)
*/
public void test_maxJJ() {
// Test for method long java.lang.Math.max(long, long)
assertEquals("Incorrect long max value", 19088976000089L, Math.max(-19088976000089L,
19088976000089L));
assertEquals("Incorrect long max value",
19088976000089L, Math.max(20, 19088976000089L));
assertEquals("Incorrect long max value",
-20, Math.max(-20, -19088976000089L));
}
/**
* java.lang.Math#min(double, double)
*/
public void test_minDD() {
// Test for method double java.lang.Math.min(double, double)
assertEquals("Incorrect double min value", -1908897.6000089, Math.min(-1908897.6000089,
1908897.6000089), 0D);
assertEquals("Incorrect double min value",
2.0, Math.min(2.0, 1908897.6000089), 0D);
assertEquals("Incorrect double min value", -1908897.6000089, Math.min(-2.0,
-1908897.6000089), 0D);
assertEquals("Incorrect double min value", 1.0d, Math.min(1.0d, 1.0d));
// Compare toString representations here since -0.0 = +0.0, and
// NaN != NaN and we need to distinguish
assertEquals("Min failed for NaN",
Double.toString(Double.NaN), Double.toString(Math.min(Double.NaN, 42.0d)));
assertEquals("Min failed for NaN",
Double.toString(Double.NaN), Double.toString(Math.min(42.0d, Double.NaN)));
assertEquals("Min failed for -0.0",
Double.toString(-0.0d), Double.toString(Math.min(+0.0d, -0.0d)));
assertEquals("Min failed for -0.0",
Double.toString(-0.0d), Double.toString(Math.min(-0.0d, +0.0d)));
assertEquals("Min failed for -0.0d",
Double.toString(-0.0d), Double.toString(Math.min(-0.0d, -0.0d)));
assertEquals("Min failed for 0.0",
Double.toString(+0.0d), Double.toString(Math.min(+0.0d, +0.0d)));
}
/**
* java.lang.Math#min(float, float)
*/
public void test_minFF() {
// Test for method float java.lang.Math.min(float, float)
assertTrue("Incorrect float min value", Math.min(-1908897.600f,
1908897.600f) == -1908897.600f);
assertTrue("Incorrect float min value",
Math.min(2.0f, 1908897.600f) == 2.0f);
assertTrue("Incorrect float min value",
Math.min(-2.0f, -1908897.600f) == -1908897.600f);
assertEquals("Incorrect float min value", 1.0f, Math.min(1.0f, 1.0f));
// Compare toString representations here since -0.0 = +0.0, and
// NaN != NaN and we need to distinguish
assertEquals("Min failed for NaN",
Float.toString(Float.NaN), Float.toString(Math.min(Float.NaN, 42.0f)));
assertEquals("Min failed for NaN",
Float.toString(Float.NaN), Float.toString(Math.min(42.0f, Float.NaN)));
assertEquals("Min failed for -0.0",
Float.toString(-0.0f), Float.toString(Math.min(+0.0f, -0.0f)));
assertEquals("Min failed for -0.0",
Float.toString(-0.0f), Float.toString(Math.min(-0.0f, +0.0f)));
assertEquals("Min failed for -0.0f",
Float.toString(-0.0f), Float.toString(Math.min(-0.0f, -0.0f)));
assertEquals("Min failed for 0.0",
Float.toString(+0.0f), Float.toString(Math.min(+0.0f, +0.0f)));
}
/**
* java.lang.Math#min(int, int)
*/
public void test_minII() {
// Test for method int java.lang.Math.min(int, int)
assertEquals("Incorrect int min value",
-19088976, Math.min(-19088976, 19088976));
assertEquals("Incorrect int min value", 20, Math.min(20, 19088976));
assertEquals("Incorrect int min value",
-19088976, Math.min(-20, -19088976));
}
/**
* java.lang.Math#min(long, long)
*/
public void test_minJJ() {
// Test for method long java.lang.Math.min(long, long)
assertEquals("Incorrect long min value", -19088976000089L, Math.min(-19088976000089L,
19088976000089L));
assertEquals("Incorrect long min value",
20, Math.min(20, 19088976000089L));
assertEquals("Incorrect long min value",
-19088976000089L, Math.min(-20, -19088976000089L));
}
/**
* start number cases for test_nextAfter_DD in MathTest/StrictMathTest
* NEXTAFTER_DD_START_CASES[i][0] is the start number
* NEXTAFTER_DD_START_CASES[i][1] is the nextUp of start number
* NEXTAFTER_DD_START_CASES[i][2] is the nextDown of start number
*/
static final double NEXTAFTER_DD_START_CASES[][] = new double[][] {
{ 3.4, 3.4000000000000004, 3.3999999999999995 },
{ -3.4, -3.3999999999999995, -3.4000000000000004 },
{ 3.4233E109, 3.4233000000000005E109, 3.4232999999999996E109 },
{ -3.4233E109, -3.4232999999999996E109, -3.4233000000000005E109 },
{ +0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
{ 0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
{ -0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
{ Double.MIN_VALUE, 1.0E-323, +0.0 },
{ -Double.MIN_VALUE, -0.0, -1.0E-323 },
{ Double.MIN_NORMAL, 2.225073858507202E-308, 2.225073858507201E-308 },
{ -Double.MIN_NORMAL, -2.225073858507201E-308,
-2.225073858507202E-308 },
{ Double.MAX_VALUE, Double.POSITIVE_INFINITY,
1.7976931348623155E308 },
{ -Double.MAX_VALUE, -1.7976931348623155E308,
Double.NEGATIVE_INFINITY },
{ Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
Double.MAX_VALUE },
{ Double.NEGATIVE_INFINITY, -Double.MAX_VALUE,
Double.NEGATIVE_INFINITY } };
/**
* direction number cases for test_nextAfter_DD/test_nextAfter_FD in
* MathTest/StrictMathTest
*/
static final double NEXTAFTER_DD_FD_DIRECTION_CASES[] = new double[] {
Double.POSITIVE_INFINITY, Double.MAX_VALUE, 8.8, 3.4, 1.4,
Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
-Double.MIN_NORMAL, -1.4, -3.4, -8.8, -Double.MAX_VALUE,
Double.NEGATIVE_INFINITY };
/**
* {@link java.lang.Math#nextAfter(double, double)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_nextAfter_DD() {
// test for most cases without exception
for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
final double start = NEXTAFTER_DD_START_CASES[i][0];
final long nextUpBits = Double
.doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
final long nextDownBits = Double
.doubleToLongBits(NEXTAFTER_DD_START_CASES[i][2]);
for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
final long resultBits = Double.doubleToLongBits(Math.nextAfter(
start, direction));
final long directionBits = Double.doubleToLongBits(direction);
if (direction > start) {
assertEquals("Result should be next up-number.",
nextUpBits, resultBits);
} else if (direction < start) {
assertEquals("Result should be next down-number.",
nextDownBits, resultBits);
} else {
assertEquals("Result should be direction.", directionBits,
resultBits);
}
}
}
// test for cases with NaN
for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
assertTrue("The result should be NaN.", Double.isNaN(Math
.nextAfter(NEXTAFTER_DD_START_CASES[i][0], Double.NaN)));
}
for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
assertTrue("The result should be NaN.", Double.isNaN(Math
.nextAfter(Double.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
}
assertTrue("The result should be NaN.", Double.isNaN(Math.nextAfter(
Double.NaN, Double.NaN)));
// test for exception
try {
Math.nextAfter((Double) null, 2.3);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.nextAfter(2.3, (Double) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.nextAfter((Double) null, (Double) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* start number cases for test_nextAfter_FD in MathTest/StrictMathTest
* NEXTAFTER_FD_START_CASES[i][0] is the start number
* NEXTAFTER_FD_START_CASES[i][1] is the nextUp of start number
* NEXTAFTER_FD_START_CASES[i][2] is the nextDown of start number
*/
static final float NEXTAFTER_FD_START_CASES[][] = new float[][] {
{ 3.4f, 3.4000003f, 3.3999999f },
{ -3.4f, -3.3999999f, -3.4000003f },
{ 3.4233E19f, 3.4233002E19f, 3.4232998E19f },
{ -3.4233E19f, -3.4232998E19f, -3.4233002E19f },
{ +0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
{ 0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
{ -0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
{ Float.MIN_VALUE, 2.8E-45f, +0.0f },
{ -Float.MIN_VALUE, -0.0f, -2.8E-45f },
{ Float.MIN_NORMAL, 1.1754945E-38f, 1.1754942E-38f },
{ -Float.MIN_NORMAL, -1.1754942E-38f, -1.1754945E-38f },
{ Float.MAX_VALUE, Float.POSITIVE_INFINITY, 3.4028233E38f },
{ -Float.MAX_VALUE, -3.4028233E38f, Float.NEGATIVE_INFINITY },
{ Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.MAX_VALUE },
{ Float.NEGATIVE_INFINITY, -Float.MAX_VALUE,
Float.NEGATIVE_INFINITY } };
/**
* {@link java.lang.Math#nextAfter(float, double)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_nextAfter_FD() {
// test for most cases without exception
for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
final float start = NEXTAFTER_FD_START_CASES[i][0];
final int nextUpBits = Float
.floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
final int nextDownBits = Float
.floatToIntBits(NEXTAFTER_FD_START_CASES[i][2]);
for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
final int resultBits = Float.floatToIntBits(Math.nextAfter(
start, direction));
if (direction > start) {
assertEquals("Result should be next up-number.",
nextUpBits, resultBits);
} else if (direction < start) {
assertEquals("Result should be next down-number.",
nextDownBits, resultBits);
} else {
final int equivalentBits = Float.floatToIntBits(new Float(
direction));
assertEquals(
"Result should be a number equivalent to direction.",
equivalentBits, resultBits);
}
}
}
// test for cases with NaN
for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
NEXTAFTER_FD_START_CASES[i][0], Float.NaN)));
}
for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
Float.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
}
assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
Float.NaN, Float.NaN)));
// test for exception
try {
Math.nextAfter((Float) null, 2.3);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.nextAfter(2.3, (Float) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.nextAfter((Float) null, (Float) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* {@link java.lang.Math#nextUp(double)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_nextUp_D() {
// This method is semantically equivalent to nextAfter(d,
// Double.POSITIVE_INFINITY),
// so we use the data of test_nextAfter_DD
for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
final double start = NEXTAFTER_DD_START_CASES[i][0];
final long nextUpBits = Double
.doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
final long resultBits = Double.doubleToLongBits(Math.nextUp(start));
assertEquals("Result should be next up-number.", nextUpBits,
resultBits);
}
// test for cases with NaN
assertTrue("The result should be NaN.", Double.isNaN(Math
.nextUp(Double.NaN)));
// test for exception
try {
Math.nextUp((Double) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* {@link java.lang.Math#nextUp(float)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_nextUp_F() {
// This method is semantically equivalent to nextAfter(f,
// Float.POSITIVE_INFINITY),
// so we use the data of test_nextAfter_FD
for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
final float start = NEXTAFTER_FD_START_CASES[i][0];
final int nextUpBits = Float
.floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
final int resultBits = Float.floatToIntBits(Math.nextUp(start));
assertEquals("Result should be next up-number.", nextUpBits,
resultBits);
}
// test for cases with NaN
assertTrue("The result should be NaN.", Float.isNaN(Math
.nextUp(Float.NaN)));
// test for exception
try {
Math.nextUp((Float) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
}
/**
* java.lang.Math#pow(double, double)
*/
public void test_powDD() {
// Test for method double java.lang.Math.pow(double, double)
double NZERO = longTodouble(doubleTolong(0.0) ^ 0x8000000000000000L);
double p1 = 1.0;
double p2 = 2.0;
double p3 = 3.0;
double p4 = 4.0;
double p5 = 5.0;
double p6 = 6.0;
double p7 = 7.0;
double p8 = 8.0;
double p9 = 9.0;
double p10 = 10.0;
double p11 = 11.0;
double p12 = 12.0;
double p13 = 13.0;
double p14 = 14.0;
double p15 = 15.0;
double p16 = 16.0;
double[] values = { p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,
p13, p14, p15, p16 };
for (int x = 0; x < values.length; x++) {
double dval = values[x];
double nagateDval = negateDouble(dval);
if (nagateDval == Double.NaN) {
continue;
}
// If the second argument is positive or negative zero, then the
// result is 1.0.
assertEquals("Result should be Math.pow(" + dval
+ ",-0.0)=+1.0", 1.0, Math.pow(dval, NZERO));
assertEquals("Result should be Math.pow(" + nagateDval
+ ",-0.0)=+1.0", 1.0, Math.pow(nagateDval, NZERO));
assertEquals("Result should be Math.pow(" + dval
+ ",+0.0)=+1.0", 1.0, Math.pow(dval, +0.0));
assertEquals("Result should be Math.pow(" + nagateDval
+ ",+0.0)=+1.0", 1.0, Math.pow(nagateDval, +0.0));
// If the second argument is 1.0, then the result is the same as the
// first argument.
assertEquals("Result should be Math.pow(" + dval + "," + 1.0 + ")="
+ dval, dval, Math.pow(dval, 1.0));
assertEquals("Result should be Math.pow(" + nagateDval + "," + 1.0
+ ")=" + nagateDval, nagateDval, Math.pow(nagateDval, 1.0));
// If the second argument is NaN, then the result is NaN.
assertEquals("Result should be Math.pow(" + dval + "," + Double.NaN
+ ")=" + Double.NaN, Double.NaN, Math.pow(dval, Double.NaN));
assertEquals("Result should be Math.pow(" + nagateDval + ","
+ Double.NaN + ")=" + Double.NaN, Double.NaN, Math.pow(nagateDval,
Double.NaN));
if (dval > 1) {
// If the first argument is NaN and the second argument is
// nonzero,
// then the result is NaN.
assertEquals("Result should be Math.pow(" + Double.NaN + ","
+ dval + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
assertEquals("Result should be Math.pow(" + Double.NaN + ","
+ nagateDval + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN,
nagateDval));
/*
* If the first argument is positive zero and the second
* argument is greater than zero, or the first argument is
* positive infinity and the second argument is less than zero,
* then the result is positive zero.
*/
assertEquals("Result should be Math.pow(" + 0.0 + "," + dval
+ ")=" + 0.0, +0.0, Math.pow(0.0, dval));
assertEquals("Result should be Math.pow("
+ Double.POSITIVE_INFINITY + "," + nagateDval + ")="
+ 0.0, +0.0, Math.pow(Double.POSITIVE_INFINITY, nagateDval));
/*
* If the first argument is positive zero and the second
* argument is less than zero, or the first argument is positive
* infinity and the second argument is greater than zero, then
* the result is positive infinity.
*/
assertEquals("Result should be Math.pow(" + 0.0 + ","
+ nagateDval + ")=" + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
Math.pow(0.0, nagateDval));
assertEquals("Result should be Math.pow("
+ Double.POSITIVE_INFINITY + "," + dval + ")="
+ Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
Double.POSITIVE_INFINITY, dval));
// Not a finite odd integer
if (dval % 2 == 0) {
/*
* If the first argument is negative zero and the second
* argument is greater than zero but not a finite odd
* integer, or the first argument is negative infinity and
* the second argument is less than zero but not a finite
* odd integer, then the result is positive zero.
*/
assertEquals("Result should be Math.pow(" + NZERO + ","
+ dval + ")=" + 0.0, +0.0, Math.pow(NZERO, dval));
assertEquals("Result should be Math.pow("
+ Double.NEGATIVE_INFINITY + "," + nagateDval
+ ")=" + 0.0, +0.0, Math.pow(Double.NEGATIVE_INFINITY,
nagateDval));
/*
* If the first argument is negative zero and the second
* argument is less than zero but not a finite odd integer,
* or the first argument is negative infinity and the second
* argument is greater than zero but not a finite odd
* integer, then the result is positive infinity.
*/
assertEquals("Result should be Math.pow(" + NZERO + ","
+ nagateDval + ")=" + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
Math.pow(NZERO, nagateDval));
assertEquals("Result should be Math.pow("
+ Double.NEGATIVE_INFINITY + "," + dval + ")="
+ Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
Double.NEGATIVE_INFINITY, dval));
}
// finite odd integer
if (dval % 2 != 0) {
/*
* If the first argument is negative zero and the second
* argument is a positive finite odd integer, or the first
* argument is negative infinity and the second argument is
* a negative finite odd integer, then the result is
* negative zero.
*/
assertEquals("Result should be Math.pow(" + NZERO + ","
+ dval + ")=" + NZERO, NZERO, Math.pow(NZERO, dval));
assertEquals("Result should be Math.pow("
+ Double.NEGATIVE_INFINITY + "," + nagateDval
+ ")=" + NZERO, NZERO, Math.pow(Double.NEGATIVE_INFINITY,
nagateDval));
/*
* If the first argument is negative zero and the second
* argument is a negative finite odd integer, or the first
* argument is negative infinity and the second argument is
* a positive finite odd integer then the result is negative
* infinity.
*/
assertEquals("Result should be Math.pow(" + NZERO + ","
+ nagateDval + ")=" + Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY,
Math.pow(NZERO, nagateDval));
assertEquals("Result should be Math.pow("
+ Double.NEGATIVE_INFINITY + "," + dval + ")="
+ Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Math.pow(
Double.NEGATIVE_INFINITY, dval));
}
/**
* 1. If the first argument is finite and less than zero if the
* second argument is a finite even integer, the result is equal
* to the result of raising the absolute value of the first
* argument to the power of the second argument
*
* 2. if the second argument is a finite odd integer, the result is equal to the
* negative of the result of raising the absolute value of the
* first argument to the power of the second argument
*
* 3. if the second argument is finite and not an integer, then the result
* is NaN.
*/
for (int j = 1; j < values.length; j++) {
double jval = values[j];
if (jval % 2.0 == 0.0) {
assertEquals("" + nagateDval + " " + jval, Math.pow(
dval, jval), Math.pow(nagateDval, jval));
} else {
assertEquals("" + nagateDval + " " + jval, -1.0
* Math.pow(dval, jval), Math.pow(nagateDval,
jval));
}
assertEquals(Double.NaN, Math
.pow(nagateDval, jval / 0.5467));
assertEquals(Double.NaN, Math.pow(nagateDval, -1.0 * jval
/ 0.5467));
}
}
// If the absolute value of the first argument equals 1 and the
// second argument is infinite, then the result is NaN.
if (dval == 1) {
assertEquals("Result should be Math.pow(" + dval + ","
+ Double.POSITIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
.pow(dval, Double.POSITIVE_INFINITY));
assertEquals("Result should be Math.pow(" + dval + ","
+ Double.NEGATIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
.pow(dval, Double.NEGATIVE_INFINITY));
assertEquals("Result should be Math.pow(" + nagateDval + ","
+ Double.POSITIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
.pow(nagateDval, Double.POSITIVE_INFINITY));
assertEquals("Result should be Math.pow(" + nagateDval + ","
+ Double.NEGATIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
.pow(nagateDval, Double.NEGATIVE_INFINITY));
}
if (dval > 1) {
/*
* If the absolute value of the first argument is greater than 1
* and the second argument is positive infinity, or the absolute
* value of the first argument is less than 1 and the second
* argument is negative infinity, then the result is positive
* infinity.
*/
assertEquals("Result should be Math.pow(" + dval + ","
+ Double.POSITIVE_INFINITY + ")="
+ Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(dval,
Double.POSITIVE_INFINITY));
assertEquals("Result should be Math.pow(" + nagateDval + ","
+ Double.NEGATIVE_INFINITY + ")="
+ Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(-0.13456,
Double.NEGATIVE_INFINITY));
/*
* If the absolute value of the first argument is greater than 1
* and the second argument is negative infinity, or the absolute
* value of the first argument is less than 1 and the second
* argument is positive infinity, then the result is positive
* zero.
*/
assertEquals("Result should be Math.pow(" + dval + ","
+ Double.NEGATIVE_INFINITY + ")= +0.0", +0.0, Math.pow(dval,
Double.NEGATIVE_INFINITY));
assertEquals("Result should be Math.pow(" + nagateDval + ","
+ Double.POSITIVE_INFINITY + ")= +0.0", +0.0, Math.pow(
-0.13456, Double.POSITIVE_INFINITY));
}
assertEquals("Result should be Math.pow(" + 0.0 + "," + dval + ")="
+ 0.0, 0.0, Math.pow(0.0, dval));
assertEquals("Result should be Math.pow(" + Double.NaN + "," + dval
+ ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
}
assertTrue("pow returned incorrect value",
(long) Math.pow(2, 8) == 256l);
assertTrue("pow returned incorrect value",
Math.pow(2, -8) == 0.00390625d);
assertEquals("Incorrect root returned1",
2, Math.sqrt(Math.pow(Math.sqrt(2), 4)), 0);
assertEquals(Double.NEGATIVE_INFINITY, Math.pow(-10.0, 3.093403029238847E15));
assertEquals(Double.POSITIVE_INFINITY, Math.pow(10.0, 3.093403029238847E15));
}
private double longTodouble(long longvalue) {
return Double.longBitsToDouble(longvalue);
}
private long doubleTolong(double doublevalue) {
return Double.doubleToLongBits(doublevalue);
}
private double negateDouble(double doublevalue) {
return doublevalue * -1.0;
}
/**
* java.lang.Math#rint(double)
*/
public void test_rintD() {
// Test for method double java.lang.Math.rint(double)
assertEquals("Failed to round properly - up to odd",
3.0, Math.rint(2.9), 0D);
assertTrue("Failed to round properly - NaN", Double.isNaN(Math
.rint(Double.NaN)));
assertEquals("Failed to round properly down to even",
2.0, Math.rint(2.1), 0D);
assertTrue("Failed to round properly " + 2.5 + " to even", Math
.rint(2.5) == 2.0);
assertTrue("Failed to round properly " + (+0.0d),
Math.rint(+0.0d) == +0.0d);
assertTrue("Failed to round properly " + (-0.0d),
Math.rint(-0.0d) == -0.0d);
}
/**
* java.lang.Math#round(double)
*/
public void test_roundD() {
// Test for method long java.lang.Math.round(double)
assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89d));
}
/**
* java.lang.Math#round(float)
*/
public void test_roundF() {
// Test for method int java.lang.Math.round(float)
assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89f));
}
/**
* {@link java.lang.Math#scalb(double, int)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_scalb_DI() {
// result is normal
assertEquals(4.1422946304E7, Math.scalb(1.2345, 25));
assertEquals(3.679096698760986E-8, Math.scalb(1.2345, -25));
assertEquals(1.2345, Math.scalb(1.2345, 0));
assertEquals(7868514.304, Math.scalb(0.2345, 25));
double normal = Math.scalb(0.2345, -25);
assertEquals(6.98864459991455E-9, normal);
// precision kept
assertEquals(0.2345, Math.scalb(normal, 25));
assertEquals(0.2345, Math.scalb(0.2345, 0));
assertEquals(-4.1422946304E7, Math.scalb(-1.2345, 25));
assertEquals(-6.98864459991455E-9, Math.scalb(-0.2345, -25));
assertEquals(2.0, Math.scalb(Double.MIN_NORMAL / 2, 1024));
assertEquals(64.0, Math.scalb(Double.MIN_VALUE, 1080));
assertEquals(234, Math.getExponent(Math.scalb(1.0, 234)));
assertEquals(3.9999999999999996, Math.scalb(Double.MAX_VALUE,
Double.MIN_EXPONENT));
// result is near infinity
double halfMax = Math.scalb(1.0, Double.MAX_EXPONENT);
assertEquals(8.98846567431158E307, halfMax);
assertEquals(Double.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
assertEquals(Double.POSITIVE_INFINITY, halfMax + halfMax);
assertEquals(1.7976931348623155E308, Math.scalb(1.0 - Math.ulp(1.0),
Double.MAX_EXPONENT + 1));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(1.0 - Math.ulp(1.0),
Double.MAX_EXPONENT + 2));
halfMax = Math.scalb(-1.0, Double.MAX_EXPONENT);
assertEquals(-8.98846567431158E307, halfMax);
assertEquals(-Double.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
assertEquals(Double.NEGATIVE_INFINITY, halfMax + halfMax);
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(0.345, 1234));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(44.345E102, 934));
assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(-44.345E102, 934));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
Double.MIN_NORMAL / 2, 4000));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MIN_VALUE,
8000));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MAX_VALUE, 1));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
Double.POSITIVE_INFINITY, 0));
assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
Double.POSITIVE_INFINITY, -1));
assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
Double.NEGATIVE_INFINITY, -1));
assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
Double.NEGATIVE_INFINITY, Double.MIN_EXPONENT));
// result is subnormal/zero
long posZeroBits = Double.doubleToLongBits(+0.0);
long negZeroBits = Double.doubleToLongBits(-0.0);
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0,
Integer.MAX_VALUE)));
assertEquals(posZeroBits, Double.doubleToLongBits(Math
.scalb(+0.0, -123)));
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0, 0)));
assertEquals(negZeroBits, Double
.doubleToLongBits(Math.scalb(-0.0, 123)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-0.0,
Integer.MIN_VALUE)));
assertEquals(Double.MIN_VALUE, Math.scalb(1.0, -1074));
assertEquals(posZeroBits, Double.doubleToLongBits(Math
.scalb(1.0, -1075)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-1.0,
-1075)));
// precision lost
assertEquals(Math.scalb(21.405, -1078), Math.scalb(21.405, -1079));
assertEquals(Double.MIN_VALUE, Math.scalb(21.405, -1079));
assertEquals(-Double.MIN_VALUE, Math.scalb(-21.405, -1079));
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(21.405,
-1080)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-21.405,
-1080)));
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
Double.MIN_VALUE, -1)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
-Double.MIN_VALUE, -1)));
assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL, -52));
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
Double.MIN_NORMAL, -53)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
-Double.MIN_NORMAL, -53)));
assertEquals(Double.MIN_VALUE, Math.scalb(Double.MAX_VALUE, -2098));
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
Double.MAX_VALUE, -2099)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
-Double.MAX_VALUE, -2099)));
assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL / 3, -51));
assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
Double.MIN_NORMAL / 3, -52)));
assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
-Double.MIN_NORMAL / 3, -52)));
double subnormal = Math.scalb(Double.MIN_NORMAL / 3, -25);
assertEquals(2.2104123E-316, subnormal);
// precision lost
assertFalse(Double.MIN_NORMAL / 3 == Math.scalb(subnormal, 25));
// NaN
assertTrue(Double.isNaN(Math.scalb(Double.NaN, 1)));
assertTrue(Double.isNaN(Math.scalb(Double.NaN, 0)));
assertTrue(Double.isNaN(Math.scalb(Double.NaN, -120)));
assertEquals(1283457024, Double.doubleToLongBits(Math.scalb(
Double.MIN_VALUE * 153, 23)));
assertEquals(-9223372035571318784L, Double.doubleToLongBits(Math.scalb(
-Double.MIN_VALUE * 153, 23)));
assertEquals(36908406321184768L, Double.doubleToLongBits(Math.scalb(
Double.MIN_VALUE * 153, 52)));
assertEquals(-9186463630533591040L, Double.doubleToLongBits(Math.scalb(
-Double.MIN_VALUE * 153, 52)));
// test for exception
try {
Math.scalb((Double) null, (Integer) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.scalb(1.0, (Integer) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.scalb((Double) null, 1);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
long b1em1022 = 0x0010000000000000L; // bit representation of
// Double.MIN_NORMAL
long b1em1023 = 0x0008000000000000L; // bit representation of half of
// Double.MIN_NORMAL
// assert exact identity
assertEquals(b1em1023, Double.doubleToLongBits(Math.scalb(Double
.longBitsToDouble(b1em1022), -1)));
}
/**
* {@link java.lang.Math#scalb(float, int)}
* @since 1.6
*/
@SuppressWarnings("boxing")
public void test_scalb_FI() {
// result is normal
assertEquals(4.1422946304E7f, Math.scalb(1.2345f, 25));
assertEquals(3.679096698760986E-8f, Math.scalb(1.2345f, -25));
assertEquals(1.2345f, Math.scalb(1.2345f, 0));
assertEquals(7868514.304f, Math.scalb(0.2345f, 25));
float normal = Math.scalb(0.2345f, -25);
assertEquals(6.98864459991455E-9f, normal);
// precision kept
assertEquals(0.2345f, Math.scalb(normal, 25));
assertEquals(0.2345f, Math.scalb(0.2345f, 0));
assertEquals(-4.1422946304E7f, Math.scalb(-1.2345f, 25));
assertEquals(-6.98864459991455E-9f, Math.scalb(-0.2345f, -25));
assertEquals(2.0f, Math.scalb(Float.MIN_NORMAL / 2, 128));
assertEquals(64.0f, Math.scalb(Float.MIN_VALUE, 155));
assertEquals(34, Math.getExponent(Math.scalb(1.0f, 34)));
assertEquals(3.9999998f, Math
.scalb(Float.MAX_VALUE, Float.MIN_EXPONENT));
// result is near infinity
float halfMax = Math.scalb(1.0f, Float.MAX_EXPONENT);
assertEquals(1.7014118E38f, halfMax);
assertEquals(Float.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
assertEquals(Float.POSITIVE_INFINITY, halfMax + halfMax);
assertEquals(3.4028233E38f, Math.scalb(1.0f - Math.ulp(1.0f),
Float.MAX_EXPONENT + 1));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(1.0f - Math.ulp(1.0f),
Float.MAX_EXPONENT + 2));
halfMax = Math.scalb(-1.0f, Float.MAX_EXPONENT);
assertEquals(-1.7014118E38f, halfMax);
assertEquals(-Float.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
assertEquals(Float.NEGATIVE_INFINITY, halfMax + halfMax);
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(0.345f, 1234));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(44.345E10f, 934));
assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(-44.345E10f, 934));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_NORMAL / 2,
400));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_VALUE, 800));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MAX_VALUE, 1));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
Float.POSITIVE_INFINITY, 0));
assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
Float.POSITIVE_INFINITY, -1));
assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
Float.NEGATIVE_INFINITY, -1));
assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
Float.NEGATIVE_INFINITY, Float.MIN_EXPONENT));
// result is subnormal/zero
int posZeroBits = Float.floatToIntBits(+0.0f);
int negZeroBits = Float.floatToIntBits(-0.0f);
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f,
Integer.MAX_VALUE)));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, -123)));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, 0)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f, 123)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f,
Integer.MIN_VALUE)));
assertEquals(Float.MIN_VALUE, Math.scalb(1.0f, -149));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(1.0f, -150)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-1.0f, -150)));
// precision lost
assertEquals(Math.scalb(21.405f, -154), Math.scalb(21.405f, -153));
assertEquals(Float.MIN_VALUE, Math.scalb(21.405f, -154));
assertEquals(-Float.MIN_VALUE, Math.scalb(-21.405f, -154));
assertEquals(posZeroBits, Float.floatToIntBits(Math
.scalb(21.405f, -155)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-21.405f,
-155)));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
Float.MIN_VALUE, -1)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
-Float.MIN_VALUE, -1)));
assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL, -23));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
Float.MIN_NORMAL, -24)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
-Float.MIN_NORMAL, -24)));
assertEquals(Float.MIN_VALUE, Math.scalb(Float.MAX_VALUE, -277));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
Float.MAX_VALUE, -278)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
-Float.MAX_VALUE, -278)));
assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL / 3, -22));
assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
Float.MIN_NORMAL / 3, -23)));
assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
-Float.MIN_NORMAL / 3, -23)));
float subnormal = Math.scalb(Float.MIN_NORMAL / 3, -11);
assertEquals(1.913E-42f, subnormal);
// precision lost
assertFalse(Float.MIN_NORMAL / 3 == Math.scalb(subnormal, 11));
assertEquals(68747264, Float.floatToIntBits(Math.scalb(
Float.MIN_VALUE * 153, 23)));
assertEquals(-2078736384, Float.floatToIntBits(Math.scalb(
-Float.MIN_VALUE * 153, 23)));
assertEquals(4896, Float.floatToIntBits(Math.scalb(
Float.MIN_VALUE * 153, 5)));
assertEquals(-2147478752, Float.floatToIntBits(Math.scalb(
-Float.MIN_VALUE * 153, 5)));
// NaN
assertTrue(Float.isNaN(Math.scalb(Float.NaN, 1)));
assertTrue(Float.isNaN(Math.scalb(Float.NaN, 0)));
assertTrue(Float.isNaN(Math.scalb(Float.NaN, -120)));
// test for exception
try {
Math.scalb((Float) null, (Integer) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.scalb(1.0f, (Integer) null);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
try {
Math.scalb((Float) null, 1);
fail("Should throw NullPointerException");
} catch (NullPointerException e) {
// Expected
}
int b1em126 = 0x00800000; // bit representation of Float.MIN_NORMAL
int b1em127 = 0x00400000; // bit representation of half
// Float.MIN_NORMAL
// assert exact identity
assertEquals(b1em127, Float.floatToIntBits(Math.scalb(Float
.intBitsToFloat(b1em126), -1)));
}
/**
* java.lang.Math#signum(double)
*/
public void test_signum_D() {
assertTrue(Double.isNaN(Math.signum(Double.NaN)));
assertTrue(Double.isNaN(Math.signum(Double.NaN)));
assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
.signum(0.0)));
assertEquals(Double.doubleToLongBits(+0.0), Double
.doubleToLongBits(Math.signum(+0.0)));
assertEquals(Double.doubleToLongBits(-0.0), Double
.doubleToLongBits(Math.signum(-0.0)));
assertEquals(1.0, Math.signum(253681.2187962), 0D);
assertEquals(-1.0, Math.signum(-125874693.56), 0D);
assertEquals(1.0, Math.signum(1.2587E-308), 0D);
assertEquals(-1.0, Math.signum(-1.2587E-308), 0D);
assertEquals(1.0, Math.signum(Double.MAX_VALUE), 0D);
assertEquals(1.0, Math.signum(Double.MIN_VALUE), 0D);
assertEquals(-1.0, Math.signum(-Double.MAX_VALUE), 0D);
assertEquals(-1.0, Math.signum(-Double.MIN_VALUE), 0D);
assertEquals(1.0, Math.signum(Double.POSITIVE_INFINITY), 0D);
assertEquals(-1.0, Math.signum(Double.NEGATIVE_INFINITY), 0D);
}
/**
* java.lang.Math#signum(float)
*/
public void test_signum_F() {
assertTrue(Float.isNaN(Math.signum(Float.NaN)));
assertEquals(Float.floatToIntBits(0.0f), Float
.floatToIntBits(Math.signum(0.0f)));
assertEquals(Float.floatToIntBits(+0.0f), Float
.floatToIntBits(Math.signum(+0.0f)));
assertEquals(Float.floatToIntBits(-0.0f), Float
.floatToIntBits(Math.signum(-0.0f)));
assertEquals(1.0f, Math.signum(253681.2187962f), 0f);
assertEquals(-1.0f, Math.signum(-125874693.56f), 0f);
assertEquals(1.0f, Math.signum(1.2587E-11f), 0f);
assertEquals(-1.0f, Math.signum(-1.2587E-11f), 0f);
assertEquals(1.0f, Math.signum(Float.MAX_VALUE), 0f);
assertEquals(1.0f, Math.signum(Float.MIN_VALUE), 0f);
assertEquals(-1.0f, Math.signum(-Float.MAX_VALUE), 0f);
assertEquals(-1.0f, Math.signum(-Float.MIN_VALUE), 0f);
assertEquals(1.0f, Math.signum(Float.POSITIVE_INFINITY), 0f);
assertEquals(-1.0f, Math.signum(Float.NEGATIVE_INFINITY), 0f);
}
/**
* java.lang.Math#sin(double)
*/
public void test_sinD() {
// Test for method double java.lang.Math.sin(double)
assertEquals("Incorrect answer", 0.0, Math.sin(0), 0D);
assertEquals("Incorrect answer", 0.8414709848078965, Math.sin(1), 0D);
}
/**
* java.lang.Math#sinh(double)
*/
public void test_sinh_D() {
// Test for special situations
assertTrue(Double.isNaN(Math.sinh(Double.NaN)));
assertEquals(Double.POSITIVE_INFINITY, Math.sinh(Double.POSITIVE_INFINITY), 0D);
assertEquals(Double.NEGATIVE_INFINITY, Math.sinh(Double.NEGATIVE_INFINITY), 0D);
assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math.sinh(0.0)));
assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math.sinh(+0.0)));
assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math.sinh(-0.0)));
assertEquals(Double.POSITIVE_INFINITY, Math.sinh(1234.56), 0D);
assertEquals(Double.NEGATIVE_INFINITY, Math.sinh(-1234.56), 0D);
assertEquals(1.0000000000001666E-6, Math.sinh(0.000001), 0D);
assertEquals(-1.0000000000001666E-6, Math.sinh(-0.000001), 0D);
assertEquals(5.115386441963859, Math.sinh(2.33482), Math.ulp(5.115386441963859));
assertEquals(Double.POSITIVE_INFINITY, Math.sinh(Double.MAX_VALUE), 0D);
assertEquals(4.9E-324, Math.sinh(Double.MIN_VALUE), 0D);
}
/**
* java.lang.Math#sqrt(double)
*/
public void test_sqrtD() {
// Test for method double java.lang.Math.sqrt(double)
assertEquals("Incorrect root returned2", 7, Math.sqrt(49), 0);
}
/**
* java.lang.Math#tan(double)
*/
public void test_tanD() {
// Test for method double java.lang.Math.tan(double)
assertEquals("Incorrect answer", 0.0, Math.tan(0), 0D);
assertEquals("Incorrect answer", 1.5574077246549023, Math.tan(1), 0D);
}
/**
* java.lang.Math#tanh(double)
*/
public void test_tanh_D() {
// Test for special situations
assertTrue("Should return NaN", Double.isNaN(Math.tanh(Double.NaN)));
assertEquals("Should return +1.0", +1.0, Math
.tanh(Double.POSITIVE_INFINITY), 0D);
assertEquals("Should return -1.0", -1.0, Math
.tanh(Double.NEGATIVE_INFINITY), 0D);
assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
.tanh(0.0)));
assertEquals(Double.doubleToLongBits(+0.0), Double
.doubleToLongBits(Math.tanh(+0.0)));
assertEquals(Double.doubleToLongBits(-0.0), Double
.doubleToLongBits(Math.tanh(-0.0)));
assertEquals("Should return 1.0", 1.0, Math.tanh(1234.56), 0D);
assertEquals("Should return -1.0", -1.0, Math.tanh(-1234.56), 0D);
assertEquals("Should return 9.999999999996666E-7",
9.999999999996666E-7, Math.tanh(0.000001), 0D);
assertEquals("Should return 0.981422884124941", 0.981422884124941, Math
.tanh(2.33482), 0D);
assertEquals("Should return 1.0", 1.0, Math.tanh(Double.MAX_VALUE), 0D);
assertEquals("Should return 4.9E-324", 4.9E-324, Math
.tanh(Double.MIN_VALUE), 0D);
}
/**
* java.lang.Math#random()
*/
public void test_random() {
// There isn't a place for these tests so just stick them here
assertEquals("Wrong value E",
4613303445314885481L, Double.doubleToLongBits(Math.E));
assertEquals("Wrong value PI",
4614256656552045848L, Double.doubleToLongBits(Math.PI));
for (int i = 500; i >= 0; i--) {
double d = Math.random();
assertTrue("Generated number is out of range: " + d, d >= 0.0
&& d < 1.0);
}
}
/**
* java.lang.Math#toRadians(double)
*/
public void test_toRadiansD() {
for (double d = 500; d >= 0; d -= 1.0) {
double converted = Math.toDegrees(Math.toRadians(d));
assertTrue("Converted number not equal to original. d = " + d,
converted >= d * 0.99999999 && converted <= d * 1.00000001);
}
}
/**
* java.lang.Math#toDegrees(double)
*/
public void test_toDegreesD() {
for (double d = 500; d >= 0; d -= 1.0) {
double converted = Math.toRadians(Math.toDegrees(d));
assertTrue("Converted number not equal to original. d = " + d,
converted >= d * 0.99999999 && converted <= d * 1.00000001);
}
}
/**
* java.lang.Math#ulp(double)
*/
@SuppressWarnings("boxing")
public void test_ulp_D() {
// Test for special cases
assertTrue("Should return NaN", Double.isNaN(Math.ulp(Double.NaN)));
assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
.ulp(Double.POSITIVE_INFINITY), 0D);
assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
.ulp(Double.NEGATIVE_INFINITY), 0D);
assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
.ulp(0.0), 0D);
assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
.ulp(+0.0), 0D);
assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
.ulp(-0.0), 0D);
assertEquals("Returned incorrect value", Math.pow(2, 971), Math
.ulp(Double.MAX_VALUE), 0D);
assertEquals("Returned incorrect value", Math.pow(2, 971), Math
.ulp(-Double.MAX_VALUE), 0D);
assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
.ulp(Double.MIN_VALUE), 0D);
assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
.ulp(-Double.MIN_VALUE), 0D);
assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
.ulp(1.0), 0D);
assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
.ulp(-1.0), 0D);
assertEquals("Returned incorrect value", 2.2737367544323206E-13, Math
.ulp(1153.0), 0D);
}
/**
* java.lang.Math#ulp(float)
*/
@SuppressWarnings("boxing")
public void test_ulp_f() {
// Test for special cases
assertTrue("Should return NaN", Float.isNaN(Math.ulp(Float.NaN)));
assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
.ulp(Float.POSITIVE_INFINITY), 0f);
assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
.ulp(Float.NEGATIVE_INFINITY), 0f);
assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
.ulp(0.0f), 0f);
assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
.ulp(+0.0f), 0f);
assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
.ulp(-0.0f), 0f);
assertEquals("Returned incorrect value", 2.028241E31f, Math
.ulp(Float.MAX_VALUE), 0f);
assertEquals("Returned incorrect value", 2.028241E31f, Math
.ulp(-Float.MAX_VALUE), 0f);
assertEquals("Returned incorrect value", 1.4E-45f, Math
.ulp(Float.MIN_VALUE), 0f);
assertEquals("Returned incorrect value", 1.4E-45f, Math
.ulp(-Float.MIN_VALUE), 0f);
assertEquals("Returned incorrect value", 1.1920929E-7f, Math.ulp(1.0f),
0f);
assertEquals("Returned incorrect value", 1.1920929E-7f,
Math.ulp(-1.0f), 0f);
assertEquals("Returned incorrect value", 1.2207031E-4f, Math
.ulp(1153.0f), 0f);
assertEquals("Returned incorrect value", 5.6E-45f, Math
.ulp(9.403954E-38f), 0f);
}
/**
* {@link java.lang.Math#shiftIntBits(int, int)}
* @since 1.6
*/
public void test_shiftIntBits_II() {
class Tuple {
public int result;
public int value;
public int factor;
public Tuple(int result, int value, int factor) {
this.result = result;
this.value = value;
this.factor = factor;
}
}
final Tuple[] TUPLES = new Tuple[] {
// sub-normal to sub-normal
new Tuple(0x00000000, 0x00000001, -1),
// round to even
new Tuple(0x00000002, 0x00000003, -1),
// round to even
new Tuple(0x00000001, 0x00000005, -3),
// round to infinity
new Tuple(0x00000002, 0x0000000d, -3),
// round to infinity
// normal to sub-normal
new Tuple(0x00000002, 0x01a00000, -24),
// round to even
new Tuple(0x00000004, 0x01e00000, -24),
// round to even
new Tuple(0x00000003, 0x01c80000, -24),
// round to infinity
new Tuple(0x00000004, 0x01e80000, -24),
// round to infinity
};
for (int i = 0; i < TUPLES.length; ++i) {
Tuple tuple = TUPLES[i];
assertEquals(tuple.result, Float.floatToIntBits(Math.scalb(Float
.intBitsToFloat(tuple.value), tuple.factor)));
assertEquals(tuple.result, Float.floatToIntBits(-Math.scalb(-Float
.intBitsToFloat(tuple.value), tuple.factor)));
}
}
/**
* {@link java.lang.Math#shiftLongBits(long, long)}
* <p/>
* Round result to nearest value on precision lost.
* @since 1.6
*/
public void test_shiftLongBits_LL() {
class Tuple {
public long result;
public long value;
public int factor;
public Tuple(long result, long value, int factor) {
this.result = result;
this.value = value;
this.factor = factor;
}
}
final Tuple[] TUPLES = new Tuple[] {
// sub-normal to sub-normal
new Tuple(0x00000000L, 0x00000001L, -1),
//round to even
new Tuple(0x00000002L, 0x00000003L, -1),
//round to even
new Tuple(0x00000001L, 0x00000005L, -3),
//round to infinity
new Tuple(0x00000002L, 0x0000000dL, -3),
//round to infinity
// normal to sub-normal
new Tuple(0x0000000000000002L, 0x0034000000000000L, -53), // round to even
new Tuple(0x0000000000000004L, 0x003c000000000000L, -53), // round to even
new Tuple(0x0000000000000003L, 0x0035000000000000L, -53), // round to infinity
new Tuple(0x0000000000000004L, 0x003d000000000000L, -53), // round to infinity
};
for (int i = 0; i < TUPLES.length; ++i) {
Tuple tuple = TUPLES[i];
assertEquals(tuple.result, Double.doubleToLongBits(Math.scalb(
Double.longBitsToDouble(tuple.value), tuple.factor)));
assertEquals(tuple.result, Double.doubleToLongBits(-Math.scalb(
-Double.longBitsToDouble(tuple.value), tuple.factor)));
}
}
}