blob: e413d4b1e64aec622e695433141ca734ac938d13 [file] [log] [blame]
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Copyright (c) 2008-2012, Stephen Colebourne & Michael Nascimento Santos
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of JSR-310 nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package java.time.format;
import static java.time.temporal.ChronoField.DAY_OF_MONTH;
import static java.time.temporal.ChronoField.HOUR_OF_DAY;
import static java.time.temporal.ChronoField.INSTANT_SECONDS;
import static java.time.temporal.ChronoField.MINUTE_OF_HOUR;
import static java.time.temporal.ChronoField.MONTH_OF_YEAR;
import static java.time.temporal.ChronoField.NANO_OF_SECOND;
import static java.time.temporal.ChronoField.OFFSET_SECONDS;
import static java.time.temporal.ChronoField.SECOND_OF_MINUTE;
import static java.time.temporal.ChronoField.YEAR;
import java.lang.ref.SoftReference;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.text.ParsePosition;
import java.time.DateTimeException;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.chrono.Chronology;
import java.time.chrono.IsoChronology;
import java.time.chrono.JapaneseChronology;
import java.time.format.DateTimeTextProvider.LocaleStore;
import java.time.temporal.ChronoField;
import java.time.temporal.IsoFields;
import java.time.temporal.Queries;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalField;
import java.time.temporal.TemporalQuery;
import java.time.temporal.ValueRange;
import java.time.temporal.WeekFields;
import java.time.zone.ZoneRulesProvider;
import java.util.AbstractMap.SimpleImmutableEntry;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Objects;
import java.util.Set;
import java.util.TimeZone;
import java.util.concurrent.ConcurrentHashMap;
import sun.util.locale.provider.TimeZoneNameUtility;
/**
* Builder to create date-time formatters.
* <p>
* This allows a {@code DateTimeFormatter} to be created.
* All date-time formatters are created ultimately using this builder.
* <p>
* The basic elements of date-time can all be added:
* <p><ul>
* <li>Value - a numeric value</li>
* <li>Fraction - a fractional value including the decimal place. Always use this when
* outputting fractions to ensure that the fraction is parsed correctly</li>
* <li>Text - the textual equivalent for the value</li>
* <li>OffsetId/Offset - the {@linkplain ZoneOffset zone offset}</li>
* <li>ZoneId - the {@linkplain ZoneId time-zone} id</li>
* <li>ZoneText - the name of the time-zone</li>
* <li>Literal - a text literal</li>
* <li>Nested and Optional - formats can be nested or made optional</li>
* <li>Other - the printer and parser interfaces can be used to add user supplied formatting</li>
* </ul><p>
* In addition, any of the elements may be decorated by padding, either with spaces or any other character.
* <p>
* Finally, a shorthand pattern, mostly compatible with {@code java.text.SimpleDateFormat SimpleDateFormat}
* can be used, see {@link #appendPattern(String)}.
* In practice, this simply parses the pattern and calls other methods on the builder.
*
* <h3>Specification for implementors</h3>
* This class is a mutable builder intended for use from a single thread.
*
* @since 1.8
*/
public final class DateTimeFormatterBuilder {
/**
* Query for a time-zone that is region-only.
*/
private static final TemporalQuery<ZoneId> QUERY_REGION_ONLY = (temporal) -> {
ZoneId zone = temporal.query(Queries.zoneId());
return (zone != null && zone instanceof ZoneOffset == false ? zone : null);
};
/**
* The currently active builder, used by the outermost builder.
*/
private DateTimeFormatterBuilder active = this;
/**
* The parent builder, null for the outermost builder.
*/
private final DateTimeFormatterBuilder parent;
/**
* The list of printers that will be used.
*/
private final List<DateTimePrinterParser> printerParsers = new ArrayList<>();
/**
* Whether this builder produces an optional formatter.
*/
private final boolean optional;
/**
* The width to pad the next field to.
*/
private int padNextWidth;
/**
* The character to pad the next field with.
*/
private char padNextChar;
/**
* The index of the last variable width value parser.
*/
private int valueParserIndex = -1;
/**
* Constructs a new instance of the builder.
*/
public DateTimeFormatterBuilder() {
super();
parent = null;
optional = false;
}
/**
* Constructs a new instance of the builder.
*
* @param parent the parent builder, not null
* @param optional whether the formatter is optional, not null
*/
private DateTimeFormatterBuilder(DateTimeFormatterBuilder parent, boolean optional) {
super();
this.parent = parent;
this.optional = optional;
}
//-----------------------------------------------------------------------
/**
* Changes the parse style to be case sensitive for the remainder of the formatter.
* <p>
* Parsing can be case sensitive or insensitive - by default it is case sensitive.
* This method allows the case sensitivity setting of parsing to be changed.
* <p>
* Calling this method changes the state of the builder such that all
* subsequent builder method calls will parse text in case sensitive mode.
* See {@link #parseCaseInsensitive} for the opposite setting.
* The parse case sensitive/insensitive methods may be called at any point
* in the builder, thus the parser can swap between case parsing modes
* multiple times during the parse.
* <p>
* Since the default is case sensitive, this method should only be used after
* a previous call to {@code #parseCaseInsensitive}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseCaseSensitive() {
appendInternal(SettingsParser.SENSITIVE);
return this;
}
/**
* Changes the parse style to be case insensitive for the remainder of the formatter.
* <p>
* Parsing can be case sensitive or insensitive - by default it is case sensitive.
* This method allows the case sensitivity setting of parsing to be changed.
* <p>
* Calling this method changes the state of the builder such that all
* subsequent builder method calls will parse text in case insensitive mode.
* See {@link #parseCaseSensitive()} for the opposite setting.
* The parse case sensitive/insensitive methods may be called at any point
* in the builder, thus the parser can swap between case parsing modes
* multiple times during the parse.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseCaseInsensitive() {
appendInternal(SettingsParser.INSENSITIVE);
return this;
}
//-----------------------------------------------------------------------
/**
* Changes the parse style to be strict for the remainder of the formatter.
* <p>
* Parsing can be strict or lenient - by default its strict.
* This controls the degree of flexibility in matching the text and sign styles.
* <p>
* When used, this method changes the parsing to be strict from this point onwards.
* As strict is the default, this is normally only needed after calling {@link #parseLenient()}.
* The change will remain in force until the end of the formatter that is eventually
* constructed or until {@code parseLenient} is called.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseStrict() {
appendInternal(SettingsParser.STRICT);
return this;
}
/**
* Changes the parse style to be lenient for the remainder of the formatter.
* Note that case sensitivity is set separately to this method.
* <p>
* Parsing can be strict or lenient - by default its strict.
* This controls the degree of flexibility in matching the text and sign styles.
* Applications calling this method should typically also call {@link #parseCaseInsensitive()}.
* <p>
* When used, this method changes the parsing to be lenient from this point onwards.
* The change will remain in force until the end of the formatter that is eventually
* constructed or until {@code parseStrict} is called.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseLenient() {
appendInternal(SettingsParser.LENIENT);
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the value of a date-time field to the formatter using a normal
* output style.
* <p>
* The value of the field will be output during a format.
* If the value cannot be obtained then an exception will be thrown.
* <p>
* The value will be printed as per the normal format of an integer value.
* Only negative numbers will be signed. No padding will be added.
* <p>
* The parser for a variable width value such as this normally behaves greedily,
* requiring one digit, but accepting as many digits as possible.
* This behavior can be affected by 'adjacent value parsing'.
* See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details.
*
* @param field the field to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendValue(TemporalField field) {
Objects.requireNonNull(field, "field");
active.valueParserIndex = appendInternal(new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL));
return this;
}
/**
* Appends the value of a date-time field to the formatter using a fixed
* width, zero-padded approach.
* <p>
* The value of the field will be output during a format.
* If the value cannot be obtained then an exception will be thrown.
* <p>
* The value will be zero-padded on the left. If the size of the value
* means that it cannot be printed within the width then an exception is thrown.
* If the value of the field is negative then an exception is thrown during formatting.
* <p>
* This method supports a special technique of parsing known as 'adjacent value parsing'.
* This technique solves the problem where a variable length value is followed by one or more
* fixed length values. The standard parser is greedy, and thus it would normally
* steal the digits that are needed by the fixed width value parsers that follow the
* variable width one.
* <p>
* No action is required to initiate 'adjacent value parsing'.
* When a call to {@code appendValue} with a variable width is made, the builder
* enters adjacent value parsing setup mode. If the immediately subsequent method
* call or calls on the same builder are to this method, then the parser will reserve
* space so that the fixed width values can be parsed.
* <p>
* For example, consider {@code builder.appendValue(YEAR).appendValue(MONTH_OF_YEAR, 2);}
* The year is a variable width parse of between 1 and 19 digits.
* The month is a fixed width parse of 2 digits.
* Because these were appended to the same builder immediately after one another,
* the year parser will reserve two digits for the month to parse.
* Thus, the text '201106' will correctly parse to a year of 2011 and a month of 6.
* Without adjacent value parsing, the year would greedily parse all six digits and leave
* nothing for the month.
* <p>
* Adjacent value parsing applies to each set of fixed width not-negative values in the parser
* that immediately follow any kind of variable width value.
* Calling any other append method will end the setup of adjacent value parsing.
* Thus, in the unlikely event that you need to avoid adjacent value parsing behavior,
* simply add the {@code appendValue} to another {@code DateTimeFormatterBuilder}
* and add that to this builder.
* <p>
* If adjacent parsing is active, then parsing must match exactly the specified
* number of digits in both strict and lenient modes.
* In addition, no positive or negative sign is permitted.
*
* @param field the field to append, not null
* @param width the width of the printed field, from 1 to 19
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width is invalid
*/
public DateTimeFormatterBuilder appendValue(TemporalField field, int width) {
Objects.requireNonNull(field, "field");
if (width < 1 || width > 19) {
throw new IllegalArgumentException("The width must be from 1 to 19 inclusive but was " + width);
}
NumberPrinterParser pp = new NumberPrinterParser(field, width, width, SignStyle.NOT_NEGATIVE);
return appendFixedWidth(width, pp);
}
/**
* Appends the value of a date-time field to the formatter providing full
* control over formatting.
* <p>
* The value of the field will be output during a format.
* If the value cannot be obtained then an exception will be thrown.
* <p>
* This method provides full control of the numeric formatting, including
* zero-padding and the positive/negative sign.
* <p>
* The parser for a variable width value such as this normally behaves greedily,
* accepting as many digits as possible.
* This behavior can be affected by 'adjacent value parsing'.
* See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details.
* <p>
* In strict parsing mode, the minimum number of parsed digits is {@code minWidth}.
* In lenient parsing mode, the minimum number of parsed digits is one.
* <p>
* If this method is invoked with equal minimum and maximum widths and a sign style of
* {@code NOT_NEGATIVE} then it delegates to {@code appendValue(TemporalField,int)}.
* In this scenario, the formatting and parsing behavior described there occur.
*
* @param field the field to append, not null
* @param minWidth the minimum field width of the printed field, from 1 to 19
* @param maxWidth the maximum field width of the printed field, from 1 to 19
* @param signStyle the positive/negative output style, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the widths are invalid
*/
public DateTimeFormatterBuilder appendValue(
TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) {
if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) {
return appendValue(field, maxWidth);
}
Objects.requireNonNull(field, "field");
Objects.requireNonNull(signStyle, "signStyle");
if (minWidth < 1 || minWidth > 19) {
throw new IllegalArgumentException("The minimum width must be from 1 to 19 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 19) {
throw new IllegalArgumentException("The maximum width must be from 1 to 19 inclusive but was " + maxWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("The maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
NumberPrinterParser pp = new NumberPrinterParser(field, minWidth, maxWidth, signStyle);
if (minWidth == maxWidth) {
appendInternal(pp);
} else {
active.valueParserIndex = appendInternal(pp);
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the reduced value of a date-time field to the formatter.
* <p>
* This is typically used for formatting and parsing a two digit year.
* The {@code width} is the printed and parsed width.
* The {@code baseValue} is used during parsing to determine the valid range.
* <p>
* For formatting, the width is used to determine the number of characters to format.
* The rightmost characters are output to match the width, left padding with zero.
* <p>
* For parsing, exactly the number of characters specified by the width are parsed.
* This is incomplete information however, so the base value is used to complete the parse.
* The base value is the first valid value in a range of ten to the power of width.
* <p>
* For example, a base value of {@code 1980} and a width of {@code 2} will have
* valid values from {@code 1980} to {@code 2079}.
* During parsing, the text {@code "12"} will result in the value {@code 2012} as that
* is the value within the range where the last two digits are "12".
* <p>
* This is a fixed width parser operating using 'adjacent value parsing'.
* See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details.
*
* @param field the field to append, not null
* @param width the width of the printed and parsed field, from 1 to 18
* @param baseValue the base value of the range of valid values
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width or base value is invalid
*/
public DateTimeFormatterBuilder appendValueReduced(
TemporalField field, int width, int baseValue) {
Objects.requireNonNull(field, "field");
ReducedPrinterParser pp = new ReducedPrinterParser(field, width, baseValue);
appendFixedWidth(width, pp);
return this;
}
/**
* Appends a fixed width printer-parser.
*
* @param width the width
* @param pp the printer-parser, not null
* @return this, for chaining, not null
*/
private DateTimeFormatterBuilder appendFixedWidth(int width, NumberPrinterParser pp) {
if (active.valueParserIndex >= 0) {
// adjacent parsing mode, update setting in previous parsers
NumberPrinterParser basePP = (NumberPrinterParser) active.printerParsers.get(active.valueParserIndex);
basePP = basePP.withSubsequentWidth(width);
int activeValueParser = active.valueParserIndex;
active.printerParsers.set(active.valueParserIndex, basePP);
appendInternal(pp.withFixedWidth());
active.valueParserIndex = activeValueParser;
} else {
// not adjacent parsing
appendInternal(pp);
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the fractional value of a date-time field to the formatter.
* <p>
* The fractional value of the field will be output including the
* preceding decimal point. The preceding value is not output.
* For example, the second-of-minute value of 15 would be output as {@code .25}.
* <p>
* The width of the printed fraction can be controlled. Setting the
* minimum width to zero will cause no output to be generated.
* The printed fraction will have the minimum width necessary between
* the minimum and maximum widths - trailing zeroes are omitted.
* No rounding occurs due to the maximum width - digits are simply dropped.
* <p>
* When parsing in strict mode, the number of parsed digits must be between
* the minimum and maximum width. When parsing in lenient mode, the minimum
* width is considered to be zero and the maximum is nine.
* <p>
* If the value cannot be obtained then an exception will be thrown.
* If the value is negative an exception will be thrown.
* If the field does not have a fixed set of valid values then an
* exception will be thrown.
* If the field value in the date-time to be printed is invalid it
* cannot be printed and an exception will be thrown.
*
* @param field the field to append, not null
* @param minWidth the minimum width of the field excluding the decimal point, from 0 to 9
* @param maxWidth the maximum width of the field excluding the decimal point, from 1 to 9
* @param decimalPoint whether to output the localized decimal point symbol
* @return this, for chaining, not null
* @throws IllegalArgumentException if the field has a variable set of valid values or
* either width is invalid
*/
public DateTimeFormatterBuilder appendFraction(
TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) {
appendInternal(new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the text of a date-time field to the formatter using the full
* text style.
* <p>
* The text of the field will be output during a format.
* The value must be within the valid range of the field.
* If the value cannot be obtained then an exception will be thrown.
* If the field has no textual representation, then the numeric value will be used.
* <p>
* The value will be printed as per the normal format of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* @param field the field to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field) {
return appendText(field, TextStyle.FULL);
}
/**
* Appends the text of a date-time field to the formatter.
* <p>
* The text of the field will be output during a format.
* The value must be within the valid range of the field.
* If the value cannot be obtained then an exception will be thrown.
* If the field has no textual representation, then the numeric value will be used.
* <p>
* The value will be printed as per the normal format of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* @param field the field to append, not null
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field, TextStyle textStyle) {
Objects.requireNonNull(field, "field");
Objects.requireNonNull(textStyle, "textStyle");
appendInternal(new TextPrinterParser(field, textStyle, DateTimeTextProvider.getInstance()));
return this;
}
/**
* Appends the text of a date-time field to the formatter using the specified
* map to supply the text.
* <p>
* The standard text outputting methods use the localized text in the JDK.
* This method allows that text to be specified directly.
* The supplied map is not validated by the builder to ensure that formatting or
* parsing is possible, thus an invalid map may throw an error during later use.
* <p>
* Supplying the map of text provides considerable flexibility in formatting and parsing.
* For example, a legacy application might require or supply the months of the
* year as "JNY", "FBY", "MCH" etc. These do not match the standard set of text
* for localized month names. Using this method, a map can be created which
* defines the connection between each value and the text:
* <pre>
* Map&lt;Long, String&gt; map = new HashMap&lt;&gt;();
* map.put(1, "JNY");
* map.put(2, "FBY");
* map.put(3, "MCH");
* ...
* builder.appendText(MONTH_OF_YEAR, map);
* </pre>
* <p>
* Other uses might be to output the value with a suffix, such as "1st", "2nd", "3rd",
* or as Roman numerals "I", "II", "III", "IV".
* <p>
* During formatting, the value is obtained and checked that it is in the valid range.
* If text is not available for the value then it is output as a number.
* During parsing, the parser will match against the map of text and numeric values.
*
* @param field the field to append, not null
* @param textLookup the map from the value to the text
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field, Map<Long, String> textLookup) {
Objects.requireNonNull(field, "field");
Objects.requireNonNull(textLookup, "textLookup");
Map<Long, String> copy = new LinkedHashMap<>(textLookup);
Map<TextStyle, Map<Long, String>> map = Collections.singletonMap(TextStyle.FULL, copy);
final LocaleStore store = new LocaleStore(map);
DateTimeTextProvider provider = new DateTimeTextProvider() {
@Override
public String getText(TemporalField field, long value, TextStyle style, Locale locale) {
return store.getText(value, style);
}
@Override
public Iterator<Entry<String, Long>> getTextIterator(TemporalField field, TextStyle style, Locale locale) {
return store.getTextIterator(style);
}
};
appendInternal(new TextPrinterParser(field, TextStyle.FULL, provider));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends an instant using ISO-8601 to the formatter.
* <p>
* Instants have a fixed output format.
* They are converted to a date-time with a zone-offset of UTC and printed
* using the standard ISO-8601 format.
* <p>
* An alternative to this method is to format/parse the instant as a single
* epoch-seconds value. That is achieved using {@code appendValue(INSTANT_SECONDS)}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendInstant() {
appendInternal(new InstantPrinterParser());
return this;
}
/**
* Appends the zone offset, such as '+01:00', to the formatter.
* <p>
* This appends an instruction to format/parse the offset ID to the builder.
* This is equivalent to calling {@code appendOffset("HH:MM:ss", "Z")}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOffsetId() {
appendInternal(OffsetIdPrinterParser.INSTANCE_ID_Z);
return this;
}
/**
* Appends the zone offset, such as '+01:00', to the formatter.
* <p>
* This appends an instruction to format/parse the offset ID to the builder.
* <p>
* During formatting, the offset is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#offset()}.
* It will be printed using the format defined below.
* If the offset cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* During parsing, the offset is parsed using the format defined below.
* If the offset cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* The format of the offset is controlled by a pattern which must be one
* of the following:
* <p><ul>
* <li>{@code +HH} - hour only, ignoring minute and second
* <li>{@code +HHmm} - hour, with minute if non-zero, ignoring second, no colon
* <li>{@code +HH:mm} - hour, with minute if non-zero, ignoring second, with colon
* <li>{@code +HHMM} - hour and minute, ignoring second, no colon
* <li>{@code +HH:MM} - hour and minute, ignoring second, with colon
* <li>{@code +HHMMss} - hour and minute, with second if non-zero, no colon
* <li>{@code +HH:MM:ss} - hour and minute, with second if non-zero, with colon
* <li>{@code +HHMMSS} - hour, minute and second, no colon
* <li>{@code +HH:MM:SS} - hour, minute and second, with colon
* </ul><p>
* The "no offset" text controls what text is printed when the total amount of
* the offset fields to be output is zero.
* Example values would be 'Z', '+00:00', 'UTC' or 'GMT'.
* Three formats are accepted for parsing UTC - the "no offset" text, and the
* plus and minus versions of zero defined by the pattern.
*
* @param pattern the pattern to use, not null
* @param noOffsetText the text to use when the offset is zero, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOffset(String pattern, String noOffsetText) {
appendInternal(new OffsetIdPrinterParser(pattern, noOffsetText));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to the formatter.
* <p>
* This appends an instruction to format/parse the zone ID to the builder.
* The zone ID is obtained in a strict manner suitable for {@code ZonedDateTime}.
* By contrast, {@code OffsetDateTime} does not have a zone ID suitable
* for use with this method, see {@link #appendZoneOrOffsetId()}.
* <p>
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#zoneId()}.
* It will be printed using the result of {@link ZoneId#getId()}.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* During parsing, the text must match a known zone or offset.
* There are two types of zone ID, offset-based, such as '+01:30' and
* region-based, such as 'Europe/London'. These are parsed differently.
* If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser
* expects an offset-based zone and will not match region-based zones.
* The offset ID, such as '+02:30', may be at the start of the parse,
* or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is
* equivalent to using {@link #appendOffset(String, String)} using the
* arguments 'HH:MM:ss' and the no offset string '0'.
* If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot
* match a following offset ID, then {@link ZoneOffset#UTC} is selected.
* In all other cases, the list of known region-based zones is used to
* find the longest available match. If no match is found, and the parse
* starts with 'Z', then {@code ZoneOffset.UTC} is selected.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
* <p>
* For example, the following will parse:
* <pre>
* "Europe/London" -> ZoneId.of("Europe/London")
* "Z" -> ZoneOffset.UTC
* "UT" -> ZoneOffset.UTC
* "UTC" -> ZoneOffset.UTC
* "GMT" -> ZoneOffset.UTC
* "UT0" -> ZoneOffset.UTC
* "UTC0" -> ZoneOffset.UTC
* "GMT0" -> ZoneOffset.UTC
* "+01:30" -> ZoneOffset.of("+01:30")
* "UT+01:30" -> ZoneOffset.of("+01:30")
* "UTC+01:30" -> ZoneOffset.of("+01:30")
* "GMT+01:30" -> ZoneOffset.of("+01:30")
* </pre>
*
* @return this, for chaining, not null
* @see #appendZoneRegionId()
*/
public DateTimeFormatterBuilder appendZoneId() {
appendInternal(new ZoneIdPrinterParser(Queries.zoneId(), "ZoneId()"));
return this;
}
/**
* Appends the time-zone region ID, such as 'Europe/Paris', to the formatter,
* rejecting the zone ID if it is a {@code ZoneOffset}.
* <p>
* This appends an instruction to format/parse the zone ID to the builder
* only if it is a region-based ID.
* <p>
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#zoneId()}.
* If the zone is a {@code ZoneOffset} or it cannot be obtained then
* an exception is thrown unless the section of the formatter is optional.
* If the zone is not an offset, then the zone will be printed using
* the zone ID from {@link ZoneId#getId()}.
* <p>
* During parsing, the text must match a known zone or offset.
* There are two types of zone ID, offset-based, such as '+01:30' and
* region-based, such as 'Europe/London'. These are parsed differently.
* If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser
* expects an offset-based zone and will not match region-based zones.
* The offset ID, such as '+02:30', may be at the start of the parse,
* or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is
* equivalent to using {@link #appendOffset(String, String)} using the
* arguments 'HH:MM:ss' and the no offset string '0'.
* If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot
* match a following offset ID, then {@link ZoneOffset#UTC} is selected.
* In all other cases, the list of known region-based zones is used to
* find the longest available match. If no match is found, and the parse
* starts with 'Z', then {@code ZoneOffset.UTC} is selected.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
* <p>
* For example, the following will parse:
* <pre>
* "Europe/London" -> ZoneId.of("Europe/London")
* "Z" -> ZoneOffset.UTC
* "UT" -> ZoneOffset.UTC
* "UTC" -> ZoneOffset.UTC
* "GMT" -> ZoneOffset.UTC
* "UT0" -> ZoneOffset.UTC
* "UTC0" -> ZoneOffset.UTC
* "GMT0" -> ZoneOffset.UTC
* "+01:30" -> ZoneOffset.of("+01:30")
* "UT+01:30" -> ZoneOffset.of("+01:30")
* "UTC+01:30" -> ZoneOffset.of("+01:30")
* "GMT+01:30" -> ZoneOffset.of("+01:30")
* </pre>
* <p>
* Note that this method is is identical to {@code appendZoneId()} except
* in the mechanism used to obtain the zone.
* Note also that parsing accepts offsets, whereas formatting will never
* produce one.
*
* @return this, for chaining, not null
* @see #appendZoneId()
*/
public DateTimeFormatterBuilder appendZoneRegionId() {
appendInternal(new ZoneIdPrinterParser(QUERY_REGION_ONLY, "ZoneRegionId()"));
return this;
}
/**
* Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to
* the formatter, using the best available zone ID.
* <p>
* This appends an instruction to format/parse the best available
* zone or offset ID to the builder.
* The zone ID is obtained in a lenient manner that first attempts to
* find a true zone ID, such as that on {@code ZonedDateTime}, and
* then attempts to find an offset, such as that on {@code OffsetDateTime}.
* <p>
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#zone()}.
* It will be printed using the result of {@link ZoneId#getId()}.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* During parsing, the text must match a known zone or offset.
* There are two types of zone ID, offset-based, such as '+01:30' and
* region-based, such as 'Europe/London'. These are parsed differently.
* If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser
* expects an offset-based zone and will not match region-based zones.
* The offset ID, such as '+02:30', may be at the start of the parse,
* or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is
* equivalent to using {@link #appendOffset(String, String)} using the
* arguments 'HH:MM:ss' and the no offset string '0'.
* If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot
* match a following offset ID, then {@link ZoneOffset#UTC} is selected.
* In all other cases, the list of known region-based zones is used to
* find the longest available match. If no match is found, and the parse
* starts with 'Z', then {@code ZoneOffset.UTC} is selected.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
* <p>
* For example, the following will parse:
* <pre>
* "Europe/London" -> ZoneId.of("Europe/London")
* "Z" -> ZoneOffset.UTC
* "UT" -> ZoneOffset.UTC
* "UTC" -> ZoneOffset.UTC
* "GMT" -> ZoneOffset.UTC
* "UT0" -> ZoneOffset.UTC
* "UTC0" -> ZoneOffset.UTC
* "GMT0" -> ZoneOffset.UTC
* "+01:30" -> ZoneOffset.of("+01:30")
* "UT+01:30" -> ZoneOffset.of("+01:30")
* "UTC+01:30" -> ZoneOffset.of("+01:30")
* "GMT+01:30" -> ZoneOffset.of("+01:30")
* </pre>
* <p>
* Note that this method is is identical to {@code appendZoneId()} except
* in the mechanism used to obtain the zone.
*
* @return this, for chaining, not null
* @see #appendZoneId()
*/
public DateTimeFormatterBuilder appendZoneOrOffsetId() {
appendInternal(new ZoneIdPrinterParser(Queries.zone(), "ZoneOrOffsetId()"));
return this;
}
/**
* Appends the time-zone name, such as 'British Summer Time', to the formatter.
* <p>
* This appends an instruction to format/parse the textual name of the zone to
* the builder.
* <p>
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the temporal object being printed represents an instant, then the text
* will be the summer or winter time text as appropriate.
* If the lookup for text does not find any suitable reuslt, then the
* {@link ZoneId#getId() ID} will be printed instead.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* During parsing, either the textual zone name, the zone ID or the offset
* is accepted. Many textual zone names are not unique, such as CST can be
* for both "Central Standard Time" and "China Standard Time". In this
* situation, the zone id will be determined by the region information from
* formatter's {@link DateTimeFormatter#getLocale() locale} and the standard
* zone id for that area, for example, America/New_York for the America Eastern
* zone. The {@link #appendZoneText(TextStyle, Set)} may be used
* to specify a set of preferred {@link ZoneId} in this situation.
*
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle) {
appendInternal(new ZoneTextPrinterParser(textStyle, null));
return this;
}
/**
* Appends the time-zone name, such as 'British Summer Time', to the formatter.
* <p>
* This appends an instruction to format/parse the textual name of the zone to
* the builder.
* <p>
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the temporal object being printed represents an instant, then the text
* will be the summer or winter time text as appropriate.
* If the lookup for text does not find any suitable reuslt, then the
* {@link ZoneId#getId() ID} will be printed instead.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* During parsing, either the textual zone name, the zone ID or the offset
* is accepted. Many textual zone names are not unique, such as CST can be
* for both "Central Standard Time" and "China Standard Time". In this
* situation, the zone id will be determined by the region information from
* formatter's {@link DateTimeFormatter#getLocale() locale} and the standard
* zone id for that area, for example, America/New_York for the America Eastern
* zone. This method also allows a set of preferred {@link ZoneId} to be
* specified for parsing. The matched preferred zone id will be used if the
* textural zone name being parsed is not unique.
*
* If the zone cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* @param textStyle the text style to use, not null
* @param preferredZones the set of preferred zone ids, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle,
Set<ZoneId> preferredZones) {
Objects.requireNonNull(preferredZones, "preferredZones");
appendInternal(new ZoneTextPrinterParser(textStyle, preferredZones));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the chronology ID, such as 'ISO' or 'ThaiBuddhist', to the formatter.
* <p>
* This appends an instruction to format/parse the chronology ID to the builder.
* <p>
* During formatting, the chronology is obtained using a mechanism equivalent
* to querying the temporal with {@link Queries#chronology()}.
* It will be printed using the result of {@link Chronology#getId()}.
* If the chronology cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
* <p>
* During parsing, the chronology is parsed and must match one of the chronologies
* in {@link Chronology#getAvailableChronologies()}.
* If the chronology cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendChronologyId() {
appendInternal(new ChronoPrinterParser(null));
return this;
}
/**
* Appends the chronology name to the formatter.
* <p>
* The calendar system name will be output during a format.
* If the chronology cannot be obtained then an exception will be thrown.
* The calendar system name is obtained from the formatting symbols.
*
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendChronologyText(TextStyle textStyle) {
Objects.requireNonNull(textStyle, "textStyle");
appendInternal(new ChronoPrinterParser(textStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a localized date-time pattern to the formatter.
* <p>
* This appends a localized section to the builder, suitable for outputting
* a date, time or date-time combination. The format of the localized
* section is lazily looked up based on four items:
* <p><ul>
* <li>the {@code dateStyle} specified to this method
* <li>the {@code timeStyle} specified to this method
* <li>the {@code Locale} of the {@code DateTimeFormatter}
* <li>the {@code Chronology}, selecting the best available
* </ul><p>
* During formatting, the chronology is obtained from the temporal object
* being formatted, which may have been overridden by
* {@link DateTimeFormatter#withChronology(Chronology)}.
* <p>
* During parsing, if a chronology has already been parsed, then it is used.
* Otherwise the default from {@code DateTimeFormatter.withChronology(Chronology)}
* is used, with {@code IsoChronology} as the fallback.
* <p>
* Note that this method provides similar functionality to methods on
* {@code DateFormat} such as {@link java.text.DateFormat#getDateTimeInstance(int, int)}.
*
* @param dateStyle the date style to use, null means no date required
* @param timeStyle the time style to use, null means no time required
* @return this, for chaining, not null
* @throws IllegalArgumentException if both the date and time styles are null
*/
public DateTimeFormatterBuilder appendLocalized(FormatStyle dateStyle, FormatStyle timeStyle) {
if (dateStyle == null && timeStyle == null) {
throw new IllegalArgumentException("Either the date or time style must be non-null");
}
appendInternal(new LocalizedPrinterParser(dateStyle, timeStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a character literal to the formatter.
* <p>
* This character will be output during a format.
*
* @param literal the literal to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendLiteral(char literal) {
appendInternal(new CharLiteralPrinterParser(literal));
return this;
}
/**
* Appends a string literal to the formatter.
* <p>
* This string will be output during a format.
* <p>
* If the literal is empty, nothing is added to the formatter.
*
* @param literal the literal to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendLiteral(String literal) {
Objects.requireNonNull(literal, "literal");
if (literal.length() > 0) {
if (literal.length() == 1) {
appendInternal(new CharLiteralPrinterParser(literal.charAt(0)));
} else {
appendInternal(new StringLiteralPrinterParser(literal));
}
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends all the elements of a formatter to the builder.
* <p>
* This method has the same effect as appending each of the constituent
* parts of the formatter directly to this builder.
*
* @param formatter the formatter to add, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder append(DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
appendInternal(formatter.toPrinterParser(false));
return this;
}
/**
* Appends a formatter to the builder which will optionally format/parse.
* <p>
* This method has the same effect as appending each of the constituent
* parts directly to this builder surrounded by an {@link #optionalStart()} and
* {@link #optionalEnd()}.
* <p>
* The formatter will format if data is available for all the fields contained within it.
* The formatter will parse if the string matches, otherwise no error is returned.
*
* @param formatter the formatter to add, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOptional(DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
appendInternal(formatter.toPrinterParser(true));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the elements defined by the specified pattern to the builder.
* <p>
* All letters 'A' to 'Z' and 'a' to 'z' are reserved as pattern letters.
* The characters '{' and '}' are reserved for future use.
* The characters '[' and ']' indicate optional patterns.
* The following pattern letters are defined:
* <pre>
* Symbol Meaning Presentation Examples
* ------ ------- ------------ -------
* G era text A; AD; Anno Domini
* y year year 2004; 04
* D day-of-year number 189
* M month-of-year number/text 7; 07; Jul; July; J
* d day-of-month number 10
*
* Q quarter-of-year number/text 3; 03; Q3
* Y week-based-year year 1996; 96
* w week-of-year number 27
* W week-of-month number 27
* e localized day-of-week number 2; Tue; Tuesday; T
* E day-of-week number/text 2; Tue; Tuesday; T
* F week-of-month number 3
*
* a am-pm-of-day text PM
* h clock-hour-of-am-pm (1-12) number 12
* K hour-of-am-pm (0-11) number 0
* k clock-hour-of-am-pm (1-24) number 0
*
* H hour-of-day (0-23) number 0
* m minute-of-hour number 30
* s second-of-minute number 55
* S fraction-of-second fraction 978
* A milli-of-day number 1234
* n nano-of-second number 987654321
* N nano-of-day number 1234000000
*
* V time-zone ID zone-id America/Los_Angeles; Z; -08:30
* z time-zone name zone-name Pacific Standard Time; PST
* X zone-offset 'Z' for zero offset-X Z; -08; -0830; -08:30; -083015; -08:30:15;
* x zone-offset offset-x +0000; -08; -0830; -08:30; -083015; -08:30:15;
* Z zone-offset offset-Z +0000; -0800; -08:00;
*
* p pad next pad modifier 1
*
* ' escape for text delimiter
* '' single quote literal '
* [ optional section start
* ] optional section end
* {} reserved for future use
* </pre>
* <p>
* The count of pattern letters determine the format.
* <p>
* <b>Text</b>: The text style is determined based on the number of pattern letters used.
* Less than 4 pattern letters will use the {@link TextStyle#SHORT short form}.
* Exactly 4 pattern letters will use the {@link TextStyle#FULL full form}.
* Exactly 5 pattern letters will use the {@link TextStyle#NARROW narrow form}.
* <p>
* <b>Number</b>: If the count of letters is one, then the value is printed using the minimum number
* of digits and without padding as per {@link #appendValue(java.time.temporal.TemporalField)}. Otherwise, the
* count of digits is used as the width of the output field as per {@link #appendValue(java.time.temporal.TemporalField, int)}.
* <p>
* <b>Number/Text</b>: If the count of pattern letters is 3 or greater, use the Text rules above.
* Otherwise use the Number rules above.
* <p>
* <b>Fraction</b>: Outputs the nano-of-second field as a fraction-of-second.
* The nano-of-second value has nine digits, thus the count of pattern letters is from 1 to 9.
* If it is less than 9, then the nano-of-second value is truncated, with only the most
* significant digits being output.
* When parsing in strict mode, the number of parsed digits must match the count of pattern letters.
* When parsing in lenient mode, the number of parsed digits must be at least the count of pattern
* letters, up to 9 digits.
* <p>
* <b>Year</b>: The count of letters determines the minimum field width below which padding is used.
* If the count of letters is two, then a {@link #appendValueReduced reduced} two digit form is used.
* For formatting, this outputs the rightmost two digits. For parsing, this will parse using the
* base value of 2000, resulting in a year within the range 2000 to 2099 inclusive.
* If the count of letters is less than four (but not two), then the sign is only output for negative
* years as per {@link SignStyle#NORMAL}.
* Otherwise, the sign is output if the pad width is exceeded, as per {@link SignStyle#EXCEEDS_PAD}
* <p>
* <b>ZoneId</b>: This outputs the time-zone ID, such as 'Europe/Paris'.
* If the count of letters is two, then the time-zone ID is output.
* Any other count of letters throws {@code IllegalArgumentException}.
* <pre>
* Pattern Equivalent builder methods
* VV appendZoneId()
* </pre>
* <p>
* <b>Zone names</b>: This outputs the display name of the time-zone ID.
* If the count of letters is one, two or three, then the short name is output.
* If the count of letters is four, then the full name is output.
* Five or more letters throws {@code IllegalArgumentException}.
* <pre>
* Pattern Equivalent builder methods
* z appendZoneText(TextStyle.SHORT)
* zz appendZoneText(TextStyle.SHORT)
* zzz appendZoneText(TextStyle.SHORT)
* zzzz appendZoneText(TextStyle.FULL)
* </pre>
* <p>
* <b>Offset X and x</b>: This formats the offset based on the number of pattern letters.
* One letter outputs just the hour', such as '+01', unless the minute is non-zero
* in which case the minute is also output, such as '+0130'.
* Two letters outputs the hour and minute, without a colon, such as '+0130'.
* Three letters outputs the hour and minute, with a colon, such as '+01:30'.
* Four letters outputs the hour and minute and optional second, without a colon, such as '+013015'.
* Five letters outputs the hour and minute and optional second, with a colon, such as '+01:30:15'.
* Six or more letters throws {@code IllegalArgumentException}.
* Pattern letter 'X' (upper case) will output 'Z' when the offset to be output would be zero,
* whereas pattern letter 'x' (lower case) will output '+00', '+0000', or '+00:00'.
* <pre>
* Pattern Equivalent builder methods
* X appendOffset("+HHmm","Z")
* XX appendOffset("+HHMM","Z")
* XXX appendOffset("+HH:MM","Z")
* XXXX appendOffset("+HHMMss","Z")
* XXXXX appendOffset("+HH:MM:ss","Z")
* x appendOffset("+HHmm","+00")
* xx appendOffset("+HHMM","+0000")
* xxx appendOffset("+HH:MM","+00:00")
* xxxx appendOffset("+HHMMss","+0000")
* xxxxx appendOffset("+HH:MM:ss","+00:00")
* </pre>
* <p>
* <b>Offset Z</b>: This formats the offset based on the number of pattern letters.
* One, two or three letters outputs the hour and minute, without a colon, such as '+0130'.
* Four or more letters throws {@code IllegalArgumentException}.
* The output will be '+0000' when the offset is zero.
* <pre>
* Pattern Equivalent builder methods
* Z appendOffset("+HHMM","+0000")
* ZZ appendOffset("+HHMM","+0000")
* ZZZ appendOffset("+HHMM","+0000")
* </pre>
* <p>
* <b>Optional section</b>: The optional section markers work exactly like calling {@link #optionalStart()}
* and {@link #optionalEnd()}.
* <p>
* <b>Pad modifier</b>: Modifies the pattern that immediately follows to be padded with spaces.
* The pad width is determined by the number of pattern letters.
* This is the same as calling {@link #padNext(int)}.
* <p>
* For example, 'ppH' outputs the hour-of-day padded on the left with spaces to a width of 2.
* <p>
* Any unrecognized letter is an error.
* Any non-letter character, other than '[', ']', '{', '}' and the single quote will be output directly.
* Despite this, it is recommended to use single quotes around all characters that you want to
* output directly to ensure that future changes do not break your application.
* <p>
* Note that the pattern string is similar, but not identical, to
* {@link java.text.SimpleDateFormat SimpleDateFormat}.
* The pattern string is also similar, but not identical, to that defined by the
* Unicode Common Locale Data Repository (CLDR/LDML).
* Pattern letters 'E' and 'u' are merged, which changes the meaning of "E" and "EE" to be numeric.
* Pattern letters 'X' is aligned with Unicode CLDR/LDML, which affects pattern 'X'.
* Pattern letter 'y' and 'Y' parse years of two digits and more than 4 digits differently.
* Pattern letters 'n', 'A', 'N', 'I' and 'p' are added.
* Number types will reject large numbers.
*
* @param pattern the pattern to add, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the pattern is invalid
*/
public DateTimeFormatterBuilder appendPattern(String pattern) {
Objects.requireNonNull(pattern, "pattern");
parsePattern(pattern);
return this;
}
private void parsePattern(String pattern) {
for (int pos = 0; pos < pattern.length(); pos++) {
char cur = pattern.charAt(pos);
if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) {
int start = pos++;
for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop
int count = pos - start;
// padding
if (cur == 'p') {
int pad = 0;
if (pos < pattern.length()) {
cur = pattern.charAt(pos);
if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) {
pad = count;
start = pos++;
for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop
count = pos - start;
}
}
if (pad == 0) {
throw new IllegalArgumentException(
"Pad letter 'p' must be followed by valid pad pattern: " + pattern);
}
padNext(pad); // pad and continue parsing
}
// main rules
TemporalField field = FIELD_MAP.get(cur);
if (field != null) {
parseField(cur, count, field);
} else if (cur == 'z') {
if (count > 4) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
} else if (count == 4) {
appendZoneText(TextStyle.FULL);
} else {
appendZoneText(TextStyle.SHORT);
}
} else if (cur == 'V') {
if (count != 2) {
throw new IllegalArgumentException("Pattern letter count must be 2: " + cur);
}
appendZoneId();
} else if (cur == 'Z') {
if (count > 3) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendOffset("+HHMM", "+0000");
} else if (cur == 'X') {
if (count > 5) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], "Z");
} else if (cur == 'x') {
if (count > 5) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
String zero = (count == 1 ? "+00" : (count % 2 == 0 ? "+0000" : "+00:00"));
appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], zero);
} else if (cur == 'w' || cur == 'e') {
// Fields defined by Locale
if (count > 1) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendInternal(new WeekBasedFieldPrinterParser(cur, count));
} else if (cur == 'W') {
// Fields defined by Locale
if (count > 2) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendInternal(new WeekBasedFieldPrinterParser(cur, count));
} else {
throw new IllegalArgumentException("Unknown pattern letter: " + cur);
}
pos--;
} else if (cur == '\'') {
// parse literals
int start = pos++;
for ( ; pos < pattern.length(); pos++) {
if (pattern.charAt(pos) == '\'') {
if (pos + 1 < pattern.length() && pattern.charAt(pos + 1) == '\'') {
pos++;
} else {
break; // end of literal
}
}
}
if (pos >= pattern.length()) {
throw new IllegalArgumentException("Pattern ends with an incomplete string literal: " + pattern);
}
String str = pattern.substring(start + 1, pos);
if (str.length() == 0) {
appendLiteral('\'');
} else {
appendLiteral(str.replace("''", "'"));
}
} else if (cur == '[') {
optionalStart();
} else if (cur == ']') {
if (active.parent == null) {
throw new IllegalArgumentException("Pattern invalid as it contains ] without previous [");
}
optionalEnd();
} else if (cur == '{' || cur == '}') {
throw new IllegalArgumentException("Pattern includes reserved character: '" + cur + "'");
} else {
appendLiteral(cur);
}
}
}
private void parseField(char cur, int count, TemporalField field) {
switch (cur) {
case 'y':
case 'Y':
if (count == 2) {
appendValueReduced(field, 2, 2000);
} else if (count < 4) {
appendValue(field, count, 19, SignStyle.NORMAL);
} else {
appendValue(field, count, 19, SignStyle.EXCEEDS_PAD);
}
break;
case 'M':
case 'Q':
case 'E':
switch (count) {
case 1:
appendValue(field);
break;
case 2:
appendValue(field, 2);
break;
case 3:
appendText(field, TextStyle.SHORT);
break;
case 4:
appendText(field, TextStyle.FULL);
break;
case 5:
appendText(field, TextStyle.NARROW);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'G':
case 'a':
switch (count) {
case 1:
case 2:
case 3:
appendText(field, TextStyle.SHORT);
break;
case 4:
appendText(field, TextStyle.FULL);
break;
case 5:
appendText(field, TextStyle.NARROW);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'S':
appendFraction(NANO_OF_SECOND, count, count, false);
break;
default:
if (count == 1) {
appendValue(field);
} else {
appendValue(field, count);
}
break;
}
}
/** Map of letters to fields. */
private static final Map<Character, TemporalField> FIELD_MAP = new HashMap<>();
static {
FIELD_MAP.put('G', ChronoField.ERA); // Java, LDML (different to both for 1/2 chars)
FIELD_MAP.put('y', ChronoField.YEAR); // LDML
// FIELD_MAP.put('y', ChronoField.YEAR_OF_ERA); // Java, LDML // TODO redefine from above
// FIELD_MAP.put('u', ChronoField.YEAR); // LDML // TODO
// FIELD_MAP.put('Y', IsoFields.WEEK_BASED_YEAR); // Java7, LDML (needs localized week number) // TODO
FIELD_MAP.put('Q', IsoFields.QUARTER_OF_YEAR); // LDML (removed quarter from 310)
FIELD_MAP.put('M', ChronoField.MONTH_OF_YEAR); // Java, LDML
// FIELD_MAP.put('w', WeekFields.weekOfYear()); // Java, LDML (needs localized week number)
// FIELD_MAP.put('W', WeekFields.weekOfMonth()); // Java, LDML (needs localized week number)
FIELD_MAP.put('D', ChronoField.DAY_OF_YEAR); // Java, LDML
FIELD_MAP.put('d', ChronoField.DAY_OF_MONTH); // Java, LDML
FIELD_MAP.put('F', ChronoField.ALIGNED_WEEK_OF_MONTH); // Java, LDML
FIELD_MAP.put('E', ChronoField.DAY_OF_WEEK); // Java, LDML (different to both for 1/2 chars)
// FIELD_MAP.put('e', WeekFields.dayOfWeek()); // LDML (needs localized week number)
FIELD_MAP.put('a', ChronoField.AMPM_OF_DAY); // Java, LDML
FIELD_MAP.put('H', ChronoField.HOUR_OF_DAY); // Java, LDML
FIELD_MAP.put('k', ChronoField.CLOCK_HOUR_OF_DAY); // Java, LDML
FIELD_MAP.put('K', ChronoField.HOUR_OF_AMPM); // Java, LDML
FIELD_MAP.put('h', ChronoField.CLOCK_HOUR_OF_AMPM); // Java, LDML
FIELD_MAP.put('m', ChronoField.MINUTE_OF_HOUR); // Java, LDML
FIELD_MAP.put('s', ChronoField.SECOND_OF_MINUTE); // Java, LDML
FIELD_MAP.put('S', ChronoField.NANO_OF_SECOND); // LDML (Java uses milli-of-second number)
FIELD_MAP.put('A', ChronoField.MILLI_OF_DAY); // LDML
FIELD_MAP.put('n', ChronoField.NANO_OF_SECOND); // 310 (proposed for LDML)
FIELD_MAP.put('N', ChronoField.NANO_OF_DAY); // 310 (proposed for LDML)
// 310 - z - time-zone names, matches LDML and SimpleDateFormat 1 to 4
// 310 - Z - matches SimpleDateFormat and LDML
// 310 - V - time-zone id, matches proposed LDML
// 310 - p - prefix for padding
// 310 - X - matches proposed LDML, almost matches JavaSDF for 1, exact match 2&3, extended 4&5
// 310 - x - matches proposed LDML
// Java - u - clashes with LDML, go with LDML (year-proleptic) here
// LDML - U - cycle year name, not supported by 310 yet
// LDML - l - deprecated
// LDML - j - not relevant
// LDML - g - modified-julian-day
// LDML - v,V - extended time-zone names
// LDML - q/c/L - standalone quarter/day-of-week/month
}
//-----------------------------------------------------------------------
/**
* Causes the next added printer/parser to pad to a fixed width using a space.
* <p>
* This padding will pad to a fixed width using spaces.
* <p>
* During formatting, the decorated element will be output and then padded
* to the specified width. An exception will be thrown during formatting if
* the pad width is exceeded.
* <p>
* During parsing, the padding and decorated element are parsed.
* If parsing is lenient, then the pad width is treated as a maximum.
* If parsing is case insensitive, then the pad character is matched ignoring case.
* The padding is parsed greedily. Thus, if the decorated element starts with
* the pad character, it will not be parsed.
*
* @param padWidth the pad width, 1 or greater
* @return this, for chaining, not null
* @throws IllegalArgumentException if pad width is too small
*/
public DateTimeFormatterBuilder padNext(int padWidth) {
return padNext(padWidth, ' ');
}
/**
* Causes the next added printer/parser to pad to a fixed width.
* <p>
* This padding is intended for padding other than zero-padding.
* Zero-padding should be achieved using the appendValue methods.
* <p>
* During formatting, the decorated element will be output and then padded
* to the specified width. An exception will be thrown during formatting if
* the pad width is exceeded.
* <p>
* During parsing, the padding and decorated element are parsed.
* If parsing is lenient, then the pad width is treated as a maximum.
* If parsing is case insensitive, then the pad character is matched ignoring case.
* The padding is parsed greedily. Thus, if the decorated element starts with
* the pad character, it will not be parsed.
*
* @param padWidth the pad width, 1 or greater
* @param padChar the pad character
* @return this, for chaining, not null
* @throws IllegalArgumentException if pad width is too small
*/
public DateTimeFormatterBuilder padNext(int padWidth, char padChar) {
if (padWidth < 1) {
throw new IllegalArgumentException("The pad width must be at least one but was " + padWidth);
}
active.padNextWidth = padWidth;
active.padNextChar = padChar;
active.valueParserIndex = -1;
return this;
}
//-----------------------------------------------------------------------
/**
* Mark the start of an optional section.
* <p>
* The output of formatting can include optional sections, which may be nested.
* An optional section is started by calling this method and ended by calling
* {@link #optionalEnd()} or by ending the build process.
* <p>
* All elements in the optional section are treated as optional.
* During formatting, the section is only output if data is available in the
* {@code TemporalAccessor} for all the elements in the section.
* During parsing, the whole section may be missing from the parsed string.
* <p>
* For example, consider a builder setup as
* {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2)}.
* The optional section ends automatically at the end of the builder.
* During formatting, the minute will only be output if its value can be obtained from the date-time.
* During parsing, the input will be successfully parsed whether the minute is present or not.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder optionalStart() {
active.valueParserIndex = -1;
active = new DateTimeFormatterBuilder(active, true);
return this;
}
/**
* Ends an optional section.
* <p>
* The output of formatting can include optional sections, which may be nested.
* An optional section is started by calling {@link #optionalStart()} and ended
* using this method (or at the end of the builder).
* <p>
* Calling this method without having previously called {@code optionalStart}
* will throw an exception.
* Calling this method immediately after calling {@code optionalStart} has no effect
* on the formatter other than ending the (empty) optional section.
* <p>
* All elements in the optional section are treated as optional.
* During formatting, the section is only output if data is available in the
* {@code TemporalAccessor} for all the elements in the section.
* During parsing, the whole section may be missing from the parsed string.
* <p>
* For example, consider a builder setup as
* {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2).optionalEnd()}.
* During formatting, the minute will only be output if its value can be obtained from the date-time.
* During parsing, the input will be successfully parsed whether the minute is present or not.
*
* @return this, for chaining, not null
* @throws IllegalStateException if there was no previous call to {@code optionalStart}
*/
public DateTimeFormatterBuilder optionalEnd() {
if (active.parent == null) {
throw new IllegalStateException("Cannot call optionalEnd() as there was no previous call to optionalStart()");
}
if (active.printerParsers.size() > 0) {
CompositePrinterParser cpp = new CompositePrinterParser(active.printerParsers, active.optional);
active = active.parent;
appendInternal(cpp);
} else {
active = active.parent;
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a printer and/or parser to the internal list handling padding.
*
* @param pp the printer-parser to add, not null
* @return the index into the active parsers list
*/
private int appendInternal(DateTimePrinterParser pp) {
Objects.requireNonNull(pp, "pp");
if (active.padNextWidth > 0) {
if (pp != null) {
pp = new PadPrinterParserDecorator(pp, active.padNextWidth, active.padNextChar);
}
active.padNextWidth = 0;
active.padNextChar = 0;
}
active.printerParsers.add(pp);
active.valueParserIndex = -1;
return active.printerParsers.size() - 1;
}
//-----------------------------------------------------------------------
/**
* Completes this builder by creating the DateTimeFormatter using the default locale.
* <p>
* This will create a formatter with the {@link Locale#getDefault(Locale.Category) default FORMAT locale}.
* Numbers will be printed and parsed using the standard non-localized set of symbols.
* <p>
* Calling this method will end any open optional sections by repeatedly
* calling {@link #optionalEnd()} before creating the formatter.
* <p>
* This builder can still be used after creating the formatter if desired,
* although the state may have been changed by calls to {@code optionalEnd}.
*
* @return the created formatter, not null
*/
public DateTimeFormatter toFormatter() {
return toFormatter(Locale.getDefault(Locale.Category.FORMAT));
}
/**
* Completes this builder by creating the DateTimeFormatter using the specified locale.
* <p>
* This will create a formatter with the specified locale.
* Numbers will be printed and parsed using the standard non-localized set of symbols.
* <p>
* Calling this method will end any open optional sections by repeatedly
* calling {@link #optionalEnd()} before creating the formatter.
* <p>
* This builder can still be used after creating the formatter if desired,
* although the state may have been changed by calls to {@code optionalEnd}.
*
* @param locale the locale to use for formatting, not null
* @return the created formatter, not null
*/
public DateTimeFormatter toFormatter(Locale locale) {
Objects.requireNonNull(locale, "locale");
while (active.parent != null) {
optionalEnd();
}
CompositePrinterParser pp = new CompositePrinterParser(printerParsers, false);
return new DateTimeFormatter(pp, locale, DateTimeFormatSymbols.STANDARD, null, null);
}
//-----------------------------------------------------------------------
/**
* Strategy for formatting/parsing date-time information.
* <p>
* The printer may format any part, or the whole, of the input date-time object.
* Typically, a complete format is constructed from a number of smaller
* units, each outputting a single field.
* <p>
* The parser may parse any piece of text from the input, storing the result
* in the context. Typically, each individual parser will just parse one
* field, such as the day-of-month, storing the value in the context.
* Once the parse is complete, the caller will then resolve the parsed values
* to create the desired object, such as a {@code LocalDate}.
* <p>
* The parse position will be updated during the parse. Parsing will start at
* the specified index and the return value specifies the new parse position
* for the next parser. If an error occurs, the returned index will be negative
* and will have the error position encoded using the complement operator.
*
* <h3>Specification for implementors</h3>
* This interface must be implemented with care to ensure other classes operate correctly.
* All implementations that can be instantiated must be final, immutable and thread-safe.
* <p>
* The context is not a thread-safe object and a new instance will be created
* for each format that occurs. The context must not be stored in an instance
* variable or shared with any other threads.
*/
interface DateTimePrinterParser {
/**
* Prints the date-time object to the buffer.
* <p>
* The context holds information to use during the format.
* It also contains the date-time information to be printed.
* <p>
* The buffer must not be mutated beyond the content controlled by the implementation.
*
* @param context the context to format using, not null
* @param buf the buffer to append to, not null
* @return false if unable to query the value from the date-time, true otherwise
* @throws DateTimeException if the date-time cannot be printed successfully
*/
boolean format(DateTimePrintContext context, StringBuilder buf);
/**
* Parses text into date-time information.
* <p>
* The context holds information to use during the parse.
* It is also used to store the parsed date-time information.
*
* @param context the context to use and parse into, not null
* @param text the input text to parse, not null
* @param position the position to start parsing at, from 0 to the text length
* @return the new parse position, where negative means an error with the
* error position encoded using the complement ~ operator
* @throws NullPointerException if the context or text is null
* @throws IndexOutOfBoundsException if the position is invalid
*/
int parse(DateTimeParseContext context, CharSequence text, int position);
}
//-----------------------------------------------------------------------
/**
* Composite printer and parser.
*/
static final class CompositePrinterParser implements DateTimePrinterParser {
private final DateTimePrinterParser[] printerParsers;
private final boolean optional;
CompositePrinterParser(List<DateTimePrinterParser> printerParsers, boolean optional) {
this(printerParsers.toArray(new DateTimePrinterParser[printerParsers.size()]), optional);
}
CompositePrinterParser(DateTimePrinterParser[] printerParsers, boolean optional) {
this.printerParsers = printerParsers;
this.optional = optional;
}
/**
* Returns a copy of this printer-parser with the optional flag changed.
*
* @param optional the optional flag to set in the copy
* @return the new printer-parser, not null
*/
public CompositePrinterParser withOptional(boolean optional) {
if (optional == this.optional) {
return this;
}
return new CompositePrinterParser(printerParsers, optional);
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
int length = buf.length();
if (optional) {
context.startOptional();
}
try {
for (DateTimePrinterParser pp : printerParsers) {
if (pp.format(context, buf) == false) {
buf.setLength(length); // reset buffer
return true;
}
}
} finally {
if (optional) {
context.endOptional();
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
if (optional) {
context.startOptional();
int pos = position;
for (DateTimePrinterParser pp : printerParsers) {
pos = pp.parse(context, text, pos);
if (pos < 0) {
context.endOptional(false);
return position; // return original position
}
}
context.endOptional(true);
return pos;
} else {
for (DateTimePrinterParser pp : printerParsers) {
position = pp.parse(context, text, position);
if (position < 0) {
break;
}
}
return position;
}
}
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
if (printerParsers != null) {
buf.append(optional ? "[" : "(");
for (DateTimePrinterParser pp : printerParsers) {
buf.append(pp);
}
buf.append(optional ? "]" : ")");
}
return buf.toString();
}
}
//-----------------------------------------------------------------------
/**
* Pads the output to a fixed width.
*/
static final class PadPrinterParserDecorator implements DateTimePrinterParser {
private final DateTimePrinterParser printerParser;
private final int padWidth;
private final char padChar;
/**
* Constructor.
*
* @param printerParser the printer, not null
* @param padWidth the width to pad to, 1 or greater
* @param padChar the pad character
*/
PadPrinterParserDecorator(DateTimePrinterParser printerParser, int padWidth, char padChar) {
// input checked by DateTimeFormatterBuilder
this.printerParser = printerParser;
this.padWidth = padWidth;
this.padChar = padChar;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
int preLen = buf.length();
if (printerParser.format(context, buf) == false) {
return false;
}
int len = buf.length() - preLen;
if (len > padWidth) {
throw new DateTimeException(
"Cannot print as output of " + len + " characters exceeds pad width of " + padWidth);
}
for (int i = 0; i < padWidth - len; i++) {
buf.insert(preLen, padChar);
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// cache context before changed by decorated parser
final boolean strict = context.isStrict();
// parse
if (position > text.length()) {
throw new IndexOutOfBoundsException();
}
if (position == text.length()) {
return ~position; // no more characters in the string
}
int endPos = position + padWidth;
if (endPos > text.length()) {
if (strict) {
return ~position; // not enough characters in the string to meet the parse width
}
endPos = text.length();
}
int pos = position;
while (pos < endPos && context.charEquals(text.charAt(pos), padChar)) {
pos++;
}
text = text.subSequence(0, endPos);
int resultPos = printerParser.parse(context, text, pos);
if (resultPos != endPos && strict) {
return ~(position + pos); // parse of decorated field didn't parse to the end
}
return resultPos;
}
@Override
public String toString() {
return "Pad(" + printerParser + "," + padWidth + (padChar == ' ' ? ")" : ",'" + padChar + "')");
}
}
//-----------------------------------------------------------------------
/**
* Enumeration to apply simple parse settings.
*/
static enum SettingsParser implements DateTimePrinterParser {
SENSITIVE,
INSENSITIVE,
STRICT,
LENIENT;
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
return true; // nothing to do here
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// using ordinals to avoid javac synthetic inner class
switch (ordinal()) {
case 0: context.setCaseSensitive(true); break;
case 1: context.setCaseSensitive(false); break;
case 2: context.setStrict(true); break;
case 3: context.setStrict(false); break;
}
return position;
}
@Override
public String toString() {
// using ordinals to avoid javac synthetic inner class
switch (ordinal()) {
case 0: return "ParseCaseSensitive(true)";
case 1: return "ParseCaseSensitive(false)";
case 2: return "ParseStrict(true)";
case 3: return "ParseStrict(false)";
}
throw new IllegalStateException("Unreachable");
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a character literal.
*/
static final class CharLiteralPrinterParser implements DateTimePrinterParser {
private final char literal;
CharLiteralPrinterParser(char literal) {
this.literal = literal;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
buf.append(literal);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position == length) {
return ~position;
}
char ch = text.charAt(position);
if (ch != literal) {
if (context.isCaseSensitive() ||
(Character.toUpperCase(ch) != Character.toUpperCase(literal) &&
Character.toLowerCase(ch) != Character.toLowerCase(literal))) {
return ~position;
}
}
return position + 1;
}
@Override
public String toString() {
if (literal == '\'') {
return "''";
}
return "'" + literal + "'";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a string literal.
*/
static final class StringLiteralPrinterParser implements DateTimePrinterParser {
private final String literal;
StringLiteralPrinterParser(String literal) {
this.literal = literal; // validated by caller
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
buf.append(literal);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position > length || position < 0) {
throw new IndexOutOfBoundsException();
}
if (context.subSequenceEquals(text, position, literal, 0, literal.length()) == false) {
return ~position;
}
return position + literal.length();
}
@Override
public String toString() {
String converted = literal.replace("'", "''");
return "'" + converted + "'";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a numeric date-time field with optional padding.
*/
static class NumberPrinterParser implements DateTimePrinterParser {
/**
* Array of 10 to the power of n.
*/
static final int[] EXCEED_POINTS = new int[] {
0,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
};
final TemporalField field;
final int minWidth;
private final int maxWidth;
private final SignStyle signStyle;
private final int subsequentWidth;
/**
* Constructor.
*
* @param field the field to format, not null
* @param minWidth the minimum field width, from 1 to 19
* @param maxWidth the maximum field width, from minWidth to 19
* @param signStyle the positive/negative sign style, not null
*/
NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) {
// validated by caller
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.signStyle = signStyle;
this.subsequentWidth = 0;
}
/**
* Constructor.
*
* @param field the field to format, not null
* @param minWidth the minimum field width, from 1 to 19
* @param maxWidth the maximum field width, from minWidth to 19
* @param signStyle the positive/negative sign style, not null
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater,
* -1 if fixed width due to active adjacent parsing
*/
private NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle, int subsequentWidth) {
// validated by caller
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.signStyle = signStyle;
this.subsequentWidth = subsequentWidth;
}
/**
* Returns a new instance with fixed width flag set.
*
* @return a new updated printer-parser, not null
*/
NumberPrinterParser withFixedWidth() {
return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, -1);
}
/**
* Returns a new instance with an updated subsequent width.
*
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater
* @return a new updated printer-parser, not null
*/
NumberPrinterParser withSubsequentWidth(int subsequentWidth) {
return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, this.subsequentWidth + subsequentWidth);
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Chronology chrono = context.getTemporal().query(Queries.chronology());
Long valueLong;
if (chrono == JapaneseChronology.INSTANCE && field == ChronoField.YEAR) {
valueLong = context.getValue(ChronoField.YEAR_OF_ERA);
} else {
valueLong = context.getValue(field);
}
if (valueLong == null) {
return false;
}
long value = getValue(valueLong);
DateTimeFormatSymbols symbols = context.getSymbols();
String str = (value == Long.MIN_VALUE ? "9223372036854775808" : Long.toString(Math.abs(value)));
if (str.length() > maxWidth) {
throw new DateTimeException("Field " + field.getName() +
" cannot be printed as the value " + value +
" exceeds the maximum print width of " + maxWidth);
}
str = symbols.convertNumberToI18N(str);
if (value >= 0) {
switch (signStyle) {
case EXCEEDS_PAD:
if (minWidth < 19 && value >= EXCEED_POINTS[minWidth]) {
buf.append(symbols.getPositiveSign());
}
break;
case ALWAYS:
buf.append(symbols.getPositiveSign());
break;
}
} else {
switch (signStyle) {
case NORMAL:
case EXCEEDS_PAD:
case ALWAYS:
buf.append(symbols.getNegativeSign());
break;
case NOT_NEGATIVE:
throw new DateTimeException("Field " + field.getName() +
" cannot be printed as the value " + value +
" cannot be negative according to the SignStyle");
}
}
for (int i = 0; i < minWidth - str.length(); i++) {
buf.append(symbols.getZeroDigit());
}
buf.append(str);
return true;
}
/**
* Gets the value to output.
*
* @param value the base value of the field, not null
* @return the value
*/
long getValue(long value) {
return value;
}
boolean isFixedWidth() {
return subsequentWidth == -1;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position == length) {
return ~position;
}
char sign = text.charAt(position); // IOOBE if invalid position
boolean negative = false;
boolean positive = false;
if (sign == context.getSymbols().getPositiveSign()) {
if (signStyle.parse(true, context.isStrict(), minWidth == maxWidth) == false) {
return ~position;
}
positive = true;
position++;
} else if (sign == context.getSymbols().getNegativeSign()) {
if (signStyle.parse(false, context.isStrict(), minWidth == maxWidth) == false) {
return ~position;
}
negative = true;
position++;
} else {
if (signStyle == SignStyle.ALWAYS && context.isStrict()) {
return ~position;
}
}
int effMinWidth = (context.isStrict() || isFixedWidth() ? minWidth : 1);
int minEndPos = position + effMinWidth;
if (minEndPos > length) {
return ~position;
}
int effMaxWidth = maxWidth + Math.max(subsequentWidth, 0);
long total = 0;
BigInteger totalBig = null;
int pos = position;
for (int pass = 0; pass < 2; pass++) {
int maxEndPos = Math.min(pos + effMaxWidth, length);
while (pos < maxEndPos) {
char ch = text.charAt(pos++);
int digit = context.getSymbols().convertToDigit(ch);
if (digit < 0) {
pos--;
if (pos < minEndPos) {
return ~position; // need at least min width digits
}
break;
}
if ((pos - position) > 18) {
if (totalBig == null) {
totalBig = BigInteger.valueOf(total);
}
totalBig = totalBig.multiply(BigInteger.TEN).add(BigInteger.valueOf(digit));
} else {
total = total * 10 + digit;
}
}
if (subsequentWidth > 0 && pass == 0) {
// re-parse now we know the correct width
int parseLen = pos - position;
effMaxWidth = Math.max(effMinWidth, parseLen - subsequentWidth);
pos = position;
total = 0;
totalBig = null;
} else {
break;
}
}
if (negative) {
if (totalBig != null) {
if (totalBig.equals(BigInteger.ZERO) && context.isStrict()) {
return ~(position - 1); // minus zero not allowed
}
totalBig = totalBig.negate();
} else {
if (total == 0 && context.isStrict()) {
return ~(position - 1); // minus zero not allowed
}
total = -total;
}
} else if (signStyle == SignStyle.EXCEEDS_PAD && context.isStrict()) {
int parseLen = pos - position;
if (positive) {
if (parseLen <= minWidth) {
return ~(position - 1); // '+' only parsed if minWidth exceeded
}
} else {
if (parseLen > minWidth) {
return ~position; // '+' must be parsed if minWidth exceeded
}
}
}
if (totalBig != null) {
if (totalBig.bitLength() > 63) {
// overflow, parse 1 less digit
totalBig = totalBig.divide(BigInteger.TEN);
pos--;
}
return setValue(context, totalBig.longValue(), position, pos);
}
return setValue(context, total, position, pos);
}
/**
* Stores the value.
*
* @param context the context to store into, not null
* @param value the value
* @param errorPos the position of the field being parsed
* @param successPos the position after the field being parsed
* @return the new position
*/
int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) {
TemporalField f = field;
if (field == ChronoField.YEAR) {
Chronology chrono = context.getEffectiveChronology();
if (chrono == JapaneseChronology.INSTANCE) {
f = ChronoField.YEAR_OF_ERA;
}
}
return context.setParsedField(f, value, errorPos, successPos);
}
@Override
public String toString() {
if (minWidth == 1 && maxWidth == 19 && signStyle == SignStyle.NORMAL) {
return "Value(" + field.getName() + ")";
}
if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) {
return "Value(" + field.getName() + "," + minWidth + ")";
}
return "Value(" + field.getName() + "," + minWidth + "," + maxWidth + "," + signStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a reduced numeric date-time field.
*/
static final class ReducedPrinterParser extends NumberPrinterParser {
private final int baseValue;
private final int range;
/**
* Constructor.
*
* @param field the field to format, validated not null
* @param width the field width, from 1 to 18
* @param baseValue the base value
*/
ReducedPrinterParser(TemporalField field, int width, int baseValue) {
super(field, width, width, SignStyle.NOT_NEGATIVE);
if (width < 1 || width > 18) {
throw new IllegalArgumentException("The width must be from 1 to 18 inclusive but was " + width);
}
if (field.range().isValidValue(baseValue) == false) {
throw new IllegalArgumentException("The base value must be within the range of the field");
}
this.baseValue = baseValue;
this.range = EXCEED_POINTS[width];
if ((((long) baseValue) + range) > Integer.MAX_VALUE) {
throw new DateTimeException("Unable to add printer-parser as the range exceeds the capacity of an int");
}
}
@Override
long getValue(long value) {
return Math.abs(value % range);
}
@Override
int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) {
int lastPart = baseValue % range;
if (baseValue > 0) {
value = baseValue - lastPart + value;
} else {
value = baseValue - lastPart - value;
}
if (value < baseValue) {
value += range;
}
return context.setParsedField(field, value, errorPos, successPos);
}
@Override
NumberPrinterParser withFixedWidth() {
return this;
}
@Override
boolean isFixedWidth() {
return true;
}
@Override
public String toString() {
return "ReducedValue(" + field.getName() + "," + minWidth + "," + baseValue + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a numeric date-time field with optional padding.
*/
static final class FractionPrinterParser implements DateTimePrinterParser {
private final TemporalField field;
private final int minWidth;
private final int maxWidth;
private final boolean decimalPoint;
/**
* Constructor.
*
* @param field the field to output, not null
* @param minWidth the minimum width to output, from 0 to 9
* @param maxWidth the maximum width to output, from 0 to 9
* @param decimalPoint whether to output the localized decimal point symbol
*/
FractionPrinterParser(TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) {
Objects.requireNonNull(field, "field");
if (field.range().isFixed() == false) {
throw new IllegalArgumentException("Field must have a fixed set of values: " + field.getName());
}
if (minWidth < 0 || minWidth > 9) {
throw new IllegalArgumentException("Minimum width must be from 0 to 9 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 9) {
throw new IllegalArgumentException("Maximum width must be from 1 to 9 inclusive but was " + maxWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("Maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.decimalPoint = decimalPoint;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long value = context.getValue(field);
if (value == null) {
return false;
}
DateTimeFormatSymbols symbols = context.getSymbols();
BigDecimal fraction = convertToFraction(value);
if (fraction.scale() == 0) { // scale is zero if value is zero
if (minWidth > 0) {
if (decimalPoint) {
buf.append(symbols.getDecimalSeparator());
}
for (int i = 0; i < minWidth; i++) {
buf.append(symbols.getZeroDigit());
}
}
} else {
int outputScale = Math.min(Math.max(fraction.scale(), minWidth), maxWidth);
fraction = fraction.setScale(outputScale, RoundingMode.FLOOR);
String str = fraction.toPlainString().substring(2);
str = symbols.convertNumberToI18N(str);
if (decimalPoint) {
buf.append(symbols.getDecimalSeparator());
}
buf.append(str);
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int effectiveMin = (context.isStrict() ? minWidth : 0);
int effectiveMax = (context.isStrict() ? maxWidth : 9);
int length = text.length();
if (position == length) {
// valid if whole field is optional, invalid if minimum width
return (effectiveMin > 0 ? ~position : position);
}
if (decimalPoint) {
if (text.charAt(position) != context.getSymbols().getDecimalSeparator()) {
// valid if whole field is optional, invalid if minimum width
return (effectiveMin > 0 ? ~position : position);
}
position++;
}
int minEndPos = position + effectiveMin;
if (minEndPos > length) {
return ~position; // need at least min width digits
}
int maxEndPos = Math.min(position + effectiveMax, length);
int total = 0; // can use int because we are only parsing up to 9 digits
int pos = position;
while (pos < maxEndPos) {
char ch = text.charAt(pos++);
int digit = context.getSymbols().convertToDigit(ch);
if (digit < 0) {
if (pos < minEndPos) {
return ~position; // need at least min width digits
}
pos--;
break;
}
total = total * 10 + digit;
}
BigDecimal fraction = new BigDecimal(total).movePointLeft(pos - position);
long value = convertFromFraction(fraction);
return context.setParsedField(field, value, position, pos);
}
/**
* Converts a value for this field to a fraction between 0 and 1.
* <p>
* The fractional value is between 0 (inclusive) and 1 (exclusive).
* It can only be returned if the {@link java.time.temporal.TemporalField#range() value range} is fixed.
* The fraction is obtained by calculation from the field range using 9 decimal
* places and a rounding mode of {@link RoundingMode#FLOOR FLOOR}.
* The calculation is inaccurate if the values do not run continuously from smallest to largest.
* <p>
* For example, the second-of-minute value of 15 would be returned as 0.25,
* assuming the standard definition of 60 seconds in a minute.
*
* @param value the value to convert, must be valid for this rule
* @return the value as a fraction within the range, from 0 to 1, not null
* @throws DateTimeException if the value cannot be converted to a fraction
*/
private BigDecimal convertToFraction(long value) {
ValueRange range = field.range();
range.checkValidValue(value, field);
BigDecimal minBD = BigDecimal.valueOf(range.getMinimum());
BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE);
BigDecimal valueBD = BigDecimal.valueOf(value).subtract(minBD);
BigDecimal fraction = valueBD.divide(rangeBD, 9, RoundingMode.FLOOR);
// stripTrailingZeros bug
return fraction.compareTo(BigDecimal.ZERO) == 0 ? BigDecimal.ZERO : fraction.stripTrailingZeros();
}
/**
* Converts a fraction from 0 to 1 for this field to a value.
* <p>
* The fractional value must be between 0 (inclusive) and 1 (exclusive).
* It can only be returned if the {@link java.time.temporal.TemporalField#range() value range} is fixed.
* The value is obtained by calculation from the field range and a rounding
* mode of {@link RoundingMode#FLOOR FLOOR}.
* The calculation is inaccurate if the values do not run continuously from smallest to largest.
* <p>
* For example, the fractional second-of-minute of 0.25 would be converted to 15,
* assuming the standard definition of 60 seconds in a minute.
*
* @param fraction the fraction to convert, not null
* @return the value of the field, valid for this rule
* @throws DateTimeException if the value cannot be converted
*/
private long convertFromFraction(BigDecimal fraction) {
ValueRange range = field.range();
BigDecimal minBD = BigDecimal.valueOf(range.getMinimum());
BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE);
BigDecimal valueBD = fraction.multiply(rangeBD).setScale(0, RoundingMode.FLOOR).add(minBD);
return valueBD.longValueExact();
}
@Override
public String toString() {
String decimal = (decimalPoint ? ",DecimalPoint" : "");
return "Fraction(" + field.getName() + "," + minWidth + "," + maxWidth + decimal + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses field text.
*/
static final class TextPrinterParser implements DateTimePrinterParser {
private final TemporalField field;
private final TextStyle textStyle;
private final DateTimeTextProvider provider;
/**
* The cached number printer parser.
* Immutable and volatile, so no synchronization needed.
*/
private volatile NumberPrinterParser numberPrinterParser;
/**
* Constructor.
*
* @param field the field to output, not null
* @param textStyle the text style, not null
* @param provider the text provider, not null
*/
TextPrinterParser(TemporalField field, TextStyle textStyle, DateTimeTextProvider provider) {
// validated by caller
this.field = field;
this.textStyle = textStyle;
this.provider = provider;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long value = context.getValue(field);
if (value == null) {
return false;
}
String text;
Chronology chrono = context.getTemporal().query(Queries.chronology());
if (chrono == null || chrono == IsoChronology.INSTANCE) {
text = provider.getText(field, value, textStyle, context.getLocale());
} else {
text = provider.getText(chrono, field, value, textStyle, context.getLocale());
}
if (text == null) {
return numberPrinterParser().format(context, buf);
}
buf.append(text);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence parseText, int position) {
int length = parseText.length();
if (position < 0 || position > length) {
throw new IndexOutOfBoundsException();
}
TextStyle style = (context.isStrict() ? textStyle : null);
Chronology chrono = context.getEffectiveChronology();
Iterator<Entry<String, Long>> it;
if (chrono == null || chrono == IsoChronology.INSTANCE) {
it = provider.getTextIterator(field, style, context.getLocale());
} else {
it = provider.getTextIterator(chrono, field, style, context.getLocale());
}
if (it != null) {
while (it.hasNext()) {
Entry<String, Long> entry = it.next();
String itText = entry.getKey();
if (context.subSequenceEquals(itText, 0, parseText, position, itText.length())) {
return context.setParsedField(field, entry.getValue(), position, position + itText.length());
}
}
if (context.isStrict()) {
return ~position;
}
}
return numberPrinterParser().parse(context, parseText, position);
}
/**
* Create and cache a number printer parser.
* @return the number printer parser for this field, not null
*/
private NumberPrinterParser numberPrinterParser() {
if (numberPrinterParser == null) {
numberPrinterParser = new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL);
}
return numberPrinterParser;
}
@Override
public String toString() {
if (textStyle == TextStyle.FULL) {
return "Text(" + field.getName() + ")";
}
return "Text(" + field.getName() + "," + textStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an ISO-8601 instant.
*/
static final class InstantPrinterParser implements DateTimePrinterParser {
// days in a 400 year cycle = 146097
// days in a 10,000 year cycle = 146097 * 25
// seconds per day = 86400
private static final long SECONDS_PER_10000_YEARS = 146097L * 25L * 86400L;
private static final long SECONDS_0000_TO_1970 = ((146097L * 5L) - (30L * 365L + 7L)) * 86400L;
private static final CompositePrinterParser PARSER = new DateTimeFormatterBuilder()
.parseCaseInsensitive()
.append(DateTimeFormatter.ISO_LOCAL_DATE).appendLiteral('T')
.append(DateTimeFormatter.ISO_LOCAL_TIME).appendLiteral('Z')
.toFormatter().toPrinterParser(false);
InstantPrinterParser() {
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
// use INSTANT_SECONDS, thus this code is not bound by Instant.MAX
Long inSecs = context.getValue(INSTANT_SECONDS);
Long inNanos = context.getValue(NANO_OF_SECOND);
if (inSecs == null || inNanos == null) {
return false;
}
long inSec = inSecs;
int inNano = NANO_OF_SECOND.checkValidIntValue(inNanos);
if (inSec >= -SECONDS_0000_TO_1970) {
// current era
long zeroSecs = inSec - SECONDS_PER_10000_YEARS + SECONDS_0000_TO_1970;
long hi = Math.floorDiv(zeroSecs, SECONDS_PER_10000_YEARS) + 1;
long lo = Math.floorMod(zeroSecs, SECONDS_PER_10000_YEARS);
LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, inNano, ZoneOffset.UTC);
if (hi > 0) {
buf.append('+').append(hi);
}
buf.append(ldt).append('Z');
} else {
// before current era
long zeroSecs = inSec + SECONDS_0000_TO_1970;
long hi = zeroSecs / SECONDS_PER_10000_YEARS;
long lo = zeroSecs % SECONDS_PER_10000_YEARS;
LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, inNano, ZoneOffset.UTC);
int pos = buf.length();
buf.append(ldt).append('Z');
if (hi < 0) {
if (ldt.getYear() == -10_000) {
buf.replace(pos, pos + 2, Long.toString(hi - 1));
} else if (lo == 0) {
buf.insert(pos, hi);
} else {
buf.insert(pos + 1, Math.abs(hi));
}
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// new context to avoid overwriting fields like year/month/day
DateTimeParseContext newContext = context.copy();
int pos = PARSER.parse(newContext, text, position);
if (pos < 0) {
return pos;
}
// parser restricts most fields to 2 digits, so definitely int
// correctly parsed nano is also guaranteed to be valid
long yearParsed = newContext.getParsed(YEAR);
int month = newContext.getParsed(MONTH_OF_YEAR).intValue();
int day = newContext.getParsed(DAY_OF_MONTH).intValue();
int hour = newContext.getParsed(HOUR_OF_DAY).intValue();
int min = newContext.getParsed(MINUTE_OF_HOUR).intValue();
Long secVal = newContext.getParsed(SECOND_OF_MINUTE);
Long nanoVal = newContext.getParsed(NANO_OF_SECOND);
int sec = (secVal != null ? secVal.intValue() : 0);
int nano = (nanoVal != null ? nanoVal.intValue() : 0);
int year = (int) yearParsed % 10_000;
long instantSecs;
try {
LocalDateTime ldt = LocalDateTime.of(year, month, day, hour, min, sec, 0);
instantSecs = ldt.toEpochSecond(ZoneOffset.UTC);
instantSecs += Math.multiplyExact(yearParsed / 10_000L, SECONDS_PER_10000_YEARS);
} catch (RuntimeException ex) {
return ~position;
}
int successPos = text.length();
successPos = context.setParsedField(INSTANT_SECONDS, instantSecs, position, successPos);
return context.setParsedField(NANO_OF_SECOND, nano, position, successPos);
}
@Override
public String toString() {
return "Instant()";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an offset ID.
*/
static final class OffsetIdPrinterParser implements DateTimePrinterParser {
static final String[] PATTERNS = new String[] {
"+HH", "+HHmm", "+HH:mm", "+HHMM", "+HH:MM", "+HHMMss", "+HH:MM:ss", "+HHMMSS", "+HH:MM:SS",
}; // order used in pattern builder
static final OffsetIdPrinterParser INSTANCE_ID_Z = new OffsetIdPrinterParser("+HH:MM:ss", "Z");
static final OffsetIdPrinterParser INSTANCE_ID_ZERO = new OffsetIdPrinterParser("+HH:MM:ss", "0");
private final String noOffsetText;
private final int type;
/**
* Constructor.
*
* @param pattern the pattern
* @param noOffsetText the text to use for UTC, not null
*/
OffsetIdPrinterParser(String pattern, String noOffsetText) {
Objects.requireNonNull(pattern, "pattern");
Objects.requireNonNull(noOffsetText, "noOffsetText");
this.type = checkPattern(pattern);
this.noOffsetText = noOffsetText;
}
private int checkPattern(String pattern) {
for (int i = 0; i < PATTERNS.length; i++) {
if (PATTERNS[i].equals(pattern)) {
return i;
}
}
throw new IllegalArgumentException("Invalid zone offset pattern: " + pattern);
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long offsetSecs = context.getValue(OFFSET_SECONDS);
if (offsetSecs == null) {
return false;
}
int totalSecs = Math.toIntExact(offsetSecs);
if (totalSecs == 0) {
buf.append(noOffsetText);
} else {
int absHours = Math.abs((totalSecs / 3600) % 100); // anything larger than 99 silently dropped
int absMinutes = Math.abs((totalSecs / 60) % 60);
int absSeconds = Math.abs(totalSecs % 60);
int bufPos = buf.length();
int output = absHours;
buf.append(totalSecs < 0 ? "-" : "+")
.append((char) (absHours / 10 + '0')).append((char) (absHours % 10 + '0'));
if (type >= 3 || (type >= 1 && absMinutes > 0)) {
buf.append((type % 2) == 0 ? ":" : "")
.append((char) (absMinutes / 10 + '0')).append((char) (absMinutes % 10 + '0'));
output += absMinutes;
if (type >= 7 || (type >= 5 && absSeconds > 0)) {
buf.append((type % 2) == 0 ? ":" : "")
.append((char) (absSeconds / 10 + '0')).append((char) (absSeconds % 10 + '0'));
output += absSeconds;
}
}
if (output == 0) {
buf.setLength(bufPos);
buf.append(noOffsetText);
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
int noOffsetLen = noOffsetText.length();
if (noOffsetLen == 0) {
if (position == length) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position);
}
} else {
if (position == length) {
return ~position;
}
if (context.subSequenceEquals(text, position, noOffsetText, 0, noOffsetLen)) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen);
}
}
// parse normal plus/minus offset
char sign = text.charAt(position); // IOOBE if invalid position
if (sign == '+' || sign == '-') {
// starts
int negative = (sign == '-' ? -1 : 1);
int[] array = new int[4];
array[0] = position + 1;
if ((parseNumber(array, 1, text, true) ||
parseNumber(array, 2, text, type >=3) ||
parseNumber(array, 3, text, false)) == false) {
// success
long offsetSecs = negative * (array[1] * 3600L + array[2] * 60L + array[3]);
return context.setParsedField(OFFSET_SECONDS, offsetSecs, position, array[0]);
}
}
// handle special case of empty no offset text
if (noOffsetLen == 0) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen);
}
return ~position;
}
/**
* Parse a two digit zero-prefixed number.
*
* @param array the array of parsed data, 0=pos,1=hours,2=mins,3=secs, not null
* @param arrayIndex the index to parse the value into
* @param parseText the offset ID, not null
* @param required whether this number is required
* @return true if an error occurred
*/
private boolean parseNumber(int[] array, int arrayIndex, CharSequence parseText, boolean required) {
if ((type + 3) / 2 < arrayIndex) {
return false; // ignore seconds/minutes
}
int pos = array[0];
if ((type % 2) == 0 && arrayIndex > 1) {
if (pos + 1 > parseText.length() || parseText.charAt(pos) != ':') {
return required;
}
pos++;
}
if (pos + 2 > parseText.length()) {
return required;
}
char ch1 = parseText.charAt(pos++);
char ch2 = parseText.charAt(pos++);
if (ch1 < '0' || ch1 > '9' || ch2 < '0' || ch2 > '9') {
return required;
}
int value = (ch1 - 48) * 10 + (ch2 - 48);
if (value < 0 || value > 59) {
return required;
}
array[arrayIndex] = value;
array[0] = pos;
return false;
}
@Override
public String toString() {
String converted = noOffsetText.replace("'", "''");
return "Offset(" + PATTERNS[type] + ",'" + converted + "')";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a zone ID.
*/
static final class ZoneTextPrinterParser extends ZoneIdPrinterParser {
/** The text style to output. */
private final TextStyle textStyle;
/** The preferred zoneid map */
private Set<String> preferredZones;
ZoneTextPrinterParser(TextStyle textStyle, Set<ZoneId> preferredZones) {
super(Queries.zone(), "ZoneText(" + textStyle + ")");
this.textStyle = Objects.requireNonNull(textStyle, "textStyle");
if (preferredZones != null && preferredZones.size() != 0) {
this.preferredZones = new HashSet<>();
for (ZoneId id : preferredZones) {
this.preferredZones.add(id.getId());
}
}
}
private static final int STD = 0;
private static final int DST = 1;
private static final int GENERIC = 2;
private static final Map<String, SoftReference<Map<Locale, String[]>>> cache =
new ConcurrentHashMap<>();
private String getDisplayName(String id, int type, Locale locale) {
if (textStyle == TextStyle.NARROW) {
return null;
}
String[] names;
SoftReference<Map<Locale, String[]>> ref = cache.get(id);
Map<Locale, String[]> perLocale = null;
if (ref == null || (perLocale = ref.get()) == null ||
(names = perLocale.get(locale)) == null) {
names = TimeZoneNameUtility.retrieveDisplayNames(id, locale);
if (names == null) {
return null;
}
names = Arrays.copyOfRange(names, 0, 7);
names[5] =
TimeZoneNameUtility.retrieveGenericDisplayName(id, TimeZone.LONG,locale);
if (names[5] == null) {
names[5] = names[0]; // use the id
}
names[6] =
TimeZoneNameUtility.retrieveGenericDisplayName(id, TimeZone.SHORT,locale);
if (names[6] == null) {
names[6] = names[0];
}
if (perLocale == null) {
perLocale = new ConcurrentHashMap<>();
}
perLocale.put(locale, names);
cache.put(id, new SoftReference<>(perLocale));
}
switch (type) {
case STD:
return names[textStyle.ordinal() + 1];
case DST:
return names[textStyle.ordinal() + 3];
}
return names[textStyle.ordinal() + 5];
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
ZoneId zone = context.getValue(Queries.zoneId());
if (zone == null) {
return false;
}
String zname = zone.getId();
if (!(zone instanceof ZoneOffset)) {
TemporalAccessor dt = context.getTemporal();
String name = getDisplayName(zname,
dt.isSupported(ChronoField.INSTANT_SECONDS)
? (zone.getRules().isDaylightSavings(Instant.from(dt)) ? DST : STD)
: GENERIC,
context.getLocale());
if (name != null) {
zname = name;
}
}
buf.append(zname);
return true;
}
// cache per instance for now
private final Map<Locale, Entry<Integer, SoftReference<PrefixTree>>>
cachedTree = new HashMap<>();
private final Map<Locale, Entry<Integer, SoftReference<PrefixTree>>>
cachedTreeCI = new HashMap<>();
@Override
protected PrefixTree getTree(DateTimeParseContext context) {
if (textStyle == TextStyle.NARROW) {
return super.getTree(context);
}
Locale locale = context.getLocale();
boolean isCaseSensitive = context.isCaseSensitive();
Set<String> regionIds = ZoneRulesProvider.getAvailableZoneIds();
int regionIdsSize = regionIds.size();
Map<Locale, Entry<Integer, SoftReference<PrefixTree>>> cached =
isCaseSensitive ? cachedTree : cachedTreeCI;
Entry<Integer, SoftReference<PrefixTree>> entry = null;
PrefixTree tree = null;
String[][] zoneStrings = null;
if ((entry = cached.get(locale)) == null ||
(entry.getKey() != regionIdsSize ||
(tree = entry.getValue().get()) == null)) {
tree = PrefixTree.newTree(context);
zoneStrings = TimeZoneNameUtility.getZoneStrings(locale);
for (String[] names : zoneStrings) {
String zid = names[0];
if (!regionIds.contains(zid)) {
continue;
}
tree.add(zid, zid); // don't convert zid -> metazone
zid = ZoneName.toZid(zid, locale);
int i = textStyle == TextStyle.FULL ? 1 : 2;
for (; i < names.length; i += 2) {
tree.add(names[i], zid);
}
}
// if we have a set of preferred zones, need a copy and
// add the preferred zones again to overwrite
if (preferredZones != null) {
for (String[] names : zoneStrings) {
String zid = names[0];
if (!preferredZones.contains(zid) || !regionIds.contains(zid)) {
continue;
}
int i = textStyle == TextStyle.FULL ? 1 : 2;
for (; i < names.length; i += 2) {
tree.add(names[i], zid);
}
}
}
cached.put(locale, new SimpleImmutableEntry<>(regionIdsSize, new SoftReference<>(tree)));
}
return tree;
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a zone ID.
*/
static class ZoneIdPrinterParser implements DateTimePrinterParser {
private final TemporalQuery<ZoneId> query;
private final String description;
ZoneIdPrinterParser(TemporalQuery<ZoneId> query, String description) {
this.query = query;
this.description = description;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
ZoneId zone = context.getValue(query);
if (zone == null) {
return false;
}
buf.append(zone.getId());
return true;
}
/**
* The cached tree to speed up parsing.
*/
private static volatile Entry<Integer, PrefixTree> cachedPrefixTree;
private static volatile Entry<Integer, PrefixTree> cachedPrefixTreeCI;
protected PrefixTree getTree(DateTimeParseContext context) {
// prepare parse tree
Set<String> regionIds = ZoneRulesProvider.getAvailableZoneIds();
final int regionIdsSize = regionIds.size();
Entry<Integer, PrefixTree> cached = context.isCaseSensitive()
? cachedPrefixTree : cachedPrefixTreeCI;
if (cached == null || cached.getKey() != regionIdsSize) {
synchronized (this) {
cached = context.isCaseSensitive() ? cachedPrefixTree : cachedPrefixTreeCI;
if (cached == null || cached.getKey() != regionIdsSize) {
cached = new SimpleImmutableEntry<>(regionIdsSize, PrefixTree.newTree(regionIds, context));
if (context.isCaseSensitive()) {
cachedPrefixTree = cached;
} else {
cachedPrefixTreeCI = cached;
}
}
}
}
return cached.getValue();
}
/**
* This implementation looks for the longest matching string.
* For example, parsing Etc/GMT-2 will return Etc/GMC-2 rather than just
* Etc/GMC although both are valid.
*/
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position > length) {
throw new IndexOutOfBoundsException();
}
if (position == length) {
return ~position;
}
// handle fixed time-zone IDs
char nextChar = text.charAt(position);
if (nextChar == '+' || nextChar == '-') {
return parseOffsetBased(context, text, position, OffsetIdPrinterParser.INSTANCE_ID_Z);
} else if (length >= position + 2) {
char nextNextChar = text.charAt(position + 1);
if (context.charEquals(nextChar, 'U') && context.charEquals(nextNextChar, 'T')) {
if (length >= position + 3 && context.charEquals(text.charAt(position + 2), 'C')) {
return parseOffsetBased(context, text, position + 3, OffsetIdPrinterParser.INSTANCE_ID_ZERO);
}
return parseOffsetBased(context, text, position + 2, OffsetIdPrinterParser.INSTANCE_ID_ZERO);
} else if (context.charEquals(nextChar, 'G') && length >= position + 3 &&
context.charEquals(nextNextChar, 'M') && context.charEquals(text.charAt(position + 2), 'T')) {
return parseOffsetBased(context, text, position + 3, OffsetIdPrinterParser.INSTANCE_ID_ZERO);
}
}
// parse
PrefixTree tree = getTree(context);
ParsePosition ppos = new ParsePosition(position);
String parsedZoneId = tree.match(text, ppos);
if (parsedZoneId == null) {
if (context.charEquals(nextChar, 'Z')) {
context.setParsed(ZoneOffset.UTC);
return position + 1;
}
return ~position;
}
context.setParsed(ZoneId.of(parsedZoneId));
return ppos.getIndex();
}
private int parseOffsetBased(DateTimeParseContext context, CharSequence text, int position, OffsetIdPrinterParser parser) {
DateTimeParseContext newContext = context.copy();
int endPos = parser.parse(newContext, text, position);
if (endPos < 0) {
if (parser == OffsetIdPrinterParser.INSTANCE_ID_Z) {
return ~position;
}
context.setParsed(ZoneOffset.UTC);
return position;
}
int offset = (int) newContext.getParsed(OFFSET_SECONDS).longValue();
ZoneId zone = ZoneOffset.ofTotalSeconds(offset);
context.setParsed(zone);
return endPos;
}
@Override
public String toString() {
return description;
}
}
//-----------------------------------------------------------------------
/**
* A String based prefix tree for parsing time-zone names.
*/
static class PrefixTree {
protected String key;
protected String value;
protected char c0; // performance optimization to avoid the
// boundary check cost of key.charat(0)
protected PrefixTree child;
protected PrefixTree sibling;
private PrefixTree(String k, String v, PrefixTree child) {
this.key = k;
this.value = v;
this.child = child;
if (k.length() == 0){
c0 = 0xffff;
} else {
c0 = key.charAt(0);
}
}
/**
* Creates a new prefix parsing tree based on parse context.
*
* @param context the parse context
* @return the tree, not null
*/
public static PrefixTree newTree(DateTimeParseContext context) {
//if (!context.isStrict()) {
// return new LENIENT("", null, null);
//}
if (context.isCaseSensitive()) {
return new PrefixTree("", null, null);
}
return new CI("", null, null);
}
/**
* Creates a new prefix parsing tree.
*
* @param keys a set of strings to build the prefix parsing tree, not null
* @param context the parse context
* @return the tree, not null
*/
public static PrefixTree newTree(Set<String> keys, DateTimeParseContext context) {
PrefixTree tree = newTree(context);
for (String k : keys) {
tree.add0(k, k);
}
return tree;
}
/**
* Clone a copy of this tree
*/
public PrefixTree copyTree() {
PrefixTree copy = new PrefixTree(key, value, null);
if (child != null) {
copy.child = child.copyTree();
}
if (sibling != null) {
copy.sibling = sibling.copyTree();
}
return copy;
}
/**
* Adds a pair of {key, value} into the prefix tree.
*
* @param k the key, not null
* @param v the value, not null
* @return true if the pair is added successfully
*/
public boolean add(String k, String v) {
return add0(k, v);
}
private boolean add0(String k, String v) {
k = toKey(k);
int prefixLen = prefixLength(k);
if (prefixLen == key.length()) {
if (prefixLen < k.length()) { // down the tree
String subKey = k.substring(prefixLen);
PrefixTree c = child;
while (c != null) {
if (isEqual(c.c0, subKey.charAt(0))) {
return c.add0(subKey, v);
}
c = c.sibling;
}
// add the node as the child of the current node
c = newNode(subKey, v, null);
c.sibling = child;
child = c;
return true;
}
// have an existing <key, value> already, overwrite it
// if (value != null) {
// return false;
//}
value = v;
return true;
}
// split the existing node
PrefixTree n1 = newNode(key.substring(prefixLen), value, child);
key = k.substring(0, prefixLen);
child = n1;
if (prefixLen < k.length()) {
PrefixTree n2 = newNode(k.substring(prefixLen), v, null);
child.sibling = n2;
value = null;
} else {
value = v;
}
return true;
}
/**
* Match text with the prefix tree.
*
* @param text the input text to parse, not null
* @param off the offset position to start parsing at
* @param end the end position to stop parsing
* @return the resulting string, or null if no match found.
*/
public String match(CharSequence text, int off, int end) {
if (!prefixOf(text, off, end)){
return null;
}
if (child != null && (off += key.length()) != end) {
PrefixTree c = child;
do {
if (isEqual(c.c0, text.charAt(off))) {
String found = c.match(text, off, end);
if (found != null) {
return found;
}
return value;
}
c = c.sibling;
} while (c != null);
}
return value;
}
/**
* Match text with the prefix tree.
*
* @param text the input text to parse, not null
* @param pos the position to start parsing at, from 0 to the text
* length. Upon return, position will be updated to the new parse
* position, or unchanged, if no match found.
* @return the resulting string, or null if no match found.
*/
public String match(CharSequence text, ParsePosition pos) {
int off = pos.getIndex();
int end = text.length();
if (!prefixOf(text, off, end)){
return null;
}
off += key.length();
if (child != null && off != end) {
PrefixTree c = child;
do {
if (isEqual(c.c0, text.charAt(off))) {
pos.setIndex(off);
String found = c.match(text, pos);
if (found != null) {
return found;
}
break;
}
c = c.sibling;
} while (c != null);
}
pos.setIndex(off);
return value;
}
protected String toKey(String k) {
return k;
}
protected PrefixTree newNode(String k, String v, PrefixTree child) {
return new PrefixTree(k, v, child);
}
protected boolean isEqual(char c1, char c2) {
return c1 == c2;
}
protected boolean prefixOf(CharSequence text, int off, int end) {
if (text instanceof String) {
return ((String)text).startsWith(key, off);
}
int len = key.length();
if (len > end - off) {
return false;
}
int off0 = 0;
while (len-- > 0) {
if (!isEqual(key.charAt(off0++), text.charAt(off++))) {
return false;
}
}
return true;
}
private int prefixLength(String k) {
int off = 0;
while (off < k.length() && off < key.length()) {
if (!isEqual(k.charAt(off), key.charAt(off))) {
return off;
}
off++;
}
return off;
}
/**
* Case Insensitive prefix tree.
*/
private static class CI extends PrefixTree {
private CI(String k, String v, PrefixTree child) {
super(k, v, child);
}
@Override
protected CI newNode(String k, String v, PrefixTree child) {
return new CI(k, v, child);
}
@Override
protected boolean isEqual(char c1, char c2) {
return DateTimeParseContext.charEqualsIgnoreCase(c1, c2);
}
@Override
protected boolean prefixOf(CharSequence text, int off, int end) {
int len = key.length();
if (len > end - off) {
return false;
}
int off0 = 0;
while (len-- > 0) {
if (!isEqual(key.charAt(off0++), text.charAt(off++))) {
return false;
}
}
return true;
}
}
/**
* Lenient prefix tree. Case insensitive and ignores characters
* like space, underscore and slash.
*/
private static class LENIENT extends CI {
private LENIENT(String k, String v, PrefixTree child) {
super(k, v, child);
}
@Override
protected CI newNode(String k, String v, PrefixTree child) {
return new LENIENT(k, v, child);
}
private boolean isLenientChar(char c) {
return c == ' ' || c == '_' || c == '/';
}
protected String toKey(String k) {
for (int i = 0; i < k.length(); i++) {
if (isLenientChar(k.charAt(i))) {
StringBuilder sb = new StringBuilder(k.length());
sb.append(k, 0, i);
i++;
while (i < k.length()) {
if (!isLenientChar(k.charAt(i))) {
sb.append(k.charAt(i));
}
i++;
}
return sb.toString();
}
}
return k;
}
@Override
public String match(CharSequence text, ParsePosition pos) {
int off = pos.getIndex();
int end = text.length();
int len = key.length();
int koff = 0;
while (koff < len && off < end) {
if (isLenientChar(text.charAt(off))) {
off++;
continue;
}
if (!isEqual(key.charAt(koff++), text.charAt(off++))) {
return null;
}
}
if (koff != len) {
return null;
}
if (child != null && off != end) {
int off0 = off;
while (off0 < end && isLenientChar(text.charAt(off0))) {
off0++;
}
if (off0 < end) {
PrefixTree c = child;
do {
if (isEqual(c.c0, text.charAt(off0))) {
pos.setIndex(off0);
String found = c.match(text, pos);
if (found != null) {
return found;
}
break;
}
c = c.sibling;
} while (c != null);
}
}
pos.setIndex(off);
return value;
}
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a chronology.
*/
static final class ChronoPrinterParser implements DateTimePrinterParser {
/** The text style to output, null means the ID. */
private final TextStyle textStyle;
ChronoPrinterParser(TextStyle textStyle) {
// validated by caller
this.textStyle = textStyle;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Chronology chrono = context.getValue(Queries.chronology());
if (chrono == null) {
return false;
}
if (textStyle == null) {
buf.append(chrono.getId());
} else {
buf.append(chrono.getId()); // TODO: Use symbols
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// simple looping parser to find the chronology
if (position < 0 || position > text.length()) {
throw new IndexOutOfBoundsException();
}
Set<Chronology> chronos = Chronology.getAvailableChronologies();
Chronology bestMatch = null;
int matchLen = -1;
for (Chronology chrono : chronos) {
String id = chrono.getId();
int idLen = id.length();
if (idLen > matchLen && context.subSequenceEquals(text, position, id, 0, idLen)) {
bestMatch = chrono;
matchLen = idLen;
}
}
if (bestMatch == null) {
return ~position;
}
context.setParsed(bestMatch);
return position + matchLen;
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a localized pattern.
*/
static final class LocalizedPrinterParser implements DateTimePrinterParser {
private final FormatStyle dateStyle;
private final FormatStyle timeStyle;
/**
* Constructor.
*
* @param dateStyle the date style to use, may be null
* @param timeStyle the time style to use, may be null
*/
LocalizedPrinterParser(FormatStyle dateStyle, FormatStyle timeStyle) {
// validated by caller
this.dateStyle = dateStyle;
this.timeStyle = timeStyle;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Chronology chrono = Chronology.from(context.getTemporal());
return formatter(context.getLocale(), chrono).toPrinterParser(false).format(context, buf);
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
Chronology chrono = context.getEffectiveChronology();
return formatter(context.getLocale(), chrono).toPrinterParser(false).parse(context, text, position);
}
/**
* Gets the formatter to use.
*
* @param locale the locale to use, not null
* @param chrono the chronology to use, not null
* @return the formatter, not null
* @throws IllegalArgumentException if the formatter cannot be found
*/
private DateTimeFormatter formatter(Locale locale, Chronology chrono) {
return DateTimeFormatStyleProvider.getInstance()
.getFormatter(dateStyle, timeStyle, chrono, locale);
}
@Override
public String toString() {
return "Localized(" + (dateStyle != null ? dateStyle : "") + "," +
(timeStyle != null ? timeStyle : "") + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a localized pattern from a localized field.
* The specific formatter and parameters is not selected until the
* the field is to be printed or parsed.
* The locale is needed to select the proper WeekFields from which
* the field for day-of-week, week-of-month, or week-of-year is selected.
*/
static final class WeekBasedFieldPrinterParser implements DateTimePrinterParser {
private char chr;
private int count;
/**
* Constructor.
*
* @param chr the pattern format letter that added this PrinterParser.
* @param count the repeat count of the format letter
*/
WeekBasedFieldPrinterParser(char chr, int count) {
this.chr = chr;
this.count = count;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
return printerParser(context.getLocale()).format(context, buf);
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
return printerParser(context.getLocale()).parse(context, text, position);
}
/**
* Gets the printerParser to use based on the field and the locale.
*
* @param locale the locale to use, not null
* @return the formatter, not null
* @throws IllegalArgumentException if the formatter cannot be found
*/
private DateTimePrinterParser printerParser(Locale locale) {
WeekFields weekDef = WeekFields.of(locale);
TemporalField field = null;
switch (chr) {
case 'e':
field = weekDef.dayOfWeek();
break;
case 'w':
field = weekDef.weekOfMonth();
break;
case 'W':
field = weekDef.weekOfYear();
break;
default:
throw new IllegalStateException("unreachable");
}
return new NumberPrinterParser(field, (count == 2 ? 2 : 1), 2, SignStyle.NOT_NEGATIVE);
}
@Override
public String toString() {
return String.format("WeekBased(%c%d)", chr, count);
}
}
//-------------------------------------------------------------------------
/**
* Length comparator.
*/
static final Comparator<String> LENGTH_SORT = new Comparator<String>() {
@Override
public int compare(String str1, String str2) {
return str1.length() == str2.length() ? str1.compareTo(str2) : str1.length() - str2.length();
}
};
}