blob: 1db3dc41ad9c6a7321ff5cbf142f1a91c9d53326 [file] [log] [blame]
/*
* Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1MonitoringSupport.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/g1MemoryPool.hpp"
#include "gc/shared/hSpaceCounters.hpp"
#include "memory/metaspaceCounters.hpp"
#include "services/memoryPool.hpp"
class G1GenerationCounters : public GenerationCounters {
protected:
G1MonitoringSupport* _g1mm;
public:
G1GenerationCounters(G1MonitoringSupport* g1mm,
const char* name, int ordinal, int spaces,
size_t min_capacity, size_t max_capacity,
size_t curr_capacity)
: GenerationCounters(name, ordinal, spaces, min_capacity,
max_capacity, curr_capacity), _g1mm(g1mm) { }
};
class G1YoungGenerationCounters : public G1GenerationCounters {
public:
// We pad the capacity three times given that the young generation
// contains three spaces (eden and two survivors).
G1YoungGenerationCounters(G1MonitoringSupport* g1mm, const char* name, size_t max_size)
: G1GenerationCounters(g1mm, name, 0 /* ordinal */, 3 /* spaces */,
G1MonitoringSupport::pad_capacity(0, 3) /* min_capacity */,
G1MonitoringSupport::pad_capacity(max_size, 3),
G1MonitoringSupport::pad_capacity(0, 3) /* curr_capacity */) {
if (UsePerfData) {
update_all();
}
}
virtual void update_all() {
size_t committed =
G1MonitoringSupport::pad_capacity(_g1mm->young_gen_committed(), 3);
_current_size->set_value(committed);
}
};
class G1OldGenerationCounters : public G1GenerationCounters {
public:
G1OldGenerationCounters(G1MonitoringSupport* g1mm, const char* name, size_t max_size)
: G1GenerationCounters(g1mm, name, 1 /* ordinal */, 1 /* spaces */,
G1MonitoringSupport::pad_capacity(0) /* min_capacity */,
G1MonitoringSupport::pad_capacity(max_size),
G1MonitoringSupport::pad_capacity(0) /* curr_capacity */) {
if (UsePerfData) {
update_all();
}
}
virtual void update_all() {
size_t committed =
G1MonitoringSupport::pad_capacity(_g1mm->old_gen_committed());
_current_size->set_value(committed);
}
};
G1MonitoringSupport::G1MonitoringSupport(G1CollectedHeap* g1h) :
_g1h(g1h),
_incremental_memory_manager("G1 Young Generation", "end of minor GC"),
_full_gc_memory_manager("G1 Old Generation", "end of major GC"),
_eden_space_pool(NULL),
_survivor_space_pool(NULL),
_old_gen_pool(NULL),
_incremental_collection_counters(NULL),
_full_collection_counters(NULL),
_conc_collection_counters(NULL),
_young_gen_counters(NULL),
_old_gen_counters(NULL),
_old_space_counters(NULL),
_eden_space_counters(NULL),
_from_space_counters(NULL),
_to_space_counters(NULL),
_overall_committed(0),
_overall_used(0),
_young_gen_committed(0),
_old_gen_committed(0),
_eden_space_committed(0),
_eden_space_used(0),
_survivor_space_committed(0),
_survivor_space_used(0),
_old_gen_used(0) {
recalculate_sizes();
// Counters for garbage collections
//
// name "collector.0". In a generational collector this would be the
// young generation collection.
_incremental_collection_counters =
new CollectorCounters("G1 young collection pauses", 0);
// name "collector.1". In a generational collector this would be the
// old generation collection.
_full_collection_counters =
new CollectorCounters("G1 full collection pauses", 1);
// name "collector.2". In a generational collector this would be the
// STW phases in concurrent collection.
_conc_collection_counters =
new CollectorCounters("G1 concurrent cycle pauses", 2);
// "Generation" and "Space" counters.
//
// name "generation.1" This is logically the old generation in
// generational GC terms. The "1, 1" parameters are for
// the n-th generation (=1) with 1 space.
// Counters are created from minCapacity, maxCapacity, and capacity
_old_gen_counters = new G1OldGenerationCounters(this, "old", _g1h->max_capacity());
// name "generation.1.space.0"
// Counters are created from maxCapacity, capacity, initCapacity,
// and used.
_old_space_counters = new HSpaceCounters(_old_gen_counters->name_space(),
"space", 0 /* ordinal */,
pad_capacity(g1h->max_capacity()) /* max_capacity */,
pad_capacity(_old_gen_committed) /* init_capacity */);
// Young collection set
// name "generation.0". This is logically the young generation.
// The "0, 3" are parameters for the n-th generation (=0) with 3 spaces.
// See _old_collection_counters for additional counters
_young_gen_counters = new G1YoungGenerationCounters(this, "young", _g1h->max_capacity());
const char* young_collection_name_space = _young_gen_counters->name_space();
// name "generation.0.space.0"
// See _old_space_counters for additional counters
_eden_space_counters = new HSpaceCounters(young_collection_name_space,
"eden", 0 /* ordinal */,
pad_capacity(g1h->max_capacity()) /* max_capacity */,
pad_capacity(_eden_space_committed) /* init_capacity */);
// name "generation.0.space.1"
// See _old_space_counters for additional counters
// Set the arguments to indicate that this survivor space is not used.
_from_space_counters = new HSpaceCounters(young_collection_name_space,
"s0", 1 /* ordinal */,
pad_capacity(0) /* max_capacity */,
pad_capacity(0) /* init_capacity */);
// Given that this survivor space is not used, we update it here
// once to reflect that its used space is 0 so that we don't have to
// worry about updating it again later.
if (UsePerfData) {
_from_space_counters->update_used(0);
}
// name "generation.0.space.2"
// See _old_space_counters for additional counters
_to_space_counters = new HSpaceCounters(young_collection_name_space,
"s1", 2 /* ordinal */,
pad_capacity(g1h->max_capacity()) /* max_capacity */,
pad_capacity(_survivor_space_committed) /* init_capacity */);
}
G1MonitoringSupport::~G1MonitoringSupport() {
delete _eden_space_pool;
delete _survivor_space_pool;
delete _old_gen_pool;
}
void G1MonitoringSupport::initialize_serviceability() {
_eden_space_pool = new G1EdenPool(_g1h, _eden_space_committed);
_survivor_space_pool = new G1SurvivorPool(_g1h, _survivor_space_committed);
_old_gen_pool = new G1OldGenPool(_g1h, _old_gen_committed, _g1h->max_capacity());
_full_gc_memory_manager.add_pool(_eden_space_pool);
_full_gc_memory_manager.add_pool(_survivor_space_pool);
_full_gc_memory_manager.add_pool(_old_gen_pool);
_incremental_memory_manager.add_pool(_eden_space_pool);
_incremental_memory_manager.add_pool(_survivor_space_pool);
_incremental_memory_manager.add_pool(_old_gen_pool, false /* always_affected_by_gc */);
}
MemoryUsage G1MonitoringSupport::memory_usage() {
MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag);
return MemoryUsage(InitialHeapSize, _overall_used, _overall_committed, _g1h->max_capacity());
}
GrowableArray<GCMemoryManager*> G1MonitoringSupport::memory_managers() {
GrowableArray<GCMemoryManager*> memory_managers(2);
memory_managers.append(&_incremental_memory_manager);
memory_managers.append(&_full_gc_memory_manager);
return memory_managers;
}
GrowableArray<MemoryPool*> G1MonitoringSupport::memory_pools() {
GrowableArray<MemoryPool*> memory_pools(3);
memory_pools.append(_eden_space_pool);
memory_pools.append(_survivor_space_pool);
memory_pools.append(_old_gen_pool);
return memory_pools;
}
void G1MonitoringSupport::recalculate_sizes() {
assert_heap_locked_or_at_safepoint(true);
MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag);
// Recalculate all the sizes from scratch.
uint young_list_length = _g1h->young_regions_count();
uint survivor_list_length = _g1h->survivor_regions_count();
assert(young_list_length >= survivor_list_length, "invariant");
uint eden_list_length = young_list_length - survivor_list_length;
// Max length includes any potential extensions to the young gen
// we'll do when the GC locker is active.
uint young_list_max_length = _g1h->policy()->young_list_max_length();
assert(young_list_max_length >= survivor_list_length, "invariant");
uint eden_list_max_length = young_list_max_length - survivor_list_length;
_overall_used = _g1h->used_unlocked();
_eden_space_used = (size_t) eden_list_length * HeapRegion::GrainBytes;
_survivor_space_used = (size_t) survivor_list_length * HeapRegion::GrainBytes;
_old_gen_used = subtract_up_to_zero(_overall_used, _eden_space_used + _survivor_space_used);
// First calculate the committed sizes that can be calculated independently.
_survivor_space_committed = _survivor_space_used;
_old_gen_committed = HeapRegion::align_up_to_region_byte_size(_old_gen_used);
// Next, start with the overall committed size.
_overall_committed = _g1h->capacity();
size_t committed = _overall_committed;
// Remove the committed size we have calculated so far (for the
// survivor and old space).
assert(committed >= (_survivor_space_committed + _old_gen_committed), "sanity");
committed -= _survivor_space_committed + _old_gen_committed;
// Next, calculate and remove the committed size for the eden.
_eden_space_committed = (size_t) eden_list_max_length * HeapRegion::GrainBytes;
// Somewhat defensive: be robust in case there are inaccuracies in
// the calculations
_eden_space_committed = MIN2(_eden_space_committed, committed);
committed -= _eden_space_committed;
// Finally, give the rest to the old space...
_old_gen_committed += committed;
// ..and calculate the young gen committed.
_young_gen_committed = _eden_space_committed + _survivor_space_committed;
assert(_overall_committed ==
(_eden_space_committed + _survivor_space_committed + _old_gen_committed),
"the committed sizes should add up");
// Somewhat defensive: cap the eden used size to make sure it
// never exceeds the committed size.
_eden_space_used = MIN2(_eden_space_used, _eden_space_committed);
// _survivor_committed and _old_committed are calculated in terms of
// the corresponding _*_used value, so the next two conditions
// should hold.
assert(_survivor_space_used <= _survivor_space_committed, "post-condition");
assert(_old_gen_used <= _old_gen_committed, "post-condition");
}
void G1MonitoringSupport::update_sizes() {
recalculate_sizes();
if (UsePerfData) {
_eden_space_counters->update_capacity(pad_capacity(_eden_space_committed));
_eden_space_counters->update_used(_eden_space_used);
// only the "to" survivor space is active, so we don't need to
// update the counters for the "from" survivor space
_to_space_counters->update_capacity(pad_capacity(_survivor_space_committed));
_to_space_counters->update_used(_survivor_space_used);
_old_space_counters->update_capacity(pad_capacity(_old_gen_committed));
_old_space_counters->update_used(_old_gen_used);
_young_gen_counters->update_all();
_old_gen_counters->update_all();
MetaspaceCounters::update_performance_counters();
CompressedClassSpaceCounters::update_performance_counters();
}
}
void G1MonitoringSupport::update_eden_size() {
// Recalculate everything - this should be fast enough and we are sure that we do not
// miss anything.
recalculate_sizes();
if (UsePerfData) {
_eden_space_counters->update_used(_eden_space_used);
}
}
MemoryUsage G1MonitoringSupport::eden_space_memory_usage(size_t initial_size, size_t max_size) {
MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag);
return MemoryUsage(initial_size,
_eden_space_used,
_eden_space_committed,
max_size);
}
MemoryUsage G1MonitoringSupport::survivor_space_memory_usage(size_t initial_size, size_t max_size) {
MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag);
return MemoryUsage(initial_size,
_survivor_space_used,
_survivor_space_committed,
max_size);
}
MemoryUsage G1MonitoringSupport::old_gen_memory_usage(size_t initial_size, size_t max_size) {
MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag);
return MemoryUsage(initial_size,
_old_gen_used,
_old_gen_committed,
max_size);
}
G1MonitoringScope::G1MonitoringScope(G1MonitoringSupport* g1mm, bool full_gc, bool all_memory_pools_affected) :
_tcs(full_gc ? g1mm->_full_collection_counters : g1mm->_incremental_collection_counters),
_tms(full_gc ? &g1mm->_full_gc_memory_manager : &g1mm->_incremental_memory_manager,
G1CollectedHeap::heap()->gc_cause(), all_memory_pools_affected) {
}